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1. Introduction

Multidimensional methods may be restricted to dealing with multiway data. As analysing
two-way tables, the multi-way table has to be collapsed or unfolded in a table with two modes,
thereby looking at interactions of order 2 in a multiple fashion instead of looking at multiple
interactions. This is the case, forexample, tor Multiple Correspondence Analysis as compared
toSimple Correspondence Analysis. The former isnot the extension of the latter when dealing
with more than 2 categorical variables, but rather a “flatter” extension of it where only all 2
ways marginal lack of independence are considered. Within R, R Development Core Team
(2007), the add-on package PTAK Leibovici (2001, 2007) aims at decomposing interactions of
order k > 2, and, for example, the method FCAk within the package decomposes the lack of
independence measured by a x° for the k variables in the k-way table. This particular PTAk
application will be described in section 6, for general purposes but also towards analysing
spatial patterns of occurrences.

Beforehand the algebraic background extending matrix calculus will be shortly described
in section 2, together with the optimisation procedure of the main method of the package:
PTAk. A brief comparison with some other well known multiway methods will also be
made in this section. Sections 3 and 4 will give an overview of using the package, whilst
sections 5, 6, and 7 will describe some generic approaches to derive decomposition models
useful in a spatio-temporal context. The framework used within the package PTAK is in-
deed extending some duality principles Cailllez (1976); Escoufier (1987); Dray and Dufour
(2007), therefore approaches in multidimensional analysis focusing on spatial data and
on temporal data, such as methods decomposing local and global variances as in ade4,
Chessel, Dufour, Dray, Lobry, Ollier, Pavoine, and Thioulouse (2007), can be reused.



2. Understanding PTAK relatively to PCA

PTAk offers a decomposition similar to what is obtained from matrices with a Principal Com-
ponent Analysis, but working on tensors, r.e. in mathematical algebra they are multilinear
maps, seen here simply as multiple-entries tables (k entries). Tensor algebra properties allow
to derive multiple-entries table calculus, extending matrix calculus, Leibovici and Sabatier
(1998); Dauxois, Roomain, and Viguier-Pla (1994). In order to describe the generalisation
proposed with the PTAk model, let us first rewrite the PCA method within a tensorial frame-
work. For a given matrix X of dimension n X p, the first principal component is a linear
combination (given by a p-dimensional vector ¢;) of the p columns ensuring maximum sum
of squares of the coordinates of the n-dimensional vector obtained. The square root of this

Figure 1: lllustrative comparison between PCA and PTAk (here with k = 3) when computing
singular values by Complete Contractions given in the equations 1 and 2: the basis of the
RPVSCC algorithm.
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sum of squares is called the first singular value g1. One has: ‘F(an)(){'q)l) = J? and Xq1/01 is
the principal component normed to 1. This maximisation problem can be written either in
matrix form or tensor form:

01 =  max (tqchp) = max X.(v®@)
Il =1 [¢ll, =1
llell,=1 [l =1

= "I Xgr = Xu(Y1 @ 1)
(1)

In equation 1 X is used either for the matrix or the tensor. An easy way of understanding
computationally the algebraic operators “..” and “®" is to see them as the following oper-
ations: i1 ® @1 is a np vector of the n blocks of the p vectors ¢y, 1 = 1, ..n; “.." called a
contraction generalises the multiplication of a matrix by a vector and in the case like here
of equal dimensions of the two tensors (11p) corresponds to the natural inner product (X is
then also seen an np vector). 14 is termed first principal component, ¢, first principal axis,
(1 ® ¢q) is called first principal tensor. Within R, tensor products can be utilised with the
outer product (“0%) or the Kronecker product (“x’). The tensor being in fact an algebraic
operation, it is up to the computational step to choose one or the other. The computational

(1

description of “®”, given above, is using the Kronecker product:

> c(1,2,3)%x%c(4,5)

[1] 4 5 8 16 12 15



The result with the outer product is an array which could be preferred for tensor product
representation, as here a matrix emphasised the bilinear property. The vectorisation of the
array is a permuted version of the Kronecker product:

