
PeakSegDisk usage examples

Toby Dylan Hocking

September 10, 2019

Welcome to PeakSegDisk, an R package for optimal peak detection in very large count data sequences.

1 Related work

The PeakSeg R packages contain algorithms for inferring optimal segmentation models subject to the
constraint that up changes must be followed by down changes, and vice versa. This ensures that the
model can be interpreted in terms of peaks (after up changes) and background (after down changes).

PeakSegDP the historically first PeakSeg package, https://CRAN.R-project.org/package=PeakSegDP
provides a heuristic quadratic time algorithm for computing models from 1 to S segments for a
single sample. This was the original algorithm described in our ICML’15 paper, http://jmlr.
org/proceedings/papers/v37/hocking15.html, but it is neither fast nor optimal, so in practice
we recommend to use our newer packages below instead.

PeakSegOptimal https://CRAN.R-project.org/package=PeakSegOptimal provides log-linear time
algorithms for computing optimal models with multiple peaks for a single sample. The algorithms
are faster and more accurate than PeakSegDP, https://arxiv.org/abs/1703.03352

PeakSegDisk https://github.com/tdhock/PeakSegDisk provides an on-disk implementation of op-
timal log-linear algorithms for computing multiple peaks in a single sample. Computes same
models as PeakSegOptimal but works for much larger data sets because disk is used for storage
instead of memory. https://arxiv.org/abs/1810.00117

PeakSegJoint https://CRAN.R-project.org/package=PeakSegJoint provides a fast heuristic algo-
rithm for computing models with a single common peak in 0, ..., S samples. https://arxiv.org/
abs/1506.01286

PeakSegPipeline https://github.com/tdhock/PeakSegPipeline provides a pipeline for genome-
wide peak calling using the other PeakSeg packages.

The remainder of this vignette is dedicated to an explanation of how to use PeakSegDisk.

2 Simulate a noisy integer vector with changes

The first example we will treat is detecting peaks in a vector of integer data, with possibly the same
values at adjacent positions. This is an inefficient representation for large genomic data, but it is the
typical output from simulation functions like rpois:

1

https://CRAN.R-project.org/package=PeakSegDP
http://jmlr.org/proceedings/papers/v37/hocking15.html
http://jmlr.org/proceedings/papers/v37/hocking15.html
https://CRAN.R-project.org/package=PeakSegOptimal
https://arxiv.org/abs/1703.03352
https://github.com/tdhock/PeakSegDisk
https://arxiv.org/abs/1810.00117
https://CRAN.R-project.org/package=PeakSegJoint
https://arxiv.org/abs/1506.01286
https://arxiv.org/abs/1506.01286
https://github.com/tdhock/PeakSegPipeline

sim.seg <- function(seg.mean, size.mean=15){
seg.size <- rpois(1, size.mean)

rpois(seg.size, seg.mean)

}
set.seed(1)

seg.mean.vec <- c(1.5, 3.5, 0.5, 4.5, 2.5)

z.list <- lapply(seg.mean.vec, sim.seg)

(z.rep.vec <- unlist(z.list))

#> [1] 3 0 3 4 2 2 0 0 0 2 1 2 9 3 5 6 2 4 1 2 3 0 3 6 3 3 0 1 1 1 0 1 0 1 1

#> [36] 1 0 0 1 0 0 4 7 4 3 2 2 3 4 5 4 7 3 4 3 5 3 4 4 2 4 2 2 2 5 4 2 4 6 2

#> [71] 3 2 2 3 1

From the output above it is clear that these simulated data are integers, with some identical values
at adjacent positions.

Below we put these data into a data table in order to plot them along with the model using ggplot2:

count.df <- data.frame(

chrom="chrUnknown",

chromStart=0:(length(z.rep.vec)-1),

chromEnd=1:length(z.rep.vec),

count=z.rep.vec)

library(ggplot2)

gg.count <- ggplot()+

xlab("position")+

geom_point(aes(

chromEnd, count),

shape=1,

data=count.df)

gg.count

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

● ● ●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

0.0

2.5

5.0

7.5

0 20 40 60
position

co
un

t

The true changepoints in the simulation are shown below.

