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1 Introduction

This package provides functions for estimation of linear and non-linear mixed-
effects models using stochastic differential equations. Moreover it provides func-
tions for finding smoothed estimates of model states and for simulation. The
package allows for any multivariate non-linear time-variant model to be speci-
fied, and it also handles multidimensional input, co-variates, missing observa-
tions and specification of dosage regimen.

Some of the most essential parts of the implentation, namely the Kalman
filter, is for linear models run using compiled code written in Fortran, which
gives significant improvements in the parameter estimation times in R. However,
otherwise this version is almost entirely created in R, and estimation times are
thus in no way comparable to state-of-the-art software for similar types of models
based on ordinary differential equations.
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2 Model definition

A mixed-effects model is used to describe data with the following general struc-
ture

yij , i = 1, ..., N, j = 1, ..., ni (1)

where yij is a vector of measurements at time tij for individual i, N is the
number of individuals and ni is the number of measurements for individual i.
In a mixed-effects model the variation is split into intra-individual variation and
inter-individual variation, which is modelled by a first and second stage model.
For further detail regarding the model definition please refer to [1, 2, 3].

First stage model

The first stage model for a mixed effects model can be written in the form of
a state space model. A state space model consists of two parts, namely a set
of continuous state equations defining the dynamics of the system and a set of
discrete measurement equations, which defines a functional relationship between
the states of the system and the obtained measurements. In the linear form the
state space equations are written as

dxt = (A(φi)xt +B(φi)ut)dt+ σω(φi)dωt (2)

yij = C(φi)xij +D(φi)uij + eij (3)

and for a general non-linear model as

dxt = f(xt,ut, t,φi)dt+ σ(ut, t, φi)dωt (4)

yij = g(xij ,uij , tij ,φi) + eij (5)

where t is the continuous time variable, the states of the model and the optional
inputs at time t are denoted xt and ut respectively and ωt is a standard Wiener
process such that ωt2 − ωt1 ∈ N(0, |t2 − t1|I). Both the state, measurement
and input can be multi-dimensional, and are in such cases thus represented by a
vector at time tij . The input is assumed constant between sample times (zero-
order hold). The individual model parameters are denoted φi. Measurements
are assumed observed with a Gaussian white noise measurement error, that
is eij ∈ N(0,S(φi)). For a non-linear model the covariance matrix may also
depend on input and time, that is S(ut, t,φi)).

In the evaluation of the non-linear model it is necessary to specify a Jacobian
matrix function with first-order partial derivatives for f and g. These functions
are defined as

∂f

∂xt
,

∂g

∂xt
(6)
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and must be given with the model specification. PSM will check the user defined
Jacobian functions with numerical evaluations of the Jacobians of f and g to
ensure that they are correct. It is possible to avoid specifying the Jacobian
functions in the model and use numerical approximations instead, but this will
increase estimation time at least ten-fold. See the help file in R for PSM.estimate
for details regarding this.

The initial state of the model is given as a function of t1, φi, and ui1 and
defines the model state at time t1 before update based on the first observation.
The initial state can thus be included in the parameter estimation as necessary.
The covariance matrix of the initial state is set to the integral of the Wiener
process and the dynamics of the system over the first sample interval t2 − t1 as
also done in [3].

The concept of states is essential to the understanding of the model setup.
The state vector describes the state of the entire system and is only observable
through measurement noise. The actual relation between measurements and
states is defined in the measurement equation (3). A state can represent many
different aspects of the system of interest, e.g. concentrations or amounts in
compartments, a volume, a parameter with unknown time varying behavior or
an input to the system, that we wish to estimate.

Second stage model

The second stage model describes the variation of the individual parameters φi

between individuals and is defined as

φi = h(θ,ηi,Zi) (7)

where ηi is the multivariate random effect parameter for the ith individual,
which is assumed Gaussian distributed with mean zero and covariance Ω, i.e.
ηi ∈ N(0,Ω). The fixed effect parameter of the model is θ and Zi is a vector
of co-variates for the ith individual.

3 Estimation

Parameter estimation is done using maximum likelihood. The likelihood func-
tion will only be outlined briefly here, so please refer to [1, 2, 3] for a detailed
description.