> c¢(l,2,3)%0%c(4,5)
[+1] [2]
LL,] 4 5
[2,] 8 10
[3,] 12 15
> dim(c(1,2, 3)%0%c(4,5)%0%c(3,1))
1] 3 2 2
> all(as.vector(t(c(1l,2,3)%0%c(4,5)))==c(1,2,3)%x%c(4,5))
[1] TRUE
Notice here the description of a tensor of order 2, a bilinear map, as associated to a matrix

which is usually associated to one linear map. The duality diagram Cailllez (1976); Escoufier
(1987); Dray and Dufour (2007) comes to complete the association with another linear map



on the dual spaces involved to define the other linear map: expressed by the transposed
matrix. The contraction, “..", is implemented within the function CONTRACTION and it uses
the package tensor. Now if X is a tensor of higher order, say 3 here we can look for the first
principal tensor associated with the singular value with the optimisation form:

o1 = max X (@)
[[]]=1
lll=1
ol =1
= X.(P1 @1 ® 1) (2)

This is a direct extension of equation 1 which practically, both being expressed by practical
schemas on figure 1 with contractions made either on a matrix table or on a tensor of order 3.
The further extension to k > 3 is straightforward. CONTRACTION.1ist is convenient relatively
to equations 1 and 2 as it performs the contraction without computing the tensor product of
the vectors in the first place as in fact algebraically:

Xp8ped) = (X.9).(p@¢) = (X.0). (08 ) = (X.0).(h®9) = (X)) ()

The function SINGVA computes the best rank-one approximation of the given tensor X



together with its singular value, given by equation 2 (and for higher orders). The therein
algorithm, called RPVSCC, is inspired from the algorithm of Reciprocal Averaging Hill (1973)
also known as the transition formulae in Correspondence Analysis and in the signal process-
ing community as the “power method”. Notice PTAk, CANDPARA (PARAFAC/CANDECOMP)
and PCAn (Tucker,, model) are equivalent when looking for best rank-one approximation.
(References for the last two methods are given in the package.

> PTAk(X,nbPT=1,nbPT2=0)==CANDPARA(X,dim=1)==PCAn(X,dim=rep(1,length(dim(X))))

This cannot be strictly veritied using PTAk as CANDPARA and PCAn in their implementation
only accepts rank approximation greater than 1. Working around is :

> X=c(1,2,3)%0%c(2,4,6)%0%c(3,7) +rnorm(18, sd=0.0001)
> 5011=PTAk(X,nbPT=2,nbPT2=0) ; s0l2=CANDPARA(X,dim=2); sol3=PCAn(X,dim=c(2,2,2))
> soll[[1]]%v([1,] ; sol2[[1]]1%v[1,];s0l3[[1]]%v[1,] ; soll[[3]]%d

[1] ©.2672617 ©.5345234 0.8017830
[1] -0.2672617 -0.5345234 -0.8017830
[1] -0.2672617 -0.5345234 -0.8017830

[1] 2.132416e+02 2.086484e-04

Where the first mode component tor the first Principal Tensor given by sol1[[1]1]$v[1,] is
equivalent to the other approximations, with a nearly rank-one tensor: so11[[3]]$d are the
singular values.



Adding an orthogonality constraint (projection onto the orthogonal tensorial of the principal
tensor, see equation 4) allows us to carry on the algorithm to find the second principal tensors
and so on. Following this algorithm schema, the PTAk decomposition obtained offers a way
of synthesising the data according to uncorrelated sets of components. Within this schema
implemented for the functions PTA3 and PTAk one can distinguish main Principal Tensors
from associated Principal Tensors. The latter are associated to a main principal tensor as
they show one or more component of this principal tensor in their sets of components. The
associated principal tensors are obtained by a PTA(k — 1)-modes decomposition once the
k-modes data has been “contracted” by the given component. This makes the algorithm a
recursive algorithm with the following procedure, where here k = 3:

PTAAX) = 01(Ph1 @@ @)

1 ® PTA»(Plg; @ ¢py)X..P1)

@1 @2 PTA2(P(P1 ® o) X..p1)

1 @3 PTA>(P(y7 @ 1) X..1)

PTA3(P(y1 ® gy © ¢71)X) (4)

+ o+ o+ +

The notation ® means that the vector on the left hand will take the ith place, among the k
places here, in each full tensorial product, eg. @1 @ a®p = a ® p; @ . More details on
the properties of the method and on each function of the package is given in the references
Leibovici and Sabatier (1998); Leibovici (2007). The equation 4 and figure 2 illustrates the
multi-hierarchical decomposition obtained with the PTAk method. On figure 2, in almost the



same way as for PCA, one gets a hierarchy of principal tensors corresponding to a hierarchy
of sum of squares, i.e. by the squared of the singular values (g) under the column -Sing
Val associated to each principal tensor. It is a multilevel hierarchy in agreement with the
equation 4. Percents of variability associated to each Principal tensors can be used to retain
main variability within the data tensor X. These percentages are in the -Global Pct column
of figure 2 whereas -local Pct are relative to the sum of squares given in column -ssX linked
to the current tensorial optimisation as detined in equation 4. Plots of the vector components
of a particular principal tensor allows the description of the extracted variability for each
Principal Tensor.