2

n.segs <- length(seg.mean.vec)

seg.size.vec <- sapply(z.list, length)

seg.end.vec <- cumsum(seg.size.vec)

change.vec <- seg.end.vec[-n.segs]+0.5

change.df <- data.frame(

changepoint=change.vec)

gg.change <- gg.count+

geom_vline(aes(

xintercept=changepoint, color=model),

data=data.frame(change.df, model="simulation"))+

scale_color_manual(

values=c(

simulation="black",

fitted="green"))

gg.change

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

0.0

2.5

5.0

7.5

0 20 40 60
position

co
un

t model

simulation

3 Segment a vector of integers

Let z1, . . . , zn ∈ Z+ be the sequence of n non-negative count data in z.rep.vec, and let w1 = · · · = wn = 1
be weights which are all 1. The peak detection algorithm computes the solution to the following
optimization problem:

minimize
m∈Rn, s∈{0,1}n
c∈{−1,0,1}n−1

n∑
i=1

wi`(mi, zi) + λ

n−1∑
i=1

I(ci = 1)

subject to no change: ci = 0⇒ mi = mi+1 and si = si+1

go up: ci = 1⇒ mi ≤ mi+1 and (si, si+1) = (0, 1),

go down: ci = −1⇒ mi ≥ mi+1 and (si, si+1) = (1, 0),

start and end down: s1 = sn = 0.

3

where `(m, z) = m−z logm is the Poisson loss. The optimization variables are mi for the segment mean,
si for hidden state, and ci for type of changepoint. The penalty term is proportional to the number of
changepoint variables ci which are equal to 1 (which is the same as the number of peaks in the resulting
model).

To run the peak detection algorithm a numeric penalty parameter λ ≥ 0 must be specified by the
user. The smallest value is 0 which yields max peaks, and the largest value is Inf which yields no
peaks. The code below runs the peak detection algorithm on this count data vector, using the penalty
parameter λ = 10.5:

fit <- list()

(fit$vec <- PeakSegDisk::PeakSegFPOP_vec(z.rep.vec, 10.5))