The full set of model parameters to be estimated for the final mixed effects
model based on SDEs are the matrices Σ, σω, Ω and the fixed effect parameters
in the vector θ. The three matrices are usually fixed to some degree so that
only the diagonals or other partial structure remains to be estimated. In PSM
the parameters in Σ and σω are included in θ.

In PSM the function ModelPar defines which part of the model parameters
should estimated. These parameters are denoted Θ (in PSM: THETA) such that

ModelPar : Θ→ (θ,Ω). (8)
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The exact population likelihood function cannot be evaluated analytically
and thus a second-order Taylor expansion is made of the individual a posteriori
log-likelihood function around the value of η̂i that maximizes it. The objective
function for PSM is thereby given as

− logL(Θ) ≈
N∑
i=1

(
1

2
log

∣∣∣∣−∆li
2π

∣∣∣∣− li) (9)

where li is the a posteriori log-likelihood function for the ith individual. This
likelihood function is evaluated using the Kalman Filter which gives an exact
solution for linear models. For non-linear models the Extended Kalman filter
(EKF) is used which is only an approximation. The 2nd derivative ∆li is
approximated using the First-Order Conditional Estimation (FOCE) method,
in the same way as it is normally done in mixed effects models based on ordinary
differential equations (ODEs).

Uncertainty of parameters

PSM estimates the uncertainty for the parameter estimates based on the ob-
served Fisher information. The parameters to be estimated are denoted Θ and
the observed information is then defined as

j(Θ) = − ∂2

∂Θ∂ΘT
logL(Θ) = −∇2 logL(Θ) (10)

which is equal to the Hessian matrix of the negative log-likelihood function.
If the parameters maximizing the likelihood function are called Θ̂ they will
asymptotically have the distribution

Θ̂ ∼ N(Θ, j(Θ̂)−1). (11)

This is used in PSM to provide a Wald 95% confidence interval, standard
error and correlation matrix for the estimates. The Hessian is evaluated using
hessian in the numDeriv package.

State estimates

A key feature of the SDE approach to population modelling is the ability to
give improved estimates of the system states given the individual parameters
and also to provide confidence bands for the states. Confidence bands at a time
point t are directly given by the estimated state covariance matrix P̂ i(t|...) from
the EKF, where t can be both at or between measurements.

There are four types of state and state covariance estimates available when
using the EKF, each of which differs in the way data is used. The four types
are:
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• Simulation estimate: x̂i(j|0), P̂ i(j|0)
Provides an estimate of the state evolution for a repeated experiment,
without updating based on measurements. This is an ODE-like estimate,
but it also yields a confidence band for the state evolution.

• Prediction estimate: x̂i(j|j−1), P̂ i(j|j−1)
The prediction is used here to give the conditional density for the next
observation at time tij given the observations up to ti(j|j−1).

• Filtering estimate: x̂i(j|j), P̂ i(j|j)
Best estimate at time tij given the observations up to time tij .

• Smoothing estimate: x̂i(j|N), P̂ i(j|N)

Optimal estimate at time tij utilizing all observations both prior to and
after time tij .

For a conventional ODE model the state is found by the simulation estimate,
which is entirely given by the (possibly ML-estimated) initial state of the system.
The covariance matrix for the states is 0 since no system noise is estimated.

With SDEs three new types of estimates, apart from the simulation estimate,
also become available. In the present setup the prediction estimate is used to
give conditional Gaussian densities to form the likelihood function. The filter
estimate is the best obtainable state estimate during the experiment, where the
subsequent observations are not present. The third type of state estimate is
the smoothed estimate. This provides the optimal state and state covariance
estimate (x̂i(j|N) and P̂ i(j|N)) based on all obtained observations, both prior
and subsequent to the time of interest. The smoothed estimate is therefore
often the natural estimate of choice when studying the behavior of the system
in post hoc analysis [1].

Comparison to NONMEM

The NONMEM software is a widely used tool for mixed effects modelling based
on ODEs [4]. NONMEM also performs maximum likelihood estimation using
the FOCE approximation and for many it might thus be of interest to know
how the two objective functions are related.

