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Abstract

We describe how to use the NlsyLinks package to examine various biometric models, using the NLSY79.
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1 Terminology

This package considers both Gen1 and Gen2 subjects. Gen1 refers to subjects in the original NLSY79 sample
(http://www.bls.gov/nls/nlsy79.htm). Gen2 subjects are the biological offspring of the Gen1 females
-i.e., those in the NLSY79 Children and Young Adults sample ( http://www.bls.gov/nls/nlsy79ch.htm).
The NLSY97 is a third dataset that can be used for behavior genetic research (http://www.bls.gov/nls/
nlsy97.htm), although this vignette focuses on the two generations in the NLSY79.

1

http://www.bls.gov/nls/nlsy79.htm
http://www.bls.gov/nls/nlsy79ch.htm
http://www.bls.gov/nls/nlsy97.htm
http://www.bls.gov/nls/nlsy97.htm


Standard terminology is to refer Gen2 subjects as ‘children’ when they are younger than age 15 (NSLY79-C),
and as ‘young adults’ when they are 15 and older (NLSY79-YA); though they are the same respondents,
different funding mechanisms and different survey items necessitate the distinction. This cohort is sometimes
abbreviated as ‘NLSY79-C’, ‘NLSY79C’, ‘NLSY-C’ or ‘NLSYC’.

The SubjectTag variable uniquely identify NLSY79 subjects when a dataset contains both generations.
For Gen2 subjects, the SubjectTag is identical to their CID (i.e., C00001.00 -the ID assigned in the NLSY79-
Children files). However for Gen1 subjects, the SubjectTag is their CaseID (i.e., R00001.00), with “00”
appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A
Gen1 subject with an ID of 43 becomes 4300. The SubjectTags of her four children remain 4301, 4302, 4303,
and 4304.

The expected coefficient of relatedness of a pair of subjects is typically represented by the variable R.
Examples are: Monozygotic twins have R=1; dizygotic twins have R=0.5; full siblings (i.e., those who share
both biological parents) have R=0.5; half-siblings (i.e., those who share exactly one biological parent) have
R=0.25; adopted siblings have R=0.0. Other possibilities exist too. The font (and hopefully their context)
should distinguish the variable R from the software R.

A subject’s ExtendedID indicates their extended family. Two subjects will be in the same extended family
if either: [1] they are Gen1 housemates, [2] they are Gen2 siblings, [3] they are Gen2 cousins (i.e., they
have mothers who are Gen1 sisters in the NLSY79), [4] they are mother and child (in Gen1 and Gen2,
respectively), or [5] they are (aunt—uncle) and (niece—nephew) (in Gen1 and Gen2, respectively).

An outcome variable is directly relevant to the applied researcher; these might represent constructs like
height, IQ, and income. A plumbing variable is necessary to manage BG datasets; examples are R, a
subject’s ID, and the date of a subject’s last survey.

An ACE model is the basic biometrical model used by Behavior Genetic researchers, where the genetic
and environmental effects are assumed to be additive. The three primary variance components are (1) the
proportion of variability due to a shared genetic influence (typically represented as a2, or sometimes h2),
(2) the proportion of variability due to shared common environmental influence (typically c2), and (3) the
proportion of variability due to unexplained/residual/error influence (typically e2).

The variables are scaled so that they account for all observed variability in the outcome variable; specifically:
a2 + c2 + e2 = 1. Using appropriate designs that can logically distinguish these different components (under
carefully specified assumptions), the basic biometrical modeling strategy is to estimate the magnitude of a2,
c2, and e2 within the context of a particular model. For gentle introductions to Behavior Genetic research, we
recommend Plomin (1990) and Carey (2003). For more in-depth ACE model-fitting strategies, we recommend
Neale & Cardon (1992). //This paragraph may get moved to the yet-to-be-written introduction that precedes
the Terminology section.

The NLS Investigator (http://www.nlsinfo.org/investigator/) is the best way to obtain the NLSY79
and NLSY97 datasets. See our vignette dedicated to the NLS Investigator by typing
vignette("NlsInvestigator") or by visiting http://cran.r-project.org/web/packages/NlsyLinks/.

