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Power and Sample size Estimation for Bioequivalence Studies 
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The used mathematical and statistical apparatus is here only formulated for the evaluation of 

the pharmacokinetic metrics which are assumed log-normal distributed. 

The description follows closely Diletti, Hauschke and Steinijans (1991). 

 
For the formulas using untransformed PK metrics refer to Phillips (1990). 

 
 

The TOST procedure 

Let µT and µR the expected mean values of the pharmacokinetic metric (f.i. AUC, or Cmax) of 

the Test and Reference formulation to be compared within a bioequivalence study. 

Let the interval (  ,   ) denote the bioequivalence acceptance range where           . 

Most regulatory guidances set (  ,   ) = (0.8, 1.25) for log-normal distributed pharmaco-

kinetic metrics (i.e. AUC, Cmax). Other values may be used (f.i. (0.75, 1.3333) for widened 

Cmax, or (0.9, 1.1111) for NTI drugs). 

 

The bioequivalence test problem based on the ratio       is stated as:                         (null: bioinequivalence)                 (alternative: bioequivalence) 

 

In case of log-normal distributed pharmaco-kinetic metrics the test problem is transformed 

accordingly to                                               (bioinequivalence)                                 (bioequivalence) 

were        denotes the natural logarithm.                            is estimated by 

the difference of the arithmetic means of the log-transformed observations  ̅   ̅ . 

 

H0 is rejected in favor of bioequivalence if the classical (1-2α)100% confidence interval for       is included in the bioequivalence range (Westlake 1981, 1988). 

The inclusion of the (1-2α)100% confidence interval in the acceptance range is equivalent to 

the two one-sided t-tests (Schuirmann 1987). 



Power & Sample Size based on TOST  page 2 

Bioequivalence is in case of data from a 2x2 cross-over study concluded if the following two 

conditions hold true:     ̅   ̅            √               
    ̅   ̅            √               

where    is estimated from the mean squared error of an appropriate analysis of variance.           denotes the (1- α)-quantile of the central t-distribution with n-2 degrees of 

freedom. n is the number of subjects under study. 

Here we assume that the number of subjects within the two sequence groups TR and RT, 

respectively, are the same. This assumption is also applied for the other designs covered 

within the package PowerTOST. 

 
 

Power of the TOST procedure 

The power of a statistical test is the probability that the hypothesis H0, in our case 

bioinequivalence, is rejected if the alternative hypothesis H1, here bioequivalence, is true. 

In other words the probability of correctly accepting bioequivalence is the power of the test. 

The power of the two one-sided t-tests (TOST) is thus given by 

                                                                    (I) 

 

The t1 and t2 values are the t-test statistics of the two one-sided t-tests described above. 

 

Owen (1965) has showen that the pair (t1, t2) has a special bivariate non-central t-distribution 

and that the power based on that distribution can be calculated as the difference of two 

definite integrals (Owen's Q function):  

              (                 )     (                ) (II) 

 

where           is the (1-α) quantile of a t-distribution with df degrees of freedom. 

df is (n-2) in case of a classical 2x2 cross-over design and  

                         (IIa)                       √    

                      √    

   √                     
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for log-transformed pharmaco-kinetic metrics, where    is the residual standard error,    and    are the lower and upper bioequivalence acceptance bounds (usually 0.8 and 1.25). 

 

The residual variance (   ) is connected to the within-subject coefficient of variation CV by 

                        √           

 

Owen’s Q function is defined as: 

              √                ∫     √                   (III) 

 

where      is the gamma-function,      and      are the density and cumulative distribution 

function of the standard normal distribution, respectively. 

 

Owen’s Q function was long part of the SAS system (SAS® Analyst 1999), but 

undocumented until SAS9.2. It was implemented here in the R package PowerTOST via 

numerical evaluation of the definite integral using the integrate() function of the package 

stats, part of the base R-project installation (see implementation details below). 

 
 
Equation (II) can be approximated by the univariate non-central t-distribution via 

         (                  )                        (IV) 

 

where            is the distribution function of the non-central t distribution with df degrees of 

freedom and noncentrality parameter δ. 

Equation (IV) can further approximated, if the non-central t-distribution is approximated by a 

“shifted” central t-distribution, according to 

         (                  )                        (V) 

 

where          is the distribution function of the central t-distribution with df degrees of 

freedom. 

 

Both approximations perform well if the degrees of freedom df are reasonable high and the 

obtained power is in the usually interesting range (≥ 60-70%). 