The objective function in NONMEM (lNM ) is advertised as −2 logL but in
fact it lacks a constant equal to the likelihood of the data. The PSM objective
function (lPSM ) is − logL as seen in Eq. (9) and the relation thereby becomes
lNM = 2 · lPSM − log(2π) ·

∑
ni. The relation has been tested for a number of

models [1].

Models with no random effects

A special case arises in models where no random effects are specified. This may
be defined in PSM by setting OMEGA = NULL in the ModelPar function. This
greatly simplifies the likelihood function, as it is no longer necessary to integrate
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out the random effects. The likelihood function is thus reduced to a product
of conditional probabilities of the observations. In the form of a log-likelihood
function this may be written as

− logL(Θ) = −
N∑
i=1

ni∑
j=1

log p(yij |·) (12)

where the · indicates conditioning on parameters and past observations for in-
dividual i. The latter conditioning is necessary due to the inclusion of SDEs in
the model.

The likelihood function in Eq. (12) is identical to the one used in CTSM
[3], and is sometimes referred to as a pooled likelihood. The inner sum of the
likelihood function is also equal to the a priori individual log-likelihood function
in the mixed effects framework.

Implementation issues

The estimation algorithm in PSM for linear models is based on the ordinary
Kalman filter, which has been written in Fortran for faster execution times.
However, the Fortran code does not support a singular A-matrix, and will in
these cases fall back on an R version of the Kalman filter. This may be circum-
vented by adding a very small value to the diagonal of A, at least in order to
find the first rough parameter estimates.

6



4 User’s guide to PSM

PSM is built around two key objects. These are

• a data object and

• a model object.

The data object contains sample times, observations and possible input,
covariates and dosing regimen for all individuals and the model object contains
everything related to the model.

Model object

Before setting up a model in PSM it is a good idea to write it down on paper and
note the dimensions of the state, observations and possible input and random
effects. When this is done the function PSM.template() can be used for both
linear and non-linear models as shown below to print a template for the model.

> PSM.template(Linear=TRUE,dimX=3,dimY=1,dimU=0,dimEta=3)

MyModel <- vector(mode="list")

MyModel$Matrices=function(phi) {

list(

matA=matrix(c( ), nrow=3, ncol=3),

matC=matrix(c( ), nrow=1, ncol=3)

)

}

MyModel$h = function(eta,theta,covar) {

phi <- theta

phi

}

MyModel$S = function(phi) {

matrix(c( ), nrow=1, ncol=1)

}

MyModel$SIG = function(phi) {

matrix(c( ), nrow=3, ncol=3)

}

MyModel$X0 = function(Time,phi,U) {

matrix(c( ), nrow=3, ncol=1)

}

MyModel$ModelPar = function(THETA) {

list(theta=list( ),

OMEGA=matrix(c( ), nrow=3, ncol=3)

)

}

The structure of the model object and what each function should return can
be derived from the template shown above. It is important to keep the input
arguments of all functions unchanged even though a particular model may not
need use every argument in a function.
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The input arguments to the functions are defined as follow:

Input arg. Type
THETA Vector (possibly named) containing the pa-

rameters to be maximum likelihood estimated.
theta Vector of all parameters in the model.
phi As standard a list of individual parameters,

but can also be a vector as defined in $h.
eta An unnamed vector of random effects.

Time, time A scalar value.
covar As specified in the user defined data object.
x,u,U Column matrices with state or input at a sam-

ple time.

Data object

The data object is a list with one element for each individual in the data set.
Each element in the list must contain:

• Y - Matrix with observations. Each columns holds one (possibly multi-
dimensional) observation. Missing observations should be marked as NA.

• Time - Vector of sample times. The length must correspond to the number
of columns in Y for the individual.

Each element in the list can optionally contain:

• U - Matrix with input at sample times. The input cannot contain missing
values and is assumed constant between sample times (zero-order hold).
It must have the same number of columns as Y.

• covar - A vector/list with covariates to be used in the function $h.

• Dose - A list containing three vectors: Time, State and Amount. See
help(PSM.estimate) for more detail.