Before starting the real examples, first verify that the NlsyLinks package is installed correctly. If not, refer to
Appendix C.

any(.packages(all.available = TRUE) == "NlsyLinks") #Should evaluate to TRUE.

## [1] TRUE

require(NlsyLinks) #Load the package into the current session.

## Loading required package: NlsyLinks

The package’s documentation manual can be opened by typing ?NlsyLinks in R or RStudio.
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2 Example: DF analysis with a Simple Outcome for Gen2 Sub-
jects, Using a Package Variable

The vignette’s first example uses a simple statistical model and all available Gen2 subjects. The
CreatePairLinksDoubleEntered function will create a data frame where each represents one pair of siblings,
respective of order (i.e., there is a row for Subjects 201 and 202, and a second row for Subjects 202 and 201).
This function examines the subjects’ IDs and determines who is related to whom (and by how much). By
default, each row it produces has at least six values/columns: (i) ID for the older member of the kinship pair:
Subject1Tag, (ii) ID for the younger member: Subject2Tag, (iii) ID for their extended family: ExtendedID, (iv)
their estimated coefficient of genetic relatedness: R, (v and beyond) outcome values for the older member;
(vi and beyond) outcome values for the younger member.

A DeFries-Fulker (DF) Analysis uses linear regression to estimate the a2, c2, and e2 of a univariate biometric
system. The interpretations of the DF analysis can be found in Rodgers & Kohler (2005) and Rodgers,
Rowe, & Li (1999). This vignette example uses the newest variation, which estimates two parameters; the
corresponding function is called DeFriesFulkerMethod3. The steps are:

1. Use the NLS Investigator to select and download a Gen2 dataset.

2. Open R and create a new script (see Appendix B) and load the NlsyLinks package. If you haven’t done
so, first install the NlsyLinks package (see Appendix C).

3. Within the R script, load the linking dataset. Then select only Gen2 subjects. The ‘Pair’ version of
the linking dataset is essentially an upper triangle of a symmetric sparse matrix.

4. Load and assign the ExtraOutcomes79 dataset.

5. Specify the outcome variable name and filter out all subjects who have a negative value in this vari-
able. The NLSY typically uses negative values to indicate different types of missingness (see ‘Further
Information’ below).

6. Create a double-entered file by calling the CreatePairLinksDoubleEntered function. At minimum, pass
the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s).
(There are occasions when a single-entered file is more appropriate for a DF analysis. See Rodgers &
Kohler, 2005, for additional information.)

7. Use DeFriesFulkerMethod3 function (i.e., general linear model) to estimate the coefficients of the DF
model.

### R Code for Example DF analysis with a simple outcome and Gen2 subjects

#Step 2: Load the package containing the linking routines.

require(NlsyLinks)

#Step 3: Load the LINKING dataset and filter for the Gen2 subjects

dsLinking <- subset(Links79Pair, RelationshipPath=="Gen2Siblings")

summary(dsLinking) #Notice there are 11,088 records (one for each unique pair).

## ExtendedID Subject1Tag Subject2Tag R

## Min. : 2 Min. : 201 Min. : 202 Min. :0.250

## 1st Qu.: 3155 1st Qu.: 315501 1st Qu.: 315503 1st Qu.:0.250

## Median : 6114 Median : 611402 Median : 611404 Median :0.500

## Mean : 5933 Mean : 593658 Mean : 593660 Mean :0.417

## 3rd Qu.: 8511 3rd Qu.: 851101 3rd Qu.: 851103 3rd Qu.:0.500

## Max. :12673 Max. :1267301 Max. :1267302 Max. :1.000

## RelationshipPath

## Gen1Housemates: 0

## Gen2Siblings :11088

## Gen2Cousins : 0
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## ParentChild : 0

## AuntNiece : 0

##

#Step 4: Load the OUTCOMES dataset, and then examine the summary.

dsOutcomes <- ExtraOutcomes79 #'ds' stands for 'Data Set'

summary(dsOutcomes)