 

Equation (III) is used throughout the book from S.A. Julious (2010), without indicating that it 

is an approximation; and in many other papers. 
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Equation (IV) is used in the book by Chow and Liu (2009) in chapter 9 concerning sample 

size calculations for higher-order (replicate) crossover designs, also without indicating the 

approximate nature. It is implemented in the commercial sample size software PASS 2008 

(Hintze J. 2008), module “Equivalence of means/Two means in a higher order cross-over 

design”. 

 
 

Other study designs 

The formulas for other study designs used in bioequivalence studies differ from the given 

ones only by 

 the degrees of freedom df and  

 the factor 2 under the square root in the denominator of the “non-centrality” 

parameters    and   . 

The factor 2 has to be replaced by the so-called design constant bk. 

This holds if the same assumptions are made as in the 2x2 cross-over, namely the number 

of subjects in the sequence groups or the two groups in the parallel group design are equal, 

the within-subject variabilities or the variabilities in the two parallel groups of the Test and 

Reference formulations are assumed equal and no subject by formulation interaction is 

incorporated in the ANOVA for replicate cross-over designs. 

 

See the function known.designs() for the values of df=degrees of freedom and bk 

implemented. 

 

For the cross-over designs n is the total number of subjects and the CV to be used here is 

the within-subject CV (CV of the residual error). 

For the two-group parallel design the sample size is, beginning with version 0.9-0, also the 

total number of subjects. The CV to be used here is the CV of the total variability. 
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Robust degrees of freedom 

Beside the use of the degrees of freedom from the corresponding ANOVA model there is in 

PowerTOST the possibility to use the so-called degrees of freedom according to the 'robust' 

evaluation (aka Senn's basic estimator, see Senn (2002) and Jones&Kenward (2006)).  

These df are calculated as n-seq. 

They arose if the evaluation is done via appropriate intra-subject contrasts to estimate T-R of 

the (log-transformed) PK metric under analysis. 

 

These degrees of freedom are often more appropriate if the variability (CV) was taken from a 

real mixed model evaluation (f.i. FDA code for ABE in replicate cross-over studies). 

See the function known.designs() for the values of df2 = ‘robust’ degrees of freedom 

implemented. 

 
 

Unbalanced sequence groups 

The formulas (IIa) given above rely on the assumption of balanced (sequence) groups, i.e. 

equal numbers of subjects in the sequence groups of cross-over studies or equal numbers of 

subjects in the two groups of a parallel group design. 

To allow the power calculations for unbalanced studies, common due to dropouts, the 

formulas for the delta’s have to be modified to 

                      √    ∑     

                      √    ∑     

 

In the degrees of freedom n has to be replaced by ∑  . The design constants bkni also 

change their value compared to bk. See later on under known.designs(). 

This is implemented in the function power2.TOST() of package PowerTOST. 

The sample size estimation is nevertheless done with balanced (sequence) groups. 
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Sample size estimation 

Equation (II) or the approximations (IV) and (V), respectively, are implicit in n – the sample 

size – and can be solved for given n, alpha, power to achieve, bioequivalence margins and 

the assumed null (‘true’) ratio. 

The algorithm starts with a suitable chosen value of the sample size, calculates the power for 

that and increases / decreases this start value in steps of the number of sequence groups in 

the study design until the power reaches or exceed the desired level. 

 

The start value is chosen via the large sample approximation of the power equation (Julious 

2010)  

           √ (             )                   
 

if          , else change the difference in denominator to                  .  
 

in case of the 2x2 cross-over design and log-transformed data, where    is the p quantile of 

the standard normal distribution. 1-β is the power. 

If    = 1 then        has to be replaced by         . 
In case of Θ0 near 1 the quantile is changed to        with f=0.5*exp(-7.06*log(Θ0)/log(Θ2))* β 

according to Zhang (2003), i.e. gradually changed from          to       . 
bk is the so-called design constant, which is =2 in case of a 2x2 cross-over. 

 

 

Implementation details 

Owen’s Q function is implemented via the integrate() function of the R package stats 

which performs numerical integration via an adaptive algorithm. 

The function to integrate over is hidden in the internal function 

.Q.integrand(x,nu,t,delta) 

To avoid numerical overflow in the factor before the definite integral it is calculated 

logarithmically within that function as 

lnQconst <- -((nu/2.0)-1.0)*log(2.0) - lgamma(nu/2.) 

lgamma(x) is the    (    ) function from the R package stats. 

The factor √   vanishes if the density function      of the standard normal distribution in 

equation (III) is replaced by exp(-0.5*x^2). 
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Since for really large values of nu and the upper integration limit R the integrand is a function 

which is zero over nearly all its range, the integrate() function may fail (see 

help(integrate)) and OwensQ() then returns erroneously 0.  