We have seen that PTA-kmodes, PARAFAC/CANDECOMYF and Tuckery were equivalent
when looking for the best rank-one approximation. Then the methods differs as also dif-
fers the rank definitions attached to the models. PTA-kmodes will try to look for best
approximation according to the orthogonal rank (i.e. the rank-one tensors (of the decompo-
sition) are orthogonal), Tucker, or PCA-nmodes will look tor best approximation according
to the space-ranks (i.e. ranks of every bilinear form deducted from the original tensor



Figure 2: Output summary from the function summary() on a PTAk object, here the climatic
data described in section 3.1: (a) is the first principal tensor, (c) represents all the associated
principal tensors to first one such like (b) are the spatial-mode associated principal tensors,
(d) corresponds to the PTAk decomposition on the projection onto the orthogonal tensorial of
the first principal tensor.
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(folding the multi-array into a matrix), that is the number of components in each space),
PARAFAC/CANDECOMP will look for best approximation according to the rank (i.e. the
rank-one tensors are not necessarily orthogonal). It is said here “PTA-kmodes will try” as
it has been proven recently on an example that the orthogonal-rank was not providing nec-
essarily a nested decomposition as PTA-kmodes implies, Kolda (2003). One can also notice
that PTA-kmodes extends the PARAFAC-orthogonal if one considers only main Principal
Tensors (not associated ones) i.e. by setting nbPT2=0 in the PTAK call or by ignoring them. The
function REBUILD will return the approximated or filtered dataset according to the method
used, either PTAk, CANDPARA, or PCAn. REBUILD allows to choose the list of tensors and also
by selected a global threshold for percentage of variability explained by each elementary
tensors. For PCAn the function calls REBUILDPCAn which is not using the previously described
parameters.

> Xapp=REBUILD(soll,nTens=c(1,2),testvar=1e-12)

-- Variance Percent rebuilt X at 100 %

-- MSE 4.378514e-09

-- with 2 Principal Tensors out of 2 given
-- compression 0 %



For PTAk and CANDPARA, the approximation is done according to the equation model, here
written for a tensor of order 4:

X=) oi@p@p ek +e )
iec
where ¢ is a set of the selected elementary tensors. The PCAn rebuilt approximation is a direct
generalisation of model from Kroonenberg and De Leeuw (1980):

X=@pe®ho&).Cte (6)

where the components here are matrices of components with as many columns in each
mode-space as asked for during the optimisation analysis (the space-ranks), and C being the
core tensor with dimensions corresponding to the space-ranks. The algorithm written in the
function PTAK is fully recursive therefore slower when k = 3 than PTA3 which takes benefit
from knowing the order of the tensor. PROJOT is the function within PTAk performing the
orthogonal tensor projection but can also be used for any structure or design associated with
each mode to perform a linear constrained analysis in the same way as for PCAIV (Principal
Component Analysis on Instrumental Variables), see Leibovici (2000) for a full description
of using PTAIVk and in the PTAk manual for PROJOT where a quick implementation is given
as example.



3. Running a general PTAk

SINGVA, PROJOT and other functions also used for 2 modes analysis, SVDGen, in PTAKk stand
in the package as used within PTAKk, but also to perform particular analysis. Indeed, the main
method is the PTAk along with the other multiway models implemented in the package. So
once you have loaded or scanned the dataset from other sources or format, put it in a multi-
array, an array object in R you can run the PTAk decomposition. Thisisillustrated, below, with
the dataset related to ecoclimatic delineation problem, Leibovici, Quillevere, and Desconnets
(2007), where dynamics over a typical year of 10 climatic indicators were analysed in the
circum-saharan zone, using their monthly average estimates. Here the studied zone has been
limited to Tunisia; the shapefile contains a regular grid with the multivariate values:

library(PTAk)

library(tensor)

library(maptools)

library(RColorBrewer)

Yil=brewer.pal(11, "PuOr")

Zone_climTUN<-read.shape( "E:\\R_GIS\\R_G11HF\\TUN\\tunisie_climat.shp")

plot(Zone_climTUN,o0l=NA, auxvar=Zone_climTUN$att.data$PREC_OCTO,nclass=20,
colrmp=colorRampPalette(Y1)(21)))