## SubjectTag SubjectID Generation AfqtRescaled2006Gaussified

## Min. : 100 Min. : 1 Min. :1.00 Min. :-3

## 1st Qu.: 314025 1st Qu.: 5998 1st Qu.:1.00 1st Qu.:-1

## Median : 620050 Median : 12000 Median :1.00 Median : 0

## Mean : 618600 Mean : 289254 Mean :1.48 Mean : 0

## 3rd Qu.: 914501 3rd Qu.: 577403 3rd Qu.:2.00 3rd Qu.: 0

## Max. :1268600 Max. :1267501 Max. :2.00 Max. : 3

## NA's :12276

## HeightZGender HeightZGenderAge WeightZGender WeightZGenderAge Afi

## Min. :-3 Min. :-3 Min. :-3 Min. :-4 Min. : 2

## 1st Qu.:-1 1st Qu.:-1 1st Qu.:-1 1st Qu.:-1 1st Qu.:15

## Median : 0 Median : 0 Median : 0 Median : 0 Median :17

## Mean : 0 Mean : 0 Mean : 0 Mean : 0 Mean :17

## 3rd Qu.: 1 3rd Qu.: 1 3rd Qu.: 0 3rd Qu.: 0 3rd Qu.:18

## Max. : 3 Max. : 3 Max. : 8 Max. : 7 Max. :27

## NA's :5029 NA's :5030 NA's :12104 NA's :12105 NA's :12740

## Afm MathStandardized

## Min. : 0 Min. : 65

## 1st Qu.:12 1st Qu.: 91

## Median :13 Median :100

## Mean :13 Mean :100

## 3rd Qu.:14 3rd Qu.:110

## Max. :19 Max. :135

## NA's :18165 NA's :15048

#Step 5: This step isn't necessary for this example, because Kelly Meredith already

# groomed the values. If the negative values (which represent NLSY missing or

# skip patterns) still exist, then:

dsOutcomes$MathStandardized[dsOutcomes$MathStandardized < 0] <- NA

#Step 6: Create the double entered dataset.

dsDouble <- CreatePairLinksDoubleEntered(

outcomeDataset=dsOutcomes,

linksPairDataset=dsLinking,

outcomeNames=c('MathStandardized')

)

summary(dsDouble) #Notice there are 22176=(2*11088) records now (two for each unique pair).

## Subject1Tag Subject2Tag ExtendedID R

## Min. : 201 Min. : 201 Min. : 2 Min. :0.250

## 1st Qu.: 315502 1st Qu.: 315502 1st Qu.: 3155 1st Qu.:0.250

## Median : 611404 Median : 611404 Median : 6114 Median :0.500

## Mean : 593659 Mean : 593659 Mean : 5933 Mean :0.417

## 3rd Qu.: 851102 3rd Qu.: 851102 3rd Qu.: 8511 3rd Qu.:0.500

## Max. :1267302 Max. :1267302 Max. :12673 Max. :1.000
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##

## RelationshipPath MathStandardized_1 MathStandardized_2

## Gen1Housemates: 0 Min. : 65 Min. : 65

## Gen2Siblings :22176 1st Qu.: 89 1st Qu.: 89

## Gen2Cousins : 0 Median : 98 Median : 98

## ParentChild : 0 Mean : 98 Mean : 98

## AuntNiece : 0 3rd Qu.:108 3rd Qu.:108

## Max. :135 Max. :135

## NA's :3815 NA's :3815

#Step 7: Estimate the ACE components with a DF Analysis

ace <- DeFriesFulkerMethod3(

dataSet=dsDouble,

oName_1="MathStandardized_1",

oName_2="MathStandardized_2")

ace

## [1] "Results of ACE estimation: [show]"

## ASquared CSquared ESquared CaseCount

## 8.480e-01 4.477e-02 1.073e-01 1.678e+04

Further Information: If the different reasons of missingness are important, further work is necessary. For
instance, some analyses that use item Y19940000 might need to distinguish a response of “Don’t Know”
(which is coded as -2) from “Missing” (which is coded as -7). For this vignette example, we’ll assume it’s
safe to clump the responses together.