The data object is illustrated with a small example. The object shown
contains 4 and 5 observations for two individuals sampled at different times and
it also has ’BMI’ as a covariate for each individual.

> MyData <- list()

> MyData[[1]] <- list(Time=1:4,Y=matrix(c(2.1,3.2,3.4,3.7),nrow=1),covar=c(BMI=20.1))

> MyData[[2]] <- list(Time=3:7,Y=matrix(c(1.9,2.1,2.0,2.9,3.5),nrow=1),covar=c(BMI=23.4))

Main functions

The PSM program is accessed in R through five main functions:
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• PSM.simulate(Model, Data, THETA, deltaTime)

Simulates data for multiple individuals. The number of individuals is
determined by length(Data). The simulation is based on the Euler method
to be able to simulate SDEs and thus a short time step should be chosen.

• PSM.estimate(Model, Data, Par, CI)

Estimates population parameters for any linear or non-linear model. The
Par argument is a list containing initial estimates and bounds for the
parameter search.

• PSM.smooth(Model, Data, THETA, subsample)

Optimal estimates of model states based on estimated parameters. It
returns both the predicted, filtered and smoothed state estimates and for
models with random effects an estimate of these are also returned.

• PSM.plot(Data, Smooth, indiv, type)

Creates a matrix plot with a column for each individual. The rows can
show observations, inputs, simulated and estimated states, residuals and
auto-correlation functions. The x and/or y axis can be on log-scale and it
is possible to list simulated or estimated random effects on the plot.

• PSM.template(Linear,dimX,dimY,dimU,dimEta,file)

Creates a template with R-syntax to help setup a model in PSM. It works
for both linear and non-linear models and it can output the resulting
template to the screen or a file.

For detailed information please refer to the help files in R.
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5 Examples

5.1 Dosing in two-compartment model (Linear) . . . . 11
5.2 Extraction of insulin secretion rate (Linear) . . . . 16

The following provides two examples to illustrate the use of PSM. It may also
be useful when trying to set up a new model, by using the code shown as model
templates. The document is written using Sweave1, and thus all R-code in the
examples shown here can be extracted into an R-script file by calling Stangle()

on the Sweave file, which is found in the PSM package installation folder.
To save time in the processing of the document all computer intensive oper-

ations are skipped by setting a flag Redo = FALSE and instead the outcome is
loaded from a saved .Rdata file. Changing the flag to TRUE in PSM.Rnw and
writing Sweave("PSM.Rnw") in R will generate a new version of the document
with analysis and plots based on the new simulated data sets.

> Redo = FALSE

1http://www.ci.tuwien.ac.at/∼leisch/Sweave/

10



5.1 Dosing in two-compartment model (Linear)

This example illustrates how a standard two-compartment model with a random
diffusion between the compartments can be set up. An overview of the model
is shown in Figure 1.

CL

CLd

CLd

DOSE

Peripheral

V2

Central

V1
sig1

Figure 1: Model layout

The model is used to simulate data based on two doses of 1500mg given after
30 and 180 minutes. In state space formulation the model is described as

dA1 =

(
−CL
V i
1

A1 −
CLd

V i
1

A1 +
CLd

V2
A2

)
dt+ σ1dω (13)

dA2 =

(
CLd

V i
1

A1 −
CLd

V2
A2

)
dt− σ1dω (14)

Y = A1/V
i
1 + e (15)

or in matrix notation

dAt =

[
−(CL/V i

1 + CLd/V
i
1 ) CLd/V2

CLd/V
i
1 −CLd/V2

]
Atdt+

[
σ1 0
−σ1 0

]
dω(16)

Yij = [ 1/V i
1 0 ]Aij + eij (17)

where At = [A1 A2]T is the amount in each compartment and thus A1/V
i
1

is the measured concentration. It is seen that the elimination will follow a
normal two-compartment model, but with a small random diffusion between
the compartments. The mass is preserved since the diffusion terms are equal
with opposite signs.

For simplicity the individual variation is modelled as

V i
1 = V1 exp(η1) (18)

The parameters of the model is V1 = 5L, V2 = 10L, CLd = 0.005L/min,
CL = 0.002L/min, σ1 = 10, S = 20mg2/L2 and Ω = 0.5.