#> $segments

#> chrom chromStart chromEnd status mean

#> 1: chrUnknown 69 75 background 2.166670

#> 2: chrUnknown 41 69 peak 3.714290

#> 3: chrUnknown 26 41 background 0.533333

#> 4: chrUnknown 12 26 peak 3.571430

#> 5: chrUnknown 0 12 background 1.583330

#>

#> $loss

#> penalty segments peaks bases bedGraph.lines mean.pen.cost total.loss

#> 1: 10.5 5 2 75 60 0.01507491 -19.86938

#> equality.constraints mean.intervals max.intervals megabytes seconds

#> 1: 0 4.6 8 0.01372147 0.01

#>

#> $data

#> chrom chromStart chromEnd count

#> 1: chrUnknown 0 1 3

#> 2: chrUnknown 1 2 0

#> 3: chrUnknown 2 3 3

#> 4: chrUnknown 3 4 4

#> 5: chrUnknown 4 6 2

#> 6: chrUnknown 6 9 0

#> 7: chrUnknown 9 10 2

#> 8: chrUnknown 10 11 1

#> 9: chrUnknown 11 12 2

#> 10: chrUnknown 12 13 9

#> 11: chrUnknown 13 14 3

#> 12: chrUnknown 14 15 5

#> 13: chrUnknown 15 16 6

#> 14: chrUnknown 16 17 2

#> 15: chrUnknown 17 18 4

#> 16: chrUnknown 18 19 1

#> 17: chrUnknown 19 20 2

#> 18: chrUnknown 20 21 3

#> 19: chrUnknown 21 22 0

4

#> 20: chrUnknown 22 23 3

#> 21: chrUnknown 23 24 6

#> 22: chrUnknown 24 26 3

#> 23: chrUnknown 26 27 0

#> 24: chrUnknown 27 30 1

#> 25: chrUnknown 30 31 0

#> 26: chrUnknown 31 32 1

#> 27: chrUnknown 32 33 0

#> 28: chrUnknown 33 36 1

#> 29: chrUnknown 36 38 0

#> 30: chrUnknown 38 39 1

#> 31: chrUnknown 39 41 0

#> 32: chrUnknown 41 42 4

#> 33: chrUnknown 42 43 7

#> 34: chrUnknown 43 44 4

#> 35: chrUnknown 44 45 3

#> 36: chrUnknown 45 47 2

#> 37: chrUnknown 47 48 3

#> 38: chrUnknown 48 49 4

#> 39: chrUnknown 49 50 5

#> 40: chrUnknown 50 51 4

#> 41: chrUnknown 51 52 7

#> 42: chrUnknown 52 53 3

#> 43: chrUnknown 53 54 4

#> 44: chrUnknown 54 55 3

#> 45: chrUnknown 55 56 5

#> 46: chrUnknown 56 57 3

#> 47: chrUnknown 57 59 4

#> 48: chrUnknown 59 60 2

#> 49: chrUnknown 60 61 4

#> 50: chrUnknown 61 64 2

#> 51: chrUnknown 64 65 5

#> 52: chrUnknown 65 66 4

#> 53: chrUnknown 66 67 2

#> 54: chrUnknown 67 68 4

#> 55: chrUnknown 68 69 6

#> 56: chrUnknown 69 70 2

#> 57: chrUnknown 70 71 3

#> 58: chrUnknown 71 73 2

#> 59: chrUnknown 73 74 3

#> 60: chrUnknown 74 75 1

#> chrom chromStart chromEnd count

#>

#> attr(,"class")

#> [1] "PeakSegFPOP_df" "PeakSegFPOP_dir" "list"

The model output list above includes segments, a data table with one row for each segment mean,

5

and loss, a data table with one row that reports the model meta-data. Of interest are:

• penalty, the user-provided penalty value,

• segments, the number of segments,

• peaks, the number of peaks (even-numbered segments),

• bases, the number of data points in repetitive form (not run-length encoding),

• bedGraph.lines, the number of data points in run-length encoding form,

• mean.pen.cost, the optimal mean loss plus penalty*peaks,

• total.loss, the optimal total Poisson loss over all data points,

• equality.constraints, the number of adjacent segment means that are equal in the optimal
solution. Note that when this number is greater than 0, then there are some active equality
constraints, and the optimal model is therefore not feasible for the strict inequality constraints,
which implies that the optimum of the problem with strict inequality constraints is undefined, i.e.
for any sub-optimal solution that satisfies the strict inequality constraints, we can find a lower cost
solution that satifies the strict inequality constraints (but is still sub-optimal), by getting closer
to the solution with active equality constraints.

• megabytes, the storage space on disk used by the solver,

• seconds, the amount of time used by the solver,

• mean.intervals, max.intervals, statistics over all intervals (candidate changepoints) computed
by the functional pruning algorithm, useful for analyzing computational complexity, which is linear
in the number of intervals.

Note in particular that PeakSegFPOP_vec internally uses rle to construct a run-length encoding, which
is passed to the solver to save time/storage. In this case the repetitive integer data vector contains
75 elements but the coverage.bedGraph data file contains only 60 lines. In real genomic data sets the
difference is typically much larger.

gg.change+

geom_segment(aes(

chromStart+0.5, mean, xend=chromEnd+0.5, yend=mean, color=model),

data=data.frame(fitvecsegments, model="fitted"))

6

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

0.0

2.5

5.0

7.5

0 20 40 60
position

co
un

t model

fitted

simulation

It is clear from the plot above that the first three changepoints are estimated exactly and the last
one is a bit over-estimated.

Also note that a default plot method is defined for these objects:

plot(fit$vec)

●●

0.0

2.5

5.0

7.5

0 20 40 60
position

m
ea

n

type

●

●

●

data

peaks

segmentation

constraint

inequality

4 Segment a data frame

Another interface that can be used on a data.frame with n rows and exactly 4 columns (chrom, chrom-
Start, chromEnd, count) is PeakSegFPOP_df. For each row i ∈ {1, . . . , n}, let zi ∈ Z+ be the non-
negative count data (count column), and let wi > 0 be the weight (equal to the number of bases,
chromEnd-chromStart). The optimization problem we solve is the same as before. Note that this
function does not perform run-length encoding for you:

7

(fit$df <- PeakSegDisk::PeakSegFPOP_df(count.df, 10.5))