3 Example: DF analysis with a univariate outcome from a Gen2
Extract

The vignette’s second example differs from the previous example in two ways. First, the outcome variables
are read from a CSV (comma separated values file) that was downloaded from the NLS Investigator. Second,
the DF analysis is called through the function AceUnivariate; this function is a wrapper around some simple
ACE methods, and will help us smoothly transition to more techniques later in the vignette.

The steps are:

1. Use the NLS Investigator to select and download a Gen2 dataset. Select the variables ‘length of
gestation of child in weeks’ (C03280.00), ‘weight of child at birth in ounces’ (C03286.00), and ‘length of
child at birth’ (C03288.00), and then download the *.zip file to your local computer.

2. Open R and create a new script (see Appendix B) and load the NlsyLinks package.

3. Within the R script, load the linking dataset. Then select only Gen2 subjects.

4. Read the CSV into R as a data.frame using ReadCsvNlsy79Gen2.

5. Verify the desired outcome column exists, and rename it something meaningful to your project. It is
important that the data.frame is reassigned (i.e., ds <- RenameNlsyColumn(...)). In this example, we
rename column C0328800 to BirthWeightInOunces.

6. Filter out all subjects who have a negative BirthWeightInOunces value. See the ‘Further Information’
note in the previous example.

7. Create a double-entered file by calling the CreatePairLinksDoubleEntered function. At minimum, pass
the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s).
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8. Call the AceUnivariate function to estimate the coefficients.

### R Code for Example of a DF analysis with a simple outcome and Gen2 subjects

#Step 2: Load the package containing the linking routines.

require(NlsyLinks)

#Step 3: Load the linking dataset and filter for the Gen2 subjects

dsLinking <- subset(Links79Pair, RelationshipPath=="Gen2Siblings")

#Step 4: Load the outcomes dataset from the hard drive and then examine the summary.

# Your path might be: filePathOutcomes <- 'C:/BGResearch/NlsExtracts/Gen2Birth.csv'

filePathOutcomes <- file.path(path.package("NlsyLinks"), "extdata", "Gen2Birth.csv")

dsOutcomes <- ReadCsvNlsy79Gen2(filePathOutcomes)

summary(dsOutcomes)

## SubjectTag SubjectID ExtendedID Generation SubjectTagOfMother

## Min. : 201 Min. : 201 Min. : 2 Min. :2 Min. : 200

## 1st Qu.: 310302 1st Qu.: 310302 1st Qu.: 3101 1st Qu.:2 1st Qu.: 310300

## Median : 604607 Median : 604607 Median : 6045 Median :2 Median : 604600

## Mean : 601313 Mean : 601313 Mean : 6007 Mean :2 Mean : 601311

## 3rd Qu.: 876202 3rd Qu.: 876202 3rd Qu.: 8757 3rd Qu.:2 3rd Qu.: 876200

## Max. :1267501 Max. :1267501 Max. :12675 Max. :2 Max. :1267500

## NA's :2

## C0005300 C0005400 C0005700 C0328000 C0328600

## Min. :1.00 Min. :-3.00 Min. : -3 Min. :-7.0 Min. : -7

## 1st Qu.:2.00 1st Qu.: 1.00 1st Qu.:1981 1st Qu.:37.0 1st Qu.: 99

## Median :3.00 Median : 1.00 Median :1985 Median :39.0 Median :115

## Mean :2.34 Mean : 1.49 Mean :1986 Mean :33.5 Mean :104

## 3rd Qu.:3.00 3rd Qu.: 2.00 3rd Qu.:1990 3rd Qu.:39.0 3rd Qu.:128

## Max. :3.00 Max. : 2.00 Max. :2008 Max. :51.0 Max. :768

##

## C0328800

## Min. :-7.0

## 1st Qu.:18.0

## Median :20.0

## Mean :16.5

## 3rd Qu.:21.0

## Max. :48.0

##

#Step 5: Verify and rename an existing column.