11



The model can be defined in R as shown below.

> Model.SimDose = list()

> Model.SimDose$Matrices = function(phi) {

+ V1i <- phi$V1i; V2=phi$V2; CL = phi$CL; CLd = phi$CLd;

+ matA <- matrix(c(-(CL+CLd)/V1i , CLd/V2 ,

+ CLd/V1i , -CLd/V2 ) ,nrow=2,byrow=T)

+ matC <- matrix(c(1/V1i,0),nrow=1)

+ list(matA=matA,matC=matC)

+ }

> Model.SimDose$X0 = function(Time=Na,phi,U=Na) {

+ matrix(0,nrow=2)

+ }

> Model.SimDose$SIG = function(phi) {

+ sig1 <- phi[["sig1"]]

+ matrix(c( sig1,0,

+ -sig1,0), nrow=2, byrow=T)

+ }

> Model.SimDose$S = function(phi) {

+ matrix(phi[["S"]])

+ }

> Model.SimDose$h = function(eta,theta,covar) {

+ phi <- theta

+ phi$V1i <- theta$V1*exp(eta[1])

+ phi

+ }

> Model.SimDose$ModelPar = function(THETA){

+ V2 <- 10

+ CLd <- 0.1

+ list(theta=list(V1 = THETA['V1'],V2=V2,CLd=CLd,CL=THETA['CL'], sig1=THETA['sig1'], S=THETA['S']),
+ OMEGA=matrix(THETA['OMEGA1']) )

+ }

> SimDose.THETA <- c(CL=0.05,V1 = 5, sig1 = 10 , S = 20 , OMEGA1 = .2)

Five parameters in the model will be estimated, as it can be seen from the
ModelPar function above. The parameters to be estimated are Θ = (CL, V1,
sig1, S, OMEGA1).

For this example 5 individuals will be simulated. They will all be sampled
every 10min for 400min which is described as below.

> N = 5

> SimDose.Data <- vector(mode="list",length=N)

> for (i in 1:N) {

+ SimDose.Data[[i]]$Time <- seq(from=10,by=10,to=400)

+ SimDose.Data[[i]]$Dose <-list(

+ Time = c(30,180),

+ State = c(1, 1),

+ Amount = c(1500,1500)

+ )

+ }

Everything is now setup and the simulation can be performed.
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> if(Redo) {

+ SimDose.Data <- PSM.simulate(Model.SimDose, SimDose.Data, SimDose.THETA, deltaTime=.1)

+ } else

+ load("simdose.RData")

The simulated data are shown in Figure 2 using the PSM.plot function. The
first row shows the observations for individuals 1 and 2, the next two show state
1 and 2 which we wish to estimate and the simulated values of η1 is shown.

> PSM.plot(SimDose.Data,indiv=1:2,type=c('Y','longX','eta'))
> #par(mfcol=c(3,2),mar = c(2, 4, 2, 2)+.1)

> #for(id in 1:2) {

> # plot(SimDose.Data[[id]]$Time , SimDose.Data[[id]]$Y,

> # ylab="Observations", main=paste('Individual ',id,', eta= ',
> # round(SimDose.Data[[id]]$eta,3),sep=""))

> # for(i in 1:2) {

> # plot(SimDose.Data[[id]]$longTime , SimDose.Data[[id]]$longX[i,],type="l",

> # ylab=paste('State',i))
> # rug(SimDose.Data[[id]]$Time)

> # }

> #}
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Figure 2: Simulated data and states.