Therefore for nu>=5000 the power is calculated via the approximation using the non-central 

t-distribution (see below). 

For high delta and/or high upper integration limit R the function OwensQOwen() is used for 

the exact power calculation. This function is an implementation of the algorithmn ‘repeated 

integration by parts’ as described in Owen’s original paper (Owen, 1965). Due to 

computation time burden this is done if nu<400. 

For nu>1000 it is tried to change the integration limits in steps of R/500 until the .Q.integrand 

has a value >0. 

 

For an alternative implementation of the power calculation according to equation (II) see the 

function power.equivalence.md() of the package MBESS. Author of that function is  

Kem F. Philipps. 

 
 
The exact power according to equation (II) is implemented in the hidden internal function 

.power.TOST(alpha=0.05, ltheta1, ltheta2, diffm, se, n, df, bk=2). 

This function is used by the high level functions power.TOST() or sampleN.TOST() if you 

set method=”exact” (the default). 

 

The approximate power according to the non-central t-distribution is implemented in the 

hidden internal function  

.approx.power.TOST(alpha=0.05, ltheta1, ltheta2, diffm, se, n, df, bk=2) 

This function is used if you set method=”noncentral” or method=”nct”  in 

power.TOST() or sampleN.TOST(). 

 

The approximation according to equation (V), via “shifted” central t-distribution is 

implemented in the hidden function 

.approx2.power.TOST(alpha=0.05, ltheta1, ltheta2, diffm, se, n, df, bk=2). 

This function is used if your set method=”shifted” or method=”central”  in 

power.TOST() or sampleN.TOST(). 

 

Of course it is recommended to use method=”exact” . There is no reason beside testing 

or comparative purposes to use an approximation if the exact method is available for no 

extra costs. 
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Both approximations can yield power values <0. In that case the power will be set =0. 

To use these internal functions by yourself, you must supply the values diffm=log(Θ0), 

theta1= log(Θ1) and theta2= log(Θ2) in case of log-transformed evaluation. 

n is the sample size, df the degrees of freedom, bk the design constant. 

It is highly recommended to use the high level functions power.TOST() or 

sampleN.TOST(). They shield you from all the peculiarities of the designs and log-

transformed or un-transformed evaluation. 

 
If you are interested in more insight in the implementation load down the source code tarball 

of the package PowerTOST from CRAN and have a look at the code and especially at the 

comments within it. 

Do not hesitate to contact the maintainer in case of any question, feature request or 

observation of bug(s). 

 

know.designs() 

The function known.designs() contains all parameters specifically to use in the described 

formulas. Below is the output: 

    no   design    df df2 steps  bk bkni                      name 

1    0 parallel   n-2 n-2     2 4.0 1.0                2 parallel groups 

2    1      2x2   n-2 n-2     2 2.0 0.5                    2x2 crossover 

3    1    2x2x2   n-2 n-2     2 2.0 0.5                  2x2x2 crossover 

4    2      3x3 2*n-4 n-3     3 2.0 0.22222222             3x3 crossover 

5    3    3x6x3 2*n-4 n-6     6 2.0 0.05555555           3x6x3 crossover 

6    4      4x4 3*n-6 n-4     4 2.0 0.125                  4x4 crossover 

7    5    2x2x3 2*n-3 n-2     2 1.5 0.375      2x2x3 replicate crossover 

8    6    2x2x4 3*n-4 n-2     2 1.0 0.25       2x2x4 replicate crossover 

9    7    2x4x4 3*n-4 n-4     4 1.0 0.0625     2x4x4 replicate crossover 

10   9    2x3x3 2*n-3 n-3     3 1.5 0.16666667 partial replicate (2x3x3) 

11  10    2x4x2   n-2 n-2     4 8.0 0.5                 Balaam's (2x4x2) 

12 100   paired   n-1 n-1     1 2.0 0.5                     paired means 

The bk are the ‘design’ constants in terms of ntotal for balanced (sequence) groups, the bkni 

the ‘design’ constants in terms of the number of subjects possibly unbalanced in the 

(sequence) groups. 

 

The df are the usual degrees of freedom, df2 the degrees of freedom for the so-called robust 

analysis, i.e. analysis via intra-subject contrasts T-R of the (log-transformed) values of the 

PK metrics. The df2 are also more appropriate if the planning of sample size is done based 

on CV’s originating from real mixed model analysis (via Proc MIXED in SAS or lme() in R). 
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