VerifyColumnExists(dsOutcomes, "C0328600") #Should return '10' in this example.

## [1] 10

dsOutcomes <- RenameNlsyColumn(dsOutcomes, "C0328600", "BirthWeightInOunces")

#Step 6: For this item, a negative value indicates the parent refused, didn't know,

# invalidly skipped, or was missing for some other reason.

# For our present purposes, we'll treat these responses equivalently.

# Then clip/Winsorized/truncate the weight to something reasonable.

dsOutcomes$BirthWeightInOunces[dsOutcomes$BirthWeightInOunces < 0] <- NA

dsOutcomes$BirthWeightInOunces <- pmin(dsOutcomes$BirthWeightInOunces, 200)

#Step 7: Create the double entered dataset.
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dsDouble <- CreatePairLinksDoubleEntered(

outcomeDataset=dsOutcomes,

linksPairDataset=dsLinking,

outcomeNames=c('BirthWeightInOunces')

)

#Step 8: Estimate the ACE components with a DF Analysis

ace <- AceUnivariate(

method="DeFriesFulkerMethod3",

dataSet=dsDouble,

oName_1="BirthWeightInOunces_1",

oName_2="BirthWeightInOunces_2"

)

ace

## [1] "Results of ACE estimation: [show]"

## ASquared CSquared ESquared CaseCount

## 5.042e-01 1.777e-01 3.182e-01 1.744e+04

4 Example: Multiple Group SEM of a Simple Outcome for Gen2
Subjects

The example differs from the first one by the statistical mechanism used to estimate the components. The
first example uses multiple regression to estimate the influence of the shared genetic and environmental
factors, while this example uses structural equation modeling (SEM).

The CreatePairLinksSingleEntered function will create a data.frame where each row represents one unique
pair of siblings, irrespective of order. Other than producing half the number of rows, this function is identical
to CreatePairLinksDoubleEntered.

The steps are:

(Steps 1-5 proceed identically to the first example.)

6. Create a single-entered file by calling the CreatePairLinksSingleEntered function. At minimum, pass
the (i) outcome dataset, the (ii) linking dataset, and the (iii) name(s) of the outcome variable(s).

7. Declare the names of the outcome variables corresponding to the two members in each pair. As-
suming the variable is called ‘ZZZ’ and the preceeding steps have been followed, the variable ‘ZZZ 1’
corresponds to the first members and ZZZ 2’ corresponds to the second members.

8. Create a GroupSummary data.frame, which identifies the R groups that should be considered by the
model. Inspect the output to see if the groups show unexpected or fishy differences.

9. Create a data.frame with cleaned variables to pass to the SEM function. This data.frame contains
only the three necessary rows and columns.

10. Estimate the SEM with the lavaan package. The function returns an S4 object, which shows the basic
ACE information.

11. Inspect details of the SEM, beyond the ACE components. In this example, we look at the fit stats
and the parameter estimates. The lavaan package has additional methods that may be useful for your
purposes.

### R Code for Example lavaan estimation analysis with a simple outcome and Gen2 subjects

#Steps 1-5 are explained in the vignette's first example:

require(NlsyLinks)
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dsLinking <- subset(Links79Pair, RelationshipPath=="Gen2Siblings")

dsOutcomes <- ExtraOutcomes79

dsOutcomes$MathStandardized[dsOutcomes$MathStandardized < 0] <- NA

#Step 6: Create the single entered dataset.

dsSingle <- CreatePairLinksSingleEntered(outcomeDataset=dsOutcomes,

linksPairDataset=dsLinking, outcomeNames=c('MathStandardized'))

#Step 7: Declare the names for the two outcome variables.

oName_1 <- "MathStandardized_1" #Stands for Outcome1

oName_2 <- "MathStandardized_2" #Stands for Outcome2

#Step 8: Summarize the R groups and determine which groups can be estimated.