#> $segments

#> chrom chromStart chromEnd status mean

#> 1: chrUnknown 69 75 background 2.166670

#> 2: chrUnknown 41 69 peak 3.714290

#> 3: chrUnknown 26 41 background 0.533333

#> 4: chrUnknown 12 26 peak 3.571430

#> 5: chrUnknown 0 12 background 1.583330

#>

#> $loss

#> penalty segments peaks bases bedGraph.lines mean.pen.cost total.loss

#> 1: 10.5 5 2 75 75 0.01507491 -19.86938

#> equality.constraints mean.intervals max.intervals megabytes seconds

#> 1: 0 4.633333 8 0.01725006 0.02

#>

#> $data

#> chrom chromStart chromEnd count

#> 1: chrUnknown 0 1 3

#> 2: chrUnknown 1 2 0

#> 3: chrUnknown 2 3 3

#> 4: chrUnknown 3 4 4

#> 5: chrUnknown 4 5 2

#> 6: chrUnknown 5 6 2

#> 7: chrUnknown 6 7 0

#> 8: chrUnknown 7 8 0

#> 9: chrUnknown 8 9 0

#> 10: chrUnknown 9 10 2

#> 11: chrUnknown 10 11 1

#> 12: chrUnknown 11 12 2

#> 13: chrUnknown 12 13 9

#> 14: chrUnknown 13 14 3

#> 15: chrUnknown 14 15 5

#> 16: chrUnknown 15 16 6

#> 17: chrUnknown 16 17 2

#> 18: chrUnknown 17 18 4

#> 19: chrUnknown 18 19 1

#> 20: chrUnknown 19 20 2

#> 21: chrUnknown 20 21 3

#> 22: chrUnknown 21 22 0

#> 23: chrUnknown 22 23 3

#> 24: chrUnknown 23 24 6

#> 25: chrUnknown 24 25 3

#> 26: chrUnknown 25 26 3

#> 27: chrUnknown 26 27 0

#> 28: chrUnknown 27 28 1

#> 29: chrUnknown 28 29 1

8

#> 30: chrUnknown 29 30 1

#> 31: chrUnknown 30 31 0

#> 32: chrUnknown 31 32 1

#> 33: chrUnknown 32 33 0

#> 34: chrUnknown 33 34 1

#> 35: chrUnknown 34 35 1

#> 36: chrUnknown 35 36 1

#> 37: chrUnknown 36 37 0

#> 38: chrUnknown 37 38 0

#> 39: chrUnknown 38 39 1

#> 40: chrUnknown 39 40 0

#> 41: chrUnknown 40 41 0

#> 42: chrUnknown 41 42 4

#> 43: chrUnknown 42 43 7

#> 44: chrUnknown 43 44 4

#> 45: chrUnknown 44 45 3

#> 46: chrUnknown 45 46 2

#> 47: chrUnknown 46 47 2

#> 48: chrUnknown 47 48 3

#> 49: chrUnknown 48 49 4

#> 50: chrUnknown 49 50 5

#> 51: chrUnknown 50 51 4

#> 52: chrUnknown 51 52 7

#> 53: chrUnknown 52 53 3

#> 54: chrUnknown 53 54 4

#> 55: chrUnknown 54 55 3

#> 56: chrUnknown 55 56 5

#> 57: chrUnknown 56 57 3

#> 58: chrUnknown 57 58 4

#> 59: chrUnknown 58 59 4

#> 60: chrUnknown 59 60 2

#> 61: chrUnknown 60 61 4

#> 62: chrUnknown 61 62 2

#> 63: chrUnknown 62 63 2

#> 64: chrUnknown 63 64 2

#> 65: chrUnknown 64 65 5

#> 66: chrUnknown 65 66 4

#> 67: chrUnknown 66 67 2

#> 68: chrUnknown 67 68 4

#> 69: chrUnknown 68 69 6

#> 70: chrUnknown 69 70 2

#> 71: chrUnknown 70 71 3

#> 72: chrUnknown 71 72 2

#> 73: chrUnknown 72 73 2

#> 74: chrUnknown 73 74 3

#> 75: chrUnknown 74 75 1

9

#> chrom chromStart chromEnd count

#>

#> attr(,"class")

#> [1] "PeakSegFPOP_df" "PeakSegFPOP_dir" "list"