As initial guess for the parameters in Θ the true parameters are used and
the bounds are ± a factor away.
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> parA <- list(LB=SimDose.THETA*.5, Init=SimDose.THETA , UB=SimDose.THETA*1.5 )

> if(Redo) fitA <- PSM.estimate(Model.SimDose,SimDose.Data,parA,CI=T)

> fitA[1:5]

$NegLogL

[1] 725.8

$THETA

CL V1 sig1 S OMEGA1

0.0498 3.7223 10.2370 17.6984 0.2058

$CI

CL V1 sig1 S OMEGA1

Lower CI95 0.04830 2.235 8.509 6.881 -0.03483

MLE 0.04980 3.722 10.237 17.698 0.20576

Upper CI95 0.05129 5.210 11.965 28.515 0.44635

$SD

CL V1 sig1 S OMEGA1

[1,] 0.0007615 0.7589 0.8816 5.519 0.1227

$COR

CL V1 sig1 S OMEGA1

CL 1.000000 -0.007664 0.01799 -0.015349 -0.009738

V1 -0.007664 1.000000 0.01224 0.001579 -0.001153

sig1 0.017992 0.012238 1.00000 -0.557870 -0.021768

S -0.015349 0.001579 -0.55787 1.000000 0.022274

OMEGA1 -0.009738 -0.001153 -0.02177 0.022274 1.000000

> SimDose.THETA

CL V1 sig1 S OMEGA1

0.05 5.00 10.00 20.00 0.20

It is seen that the estimated parameters are reasonably close to the true
values in SimDose.THETA and the 95% confidence intervals include the true
values. In particular the first parameter σ1 is significantly different from zero
which shows that deviations from a normal ODE two-compartment model are
significant.

Based on the estimated parameters it is possible to obtain an estimate of
the model states by using PSM.smooth. The estimates are shown in Figure 3.
The structure of the output from the smoothing function is also shown using
the names command. Please refer to help(PSM.smooth) for a more detailed
description of the output.
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> if(Redo)

+ out <- PSM.smooth(Model.SimDose, SimDose.Data, fitA$THETA, subsample = 20)

> # View the data structure

> names(out[[1]])

[1] "Time" "Xs" "Ps" "Ys" "Xf"

[6] "Pf" "Xp" "Pp" "Yp" "R"

[11] "eta" "negLogL"

By comparing the smoothed estimates of the states to the true simulated
states, it can be seen that they are very close. This shows that the system noise
and observation noise has been separated properly in the reconstruction.
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Figure 3: Smoothed estimate of states.
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5.2 Extraction of insulin secretion rate (Linear)

Insulin secretion rates (ISR) can be estimated based on measurements of the
concentration of C-peptide in the blood, since insulin and C-peptide are secreted
in equi-molar amounts. This example will first illustrate a way to simulate C-
peptide data based on a model for ISR, and then how ISR can be estimated again
using a more simple model. The models used in the example are described in
further detail in [5].

The simulated measurements of C-peptide spans over 24H, during which the
patients recieves three meals at 8 a.m., 12 a.m. and 6 p.m. These meals will give
rise to an increase in insulin secretion, which will be modelled and estimated.

The simulation model for the C-peptide measurements is based on the com-
monly used two compartment model for C-peptide as shown in Figure 4. The
kinetic parameters are set equal to the Van Cauter estimates [6].

ke k2

k1

C2C1

ISR

Figure 4: Model layout

The first two states of the simulation model is concentration in compartment
1 and 2, C1, C2. The third state is ISR and is the secretion which is modelled
as a structural part based on the three meal time plus a constant baseline B and
random noise through a Wiener process. The fourth state Q is used to model
ISR, where Q is controlled by an input u2 which is equal to 1 for 30min after
meal times. The model can be defined as

dC1 = [−(k1 + ke)C1 + k2C2 + ISR]dt (19)

dC2 = [k1C1 − k2C2]dt (20)

dISR = [−a1ISR+ a1Q+Bi]dt+ σISRdω (21)

dQ = [−a2Q+ a2K
iu2]dt (22)

which is linear and can thus again be written on matrix form.
The model is initialized in steady state just prior to the first meal time. The

individual variation in the model is included in the initial concentration C1(0)i,
baseline Bi and height of the peaks Ki such that

Bi = B exp(η1) (23)

Ki = K exp(η2) (24)

C1(0)i = C1(0) exp(η3) (25)
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In order to write a model containing a constant in the differential equations
(here Bi) on the linear form as defined in Eq. (2) and (3) it is necessary
to include a constant input u1 = 1 and multiply this with Bi. The matrix
description of the model can be found in [5] p. 69. Using this, the model can
be defined in PSM as follows.
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> k1 = 0.053; k2 = 0.051; ke = 0.062;