dsGroupSummary <- RGroupSummary(dsSingle, oName_1, oName_2)

dsGroupSummary

## R Included PairCount O1Variance O2Variance O1O2Covariance Correlation Determinant

## 1 0.250 TRUE 2718 169.7 207.8 41.08 0.2188 33573

## 2 0.375 TRUE 139 172.5 187.1 40.48 0.2253 30639

## 3 0.500 TRUE 5511 230.5 233.0 107.37 0.4633 42172

## 4 0.750 FALSE 2 220.5 18.0 63.00 1.0000 0

## 5 1.000 TRUE 22 319.2 343.1 277.59 0.8388 32466

## PosDefinite

## 1 TRUE

## 2 TRUE

## 3 TRUE

## 4 FALSE

## 5 TRUE

#Step 9: Create a cleaned dataset

dsClean <- CleanSemAceDataset(dsDirty=dsSingle, dsGroupSummary, oName_1, oName_2)

#Step 10: Run the model

ace <- AceLavaanGroup(dsClean)

ace

## [1] "Results of ACE estimation: [show]"

## ASquared CSquared ESquared CaseCount

## 0.6673 0.1188 0.2139 8390.0000

#Notice the `CaseCount' is 8,390 instead of 17,440.

# This is because (a) one pair with R=.75 was excluded, and

# (b) the SEM uses a single-entered dataset instead of double-entered.

#

#Step 11: Inspect the output further

require(lavaan) #Load the package to access methods of the lavaan class.

GetDetails(ace)

## lavaan (0.5-10) converged normally after 60 iterations

##

## Number of observations per group

## 1 2718

## 2 139

## 3 5511

## 4 22
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##

## Estimator ML

## Minimum Function Chi-square 447.272

## Degrees of freedom 16

## P-value 0.000

##

## Chi-square for each group:

##

## 1 282.194

## 2 32.858

## 3 127.880

## 4 4.339

#Examine fit stats like Chi-Squared, RMSEA, CFI, etc.

fitMeasures(GetDetails(ace)) #'fitMeasures' is defined in the lavaan package.

## chisq df pvalue baseline.chisq

## 447.272 16.000 0.000 1499.091

## baseline.df baseline.pvalue cfi tli

## 4.000 0.000 0.712 0.928

## logl unrestricted.logl npar aic

## -68369.132 -68145.496 4.000 136746.264

## bic ntotal bic2 rmsea

## 136774.404 8390.000 136761.692 0.113

## rmsea.ci.lower rmsea.ci.upper rmsea.pvalue srmr

## 0.104 0.123 0.000 0.128

## srmr_nomean

## 0.093

#Examine low-level details like each group's individual parameter estimates and standard

# errors. Uncomment the next line to view the entire output (which is roughly 4 pages).

#summary(GetDetails(ace))

5 Example: Multiple Group SEM of a Simple Outcome for Gen1
Subjects

The example differs from the previous one in three ways. First, Gen1 subjects are used. Second, standardized
height is used instead of math. Third, pairs are dropped if their R is zero; we return to this last issue after
the code is run.

### R Code for Example lavaan estimation analysis with a simple outcome and Gen1 subjects

#Steps 1-5 are explained in the vignette's first example:

require(NlsyLinks)

dsLinking <- subset(Links79Pair, RelationshipPath=="Gen1Housemates")

dsOutcomes <- ExtraOutcomes79

#The HeightZGenderAge variable is already groomed

#Step 6: Create the single entered dataset.

dsSingle <- CreatePairLinksSingleEntered(outcomeDataset=dsOutcomes,

linksPairDataset=dsLinking, outcomeNames=c('HeightZGenderAge'))

#Step 7: Declare the names for the two outcome variables.
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oName_1 <- "HeightZGenderAge_1"

oName_2 <- "HeightZGenderAge_2"

#Step 8: Summarize the R groups and determine which groups can be estimated.