#indicators 84 +3 to repeat

Zone_clim<-Zone_climTUNSatt.datal[,c(2:13,15:26,28:39,42:53,57:80,83:95,55:56)]

Zot <-Zone_clim[,85:87] ;temp <-colnames(Zot)

Zot <- as.matrix(Zot)#x¥%t(as.matrix(rep(l1,12)))

colnames(Zot) <-c(paste(rep(temp [1],12),1:12),paste(rep(temp [2],12),1:12),
paste(rep(temp [3],12),1:12))

> Zone_clim <-cbind(Zone_clim[,1.:84],Zot)

# 2599 120 space x (mols x var)

A VAV IV B VA

W

WO

%



> dim(Zone_clim)
[1] 2599 120

Zone3w <- array(as.vector(as.matrix(Zone_clim)),c(2599,12,16))
# space X mois X var
> dim(Zone3w) ;dimnames (Zone3w)<-1ist(rownames(Zone3w),1:12,
c{"P", "Tave", "ETo", "PETa", "Tmax", "Tmin", "Q3", "ALL", "dM2T", "dMETa"))



[1] 2599 12 10

> Zohe3w.PTA3<-PTA3(Zone3w,nbPT=3,nbPT2=3,minpct=0.1)

--~Final iteration--- 7

--Singular Value-- ©59898.85 -- Local Percent -- 97.62936 %
---Final iteration--- 26

--Singular Value-- 2866.392 -- Local Percenlt -- ©68.66842 %
---Final iteration--- 39

--Singular Value-- 4®1.1593 -- Local Percent -- 38.09571 %
++ Last 3-modes vs < 6.1 % stopping this level and under ++
————— Execution Time----- 7.43

> summary(Zone3w.PTA3, testvar=0.01)

++++ PTA- 3 modes ++++
data= Zone3w 2599 12 16
PTA3 centree reduite sur var

—————— Percent Rebuilt---- 99.97716 %
—————— Percent Rebuilt from Selected ---- 99.95512 %

-no- --Sing Val-- --5sX-- --local Pct-- --Global Pct--
vslll 1 59898.9 3674994157 97 .62936 97 .6293¢€1
2599 vsi111 12 18 3 3245 .0 3598688392 0.29226 . 286187
12 vs111l 2599 10 6 7354.4 3652184965 1.48097 1.471774
12 vs11ll 2599 10 Fi 3142.0 36521849065 M.27031 B.268629
vs222 11 2860.4 11915063 68.66842 .222636
12 vs222 2599 10 16 T AR 11837789 25.48250 ®.076536
++++ ++++

Shown are selected over 15 PT with var> 0.01 % total



The first Principal Tensor is capturing most of the variability 97.6% which is nearly as much
as the decomposition up to 3 main Principal Tensors and 3 for each associated, i.e. at
each second level analysis {a PCA). One should have had for each main Principal Tensor
9 associated Principal tensors, making the listing 30 lines long, but having always the first
Principal Component redundant that makes only 6, so out of the 21 potential Principal it is
shown only the one with Global Pct >0.01%. The listing summary mentions ...over 15 PT
as in the call function, the parameter minpct=0. 1 forces the algorithm to stop a k >= 3-level
(no sub-level analysis), if this percentage of variability is not met: it happened here for vs333.
The full description of the ouput summary is explained in the section 3.2 where the listing
ouput provides a more complete form.

This first PTAk analysis is not very useful as the variations and range of values can be very
different from one climatic variable to another one. So the main variations captured by
the principal tensors will be towards this differentiation without expressing necessarily the
interactions between the variables and them with the spatio-temporal domain which may
only be detected in some principal tensors (main or associated) with comparatively very small
singular values. As usually done in PCA: centring and scaling the variables, preprocessing
transformation may be crucial as part of the modelling and analysis process.

A complete presentation with particular issues for spatio-temporal data can be found in
Leibovicl (2009b) as well as the references quoted here. Some other examples and references
about PTAk can also be found in http://c3s2i.free.fr.
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functions /JUML structure

e This Is just a quick description ...

A true UML will come with for future versions
... (hot necessary here)

 The “class” PTAK is described in the
manual Is the top class for the package

e PCAN, FCAk, CANDPARA inherit from
PTAK

 SVDgen output are also PTAk class (k=2)



functions /JUML structure

PTAK, PCAn, FCAk, CANDPARA,
SVDgen are the main functions

Methods: plot, summary, REBUILD
other functions, MultCent etc ...

That's 1t for now!