> Model.SimISR <- list()

> Model.SimISR$Matrices = function(phi) {

+ a1 <- phi[["a1"]]

+ a2 <- phi[["a2"]]

+ B <- phi[["B"]]

+ K <- phi[["K"]]

+ matA <- matrix( c(-(k1+ke) , k2 , 1 , 0,

+ k1 , -k2 , 0 , 0,

+ 0 , 0 , -a1 , a1,

+ 0 , 0 , 0 , -a2),nrow=4,byrow=T)

+ matB <- matrix( c(0 , 0 ,

+ 0 , 0 ,

+ B , 0 ,

+ 0 , a2*K),byrow=T,nrow=4)

+ matC <- matrix(c(1,0,0,0),nrow=1)

+ matD <- matrix(c(0,0),nrow=1)

+ list(matA=matA,matB=matB,matC=matC,matD=matD)

+ }

> Model.SimISR$X0 = function(Time=NA,phi,U=NA) {

+ C0 <- phi[["C0"]]

+ tmp <- C0

+ tmp[2] <- C0*k1/k2

+ tmp[3] <- C0*ke

+ tmp[4] <- 0

+ matrix(tmp,ncol=1)

+ }

> Model.SimISR$SIG = function(phi) {

+ diag( c(0,0,phi[["SIG33"]],0))

+ }

> Model.SimISR$S = function(phi) {

+ return( matrix(phi[["S"]]))

+ }

> Model.SimISR$h = function(eta,theta,covar) {

+ phi <- theta

+ phi[["B"]] <- theta[["B"]]*exp(eta[1])

+ phi[["K"]] <- theta[["K"]]*exp(eta[2])

+ phi[["C0"]] <- theta[["C0"]]*exp(eta[3])

+ return(phi)

+ }

> Model.SimISR$ModelPar = function(THETA){

+ list(theta=list(C0=900,S=8500,

+ a1=THETA['a1'],a2=THETA['a2'],
+ SIG33=THETA['SIG33'],
+ K = THETA['K'], B = THETA['B']),
+ OMEGA=diag(c(.2,.2,.2))

+ )

+ }

>

For this example two individuals will be simulated. They will both be sam-
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pled at predefined time points during 24H. This defined as below together with
the input data for each individual.

> Sim.Data <- vector(mode="list",length=2)

> for (i in 1:2) {

+ Sim.Data[[i]]$Time <- c( 0,15,30,45,60,75,90,120,150,180,210,240,270,300,330,

+ 360,420,480,600,615,630,645,660,675,690,720,750,780,810,

+ 840,960,1140,1320,1410,1440)

+ Sim.Data[[i]]$U <- matrix(c( rep(1,35) ,

+ as.numeric( Sim.Data[[i]]$Time %in% c(0,15,240,600,615)) )

+ ,byrow=T,nrow=2)

+ }

Both the model, sample times and input is now prepared and the simulation
can be performed. The parameter estimates are taken from [5] p. 70. The
simulated data are shown in Figure 5.

> Sim.THETA <- c(a1=0.02798, a2=0.01048, SIG33=4 , K=427.63 , B=1.7434)

> if(Redo) {

+ Sim.Data <- PSM.simulate(Model.SimISR, Sim.Data, Sim.THETA, deltaTime=.1 )

+ } else

+ load("simisr.RData")

The next step is to generate a model for estimation of ISR. It is again based
on the model illustrated in Figure 4 only this time the ISR is simply modelled
as a random walk. Thus no information about the meal times is used in the
estimation of ISR.

The model simplification is done by replacing Eq. (21) and (22) by Eq. (26)
below. The model for estimation can thus be seen as estimating the outcome of
the random walk for ISR based on the observed (simulated) data for C1.

dISR = σISR (26)
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Figure 5: Simulated data and states.