Note how bedGraph.lines is now the same size as bases, 75. The time/storage complexity is log-
linear in the number of bedGraph.lines, so it is more efficient to use the run-length encoding. This
can be easily done in R:

z.rle.vec <- rle(z.rep.vec)

chromEnd <- cumsum(z.rle.vec$lengths)

rle.df <- data.frame(

chrom="chrUnknown",

chromStart=c(0L, chromEnd[-length(chromEnd)]),

chromEnd,

count=z.rle.vec$values)

gg.rle <- ggplot()+

geom_segment(aes(

chromStart+0.5, count, xend=chromEnd+0.5, yend=count),

data=rle.df)+

geom_point(aes(

chromEnd, count),

shape=1,

data=rle.df)+

geom_vline(aes(

xintercept=changepoint, color=model),

data=data.frame(change.df, model="simulation"))+

scale_color_manual(

values=c(

simulation="black",

fitted="green"))+

xlab("position")

gg.rle

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

0 20 40 60
position

co
un

t model

simulation

The plot above shows the run-length encoded data, with a geom_point for the last position in each
run, and a geom_segment extending left to the first position. These data can be segmented as above:

(fit$rle <- PeakSegDisk::PeakSegFPOP_df(rle.df, 10.5))

#> $segments

#> chrom chromStart chromEnd status mean

#> 1: chrUnknown 69 75 background 2.166670

#> 2: chrUnknown 41 69 peak 3.714290

#> 3: chrUnknown 26 41 background 0.533333

#> 4: chrUnknown 12 26 peak 3.571430

#> 5: chrUnknown 0 12 background 1.583330

#>

#> $loss

#> penalty segments peaks bases bedGraph.lines mean.pen.cost total.loss

#> 1: 10.5 5 2 75 60 0.01507491 -19.86938

#> equality.constraints mean.intervals max.intervals megabytes seconds

#> 1: 0 4.6 8 0.01372147 0.02

#>

#> $data

#> chrom chromStart chromEnd count

#> 1: chrUnknown 0 1 3

#> 2: chrUnknown 1 2 0

#> 3: chrUnknown 2 3 3

#> 4: chrUnknown 3 4 4

#> 5: chrUnknown 4 6 2

#> 6: chrUnknown 6 9 0

#> 7: chrUnknown 9 10 2

#> 8: chrUnknown 10 11 1

#> 9: chrUnknown 11 12 2

#> 10: chrUnknown 12 13 9

#> 11: chrUnknown 13 14 3

11

#> 12: chrUnknown 14 15 5

#> 13: chrUnknown 15 16 6

#> 14: chrUnknown 16 17 2

#> 15: chrUnknown 17 18 4

#> 16: chrUnknown 18 19 1

#> 17: chrUnknown 19 20 2

#> 18: chrUnknown 20 21 3

#> 19: chrUnknown 21 22 0

#> 20: chrUnknown 22 23 3

#> 21: chrUnknown 23 24 6

#> 22: chrUnknown 24 26 3

#> 23: chrUnknown 26 27 0

#> 24: chrUnknown 27 30 1

#> 25: chrUnknown 30 31 0

#> 26: chrUnknown 31 32 1

#> 27: chrUnknown 32 33 0

#> 28: chrUnknown 33 36 1

#> 29: chrUnknown 36 38 0

#> 30: chrUnknown 38 39 1

#> 31: chrUnknown 39 41 0

#> 32: chrUnknown 41 42 4

#> 33: chrUnknown 42 43 7

#> 34: chrUnknown 43 44 4

#> 35: chrUnknown 44 45 3

#> 36: chrUnknown 45 47 2

#> 37: chrUnknown 47 48 3

#> 38: chrUnknown 48 49 4

#> 39: chrUnknown 49 50 5

#> 40: chrUnknown 50 51 4

#> 41: chrUnknown 51 52 7

#> 42: chrUnknown 52 53 3

#> 43: chrUnknown 53 54 4

#> 44: chrUnknown 54 55 3

#> 45: chrUnknown 55 56 5

#> 46: chrUnknown 56 57 3

#> 47: chrUnknown 57 59 4

#> 48: chrUnknown 59 60 2

#> 49: chrUnknown 60 61 4

#> 50: chrUnknown 61 64 2

#> 51: chrUnknown 64 65 5

#> 52: chrUnknown 65 66 4

#> 53: chrUnknown 66 67 2

#> 54: chrUnknown 67 68 4

#> 55: chrUnknown 68 69 6

#> 56: chrUnknown 69 70 2

#> 57: chrUnknown 70 71 3

12

#> 58: chrUnknown 71 73 2

#> 59: chrUnknown 73 74 3

#> 60: chrUnknown 74 75 1

#> chrom chromStart chromEnd count

#>

#> attr(,"class")