> Model.Est <- list(

+ Matrices=function(phi) { list(

+ matA=matrix(c(-(k1+ke), k2, 1,

+ k1 , -k2, 0,

+ 0 , 0, 0 ),ncol=3,byrow=T),

+ matB=NA,

+ matC=matrix(c(1,0,0),nrow=1),

+ matD=NA ) },

+ X0 = function(Time=NA,phi=NA,U=NA) {

+ C0 <- phi[["C0"]]

+ tmp <- C0

+ tmp[2] <- C0*k1/k2

+ tmp[3] <- C0*ke

+ return(matrix(tmp,ncol=1) )} ,

+ SIG = function(phi) {

+ return( diag( c(1e-3,1e-3,phi[["SIG33"]])) ) } ,

+ S = function(phi) {

+ return( matrix(phi[["S"]])) } ,

+ h = function(eta,theta,covar) {

+ phi <- theta

+ phi[["C0"]] <- theta[["C0"]]*exp(eta[1])

+ return(phi) } ,

+ ModelPar = function(THETA){

+ return(list(theta=list(C0=THETA['C0'],S=THETA['S'],SIG33=THETA['SIG33']),
+ OMEGA=matrix(THETA['OMEGA'])))}
+ )
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Looking at the ModelPar-function it is seen that it is chosen to include the
average initial concentration C1(0), measurement variation S, the coefficient of
the random walk for ISR σISR and the variance of the random effect on C1(0)
denoted ΩC1(0) in the likelihood estimation.

Since the model now does not use any input, this must be removed from the
simulated data before estimation.

> Pop.Data <- Sim.Data

> for (i in 1:2)

+ Pop.Data[[i]]$U <- NULL

The data and model for estimation is now prepared, and the model can
be estimated by calling PSM.estimate. This is done below and the output in
obj1[1:3] containing the log-likelihood value, parameter estimates and confi-
dence intervals is shown as output.

> par1 <- list(LB = c(C0= 200, S= 50^2, SIG33= 0, OMEGA=.0 ),

+ Init = c(C0=1000, S=100^2, SIG33=10, OMEGA=.25),

+ UB = c(C0=3000, S=150^2, SIG33=15, OMEGA=.50))

> if(Redo) obj1 <- PSM.estimate(Model.Est, Pop.Data, par1,CI=T,trace=1)

> obj1[1:5]

$NegLogL

[1] 497.6

$THETA

C0 S SIG33 OMEGA

1.121e+03 1.023e+04 4.768e+00 1.464e-01

$CI

C0 S SIG33 OMEGA

Lower CI95 490.8 2265 3.556 -0.1717

MLE 1121.1 10227 4.768 0.1464

Upper CI95 1751.5 18188 5.979 0.4645

$SD

C0 S SIG33 OMEGA

[1,] 321.6 4062 0.6181 0.1623

$COR

C0 S SIG33 OMEGA

C0 1.00000 -0.03063 0.03367 -0.09409

S -0.03063 1.00000 -0.39152 0.04218

SIG33 0.03367 -0.39152 1.00000 -0.05177

OMEGA -0.09409 0.04218 -0.05177 1.00000

Looking at the estimated confidence intervals, it is seen that the values used
in the simulation Θ = (900,8500,4,0.2) are nicely contained within the limits.

The estimation time including the confidence interval is about 3 minutes
on a 2GHz computer. Since the matrix A in the estimation model is singular,
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the estimation cannot make use of the compiled Fortran code. As mentioned,
this may be circumvented by adding e.g. 10−6 to the diagonal. This reduces
the estimation time to 12 sec. It changes the maximum log-likelihood value to
499.4781, and thus yields virtually no difference in parameter estimates.

Using the estimated model parameters it is possible to give smoothed esti-
mates of the three model states C1, C2 and ISR. This is done below and the
result is plottet in Figure 6. In Figure 7 the smoothed ISR state is plotted
together with the estimated uncertainty. For both figures the true simulated
states is also plotted for reference.

> if(Redo)

+ Data.Sm <- PSM.smooth( Model.Est , Pop.Data, obj1$THETA, subsample=10)
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Figure 6: Smoothed estimate of states.
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Figure 7: Smoothed estimate of insulin secretion rate ±1SD for individual 1 and
2 compared with the true simulated ISR.
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