#> [1] "PeakSegFPOP_df" "PeakSegFPOP_dir" "list"

gg.rle+

geom_segment(aes(

chromStart+0.5, mean, xend=chromEnd+0.5, yend=mean, color=model),

data=data.frame(fitrlesegments, model="fitted"))

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

0 20 40 60
position

co
un

t model

fitted

simulation

5 Write the file yourself

The interfaces discussed in the previous sections are perhaps the most intuitive for useRs, but they are
also the least efficient, so they are not recommended for large data.

In this section we introduce the most efficient way of using PeakSegDisk, which involves:

• creating a “problem” directory for each segmentation problem (sample and genome subset),

• saving the data to coverage.bedGraph in that directory,

• and then running PeakSegFPOP_dir.

The reason why this method is recommended for large data is because PeakSegFPOP_dir saves its
results to the “problem” directory. So if a certain result has already been computed, these result files
are used as a cache, and are read instead of doing computations, which saves a lot of time. The file
system is used as the interface in order to support very large data sets with very little memory usage.

To use PeakSegFPOP_dir the data should be saved to a chrXX-start-end/coverage.bedGraph file,
where the problem directory “chrXX-start-end” should be named using a genome postion string:

13

• chrXX is the chromosome (which is irrelevant to the algorithm),

• start is the 0-based first position of the region to segment (the smallest possible value is 0),

• end is the 1-based end position (the smallest possible value is 1).

data.dir <- file.path(

tempfile(),

with(rle.df, sprintf(

"%s-%d-%d", chrom[1], min(chromStart), max(chromEnd))))

dir.create(data.dir, showWarnings=FALSE, recursive=TRUE)

coverage.bedGraph <- file.path(data.dir, "coverage.bedGraph")

write.table(

rle.df, coverage.bedGraph,

sep="\t", row.names=FALSE, col.names=FALSE)

The next step is to run the main solver,

(fit$dir <- PeakSegDisk::PeakSegFPOP_dir(data.dir, 10.5))

#> $segments

#> chrom chromStart chromEnd status mean

#> 1: chrUnknown 69 75 background 2.166670

#> 2: chrUnknown 41 69 peak 3.714290

#> 3: chrUnknown 26 41 background 0.533333

#> 4: chrUnknown 12 26 peak 3.571430

#> 5: chrUnknown 0 12 background 1.583330

#>

#> $loss

#> penalty segments peaks bases bedGraph.lines mean.pen.cost total.loss

#> 1: 10.5 5 2 75 60 0.01507491 -19.86938

#> equality.constraints mean.intervals max.intervals megabytes seconds

#> 1: 0 4.6 8 0.01372147 0.02

#>

#> attr(,"class")

#> [1] "PeakSegFPOP_dir" "list"

The underlying C++ code creates penalty-specific files such as
chrXX-start-end/coverage.bedGraph_penalty=0.1_loss.tsv which are used to store/cache the

results. If the files already exist (and are consistent) then PeakSegFPOP_dir just reads them; otherwise
it runs the dynamic programming C++ code in order to create those files, which are then read into R.

6 Computing the model with a given number of peaks

The sequentialSearch_dir function can be used to compute the optimal model with a certain number
of peaks:

14

if(interactive() && requireNamespace("future"))future::plan("multiprocess")

(fit$search <- PeakSegDisk::sequentialSearch_dir(data.dir, 2L, verbose=1))

#> Loading required namespace: future.apply

#> Next = 0, Inf

#> Next = 2.20991803112367

#> Next = 7.11950550040458

#> $segments

#> chrom chromStart chromEnd status mean

#> 1: chrUnknown 69 75 background 2.166670

#> 2: chrUnknown 41 69 peak 3.714290

#> 3: chrUnknown 26 41 background 0.533333

#> 4: chrUnknown 12 26 peak 3.571430

#> 5: chrUnknown 0 12 background 1.583330

#>

#> $loss

#> penalty segments peaks bases bedGraph.lines mean.pen.cost total.loss

#> 1: 7.119506 5 2 75 60 -0.07507161 -19.86938

#> equality.constraints mean.intervals max.intervals megabytes seconds

#> 1: 0 4.558333 9 0.0136261 0

#> iteration under over

#> 1: 3 0 6

#>

#> $others

#> penalty segments peaks bases bedGraph.lines mean.pen.cost total.loss

#> 1: 0.000000 53 26 75 60 -0.63772877 -47.829658

#> 2: Inf 1 0 75 60 0.12837615 9.628211

#> 3: 2.209918 13 6 75 60 -0.26439085 -33.088822

#> 4: 7.119506 5 2 75 60 -0.07507161 -19.869382

#> equality.constraints mean.intervals max.intervals megabytes seconds

#> 1: 5 2.550000 4 0.009029388 0.02

#> 2: 0 0.000000 0 0.000000000 0.00

#> 3: 0 4.708333 9 0.013969421 0.01

#> 4: 0 4.558333 9 0.013626099 0.00

#> iteration under over

#> 1: 1 NA NA

#> 2: 1 NA NA

#> 3: 2 0 26

#> 4: 3 0 6

#>

#> attr(,"class")

#> [1] "PeakSegFPOP_dir" "list"

The algorithm must evaluate several penalty values to compute the optimal model with a certain
number of peaks. The others component of the model list above shows that

• the search starts with penalty values 0 and Inf, which result in models with 26 and 0 peaks,

15

respectively.

• the next penalty evaluated is 2.21, which results in 6 peaks.

• the final penalty evaluated is 7.12, which results in 2 peaks.

At each step (except the first) the new penalties are computed based on the loss values found in the
previous step. If present with a registered parallel future plan, the future.apply package is used to
run the first step (penalties 0,∞) in parallel.

Note how the number of peaks and total.loss of this model is the same as the other models
computed above,

lossDF <- function(L)data.frame(L$loss)[, names(fit$dir$loss)]

do.call(rbind, lapply(fit, lossDF))

#> penalty segments peaks bases bedGraph.lines mean.pen.cost

#> vec 10.500000 5 2 75 60 0.01507491

#> df 10.500000 5 2 75 75 0.01507491

#> rle 10.500000 5 2 75 60 0.01507491

#> dir 10.500000 5 2 75 60 0.01507491

#> search 7.119506 5 2 75 60 -0.07507161

#> total.loss equality.constraints mean.intervals max.intervals

#> vec -19.86938 0 4.600000 8

#> df -19.86938 0 4.633333 8

#> rle -19.86938 0 4.600000 8

#> dir -19.86938 0 4.600000 8

#> search -19.86938 0 4.558333 9

#> megabytes seconds

#> vec 0.01372147 0.01

#> df 0.01725006 0.02

#> rle 0.01372147 0.02

#> dir 0.01372147 0.02

#> search 0.01362610 0.00

Finally we demonstrate how the filesystem caching is especially useful for the sequential search. In
the code below we ask the sequential search algorithm to compute the optimal model with four peaks:

four.peaks <- PeakSegDisk::sequentialSearch_dir(data.dir, 4L)

four.peaks$others[, .(iteration, penalty, peaks)]

#> iteration penalty peaks

#> 1: 1 0.000000 26

#> 2: 1 Inf 0

#> 3: 2 2.209918 6

#> 4: 3 7.119506 2

#> 5: 4 3.304860 3

#> 6: 5 2.830674 5

#> 7: 6 3.107790 4

16

Looking at the output above, we see that the first three iterations of the sequential search require
computing models with 26, 0, 6, 2 peaks. Since all of these have been previously computed (and saved
to disk), the dynamic programming algorithm does not need to be re-run, and instead the model results
are simply read from the files. After that the dynamic programming is run for the subsequent iterations
4-6. In this particular example the savings in computation time is not extraordinary, but in real genomic
data, this can result in substantial speed-ups.

17

	Related work
	Simulate a noisy integer vector with changes
	Segment a vector of integers
	Segment a data frame
	Write the file yourself
	Computing the model with a given number of peaks