dsGroupSummary <- RGroupSummary(dsSingle, oName_1, oName_2)

rGroupsToDrop <- c( 0 )

dsGroupSummary[dsGroupSummary$R %in% rGroupsToDrop, "Included"] <- FALSE

dsGroupSummary

## R Included PairCount O1Variance O2Variance O1O2Covariance Correlation Determinant

## 1 0.125 TRUE 88 0.9118 0.9502 0.1503 0.1614 0.84381

## 2 0.250 TRUE 238 1.0110 1.1427 0.2613 0.2431 1.08697

## 3 0.500 TRUE 3392 0.9660 1.0158 0.4376 0.4417 0.78982

## 4 1.000 TRUE 11 0.2909 0.6106 0.3747 0.8892 0.03719

## PosDefinite

## 1 TRUE

## 2 TRUE

## 3 TRUE

## 4 TRUE

#Step 9: Create a cleaned dataset

dsClean <- CleanSemAceDataset(dsDirty=dsSingle, dsGroupSummary, oName_1, oName_2)

#Step 10: Run the model

ace <- AceLavaanGroup(dsClean)

ace

## [1] "Results of ACE estimation: [show]"

## ASquared CSquared ESquared CaseCount

## 8.956e-01 1.940e-14 1.044e-01 3.729e+03

#Step 11: Inspect the output further (see the final step in the previous example).

Most of them responded they were Non-relatives to the explict items asked in 1979 (i.e., NLSY79 variables
R00001.50 through R00001.59). Yet their height’s observed correlations is far larger than would be expected
for a sample of unrelated subjects (i.e., rR0=0.1614). Since our team began BG research with the NLSY
in the mid-1990s, the R=0 group has consistently presented higher than expected correlations, across many
domains of outcome variables. For a long time, we have substantial doubts that subject pairs in this
group share a low proportion of their selective genes. Consequently, we suggest applied researchers consider
excluding this group from their biometric analyses. **Joe, is there anything else you’d like to say about this
here?**

If you wish to exclude additional groups from the analyses, one line of code in Step 8 should change. For
instance, two exclude ambiguous sibs (in addition to R = 0 pairs), change
rGroupsToDrop <- c( 0 )

to
rGroupsToDrop <- c( 0, .375 ).

6 Example: Midstream data manipulation with SAS

The example differs from the previous one substantial way: After R is used to link the related pairs, and
connect them to their outcome values, the dataset is exported so that the user can further manipulate the
data in SAS.
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After a presentation, several audience members at the 2012 BGA meeting informed us that this vignette
example would help them be more efficient. This approach is also consistent with our feeling that analysts
should use the workflow tools that are best suited to their needs and capabilities.

**Should we export/import as CSVs (which would make the R code much simpler, because the foreign

package wouldn’t have to be loaded), but increase the code necessary on the SAS side? I really don’t want
to mess with sasbdats and xports.**

A Appendix: Receiving Help for the NlsyLinks Package

A portion of our current grant covers a small, part-time support staff. If you have questions about BG
research with our kinship links, or questions about our package, we’d like to hear from you.

We provide personal support for researchers in several ways. Perhaps the best place to start are the forums on
R-Forge (http://r-forge.r-project.org/forum/?group_id=1330); there are forums for people using R,
as well as other software such as SAS. This post is a good overview of the current project is, which originally
was an email Joe sent to previous users of our kinship links (many of them are/were SAS users).

B Appendix: Creating and Saving R Scripts

There are several options and environments for executing R code. Our current recommendation is RStudio,
because it is easy to install, and has features targeting beginnner and experienced R users. We’ve had good
experiences with it on Windows, OS X, and Ubuntu Linux.

RStudio allows you to create and save R files; these are simply text files that have an file extension of ‘.R’.
RStudio will execute the commands written in the file. Help documentation for RStudio can be found at
http://www.rstudio.com/ide/docs/.

C Appendix: Installing and Loading the NlsyLinks Package

There are three operations you’ll typically do with a package: (a) install, (b) load, and (c) update.

The simplest way to install NlsyLinks is to type install.packages("NlsyLinks"). You may be asked to select
a CRAN mirror to download the package from; if so, choose a close location.

R then will download NlsyLinks on your local computer. It may try to save and install the package to a
location that you don’t have permission to write files in. If so, R will ask if you would like to install it to
a better location (i.e., somewhere you do have permission to write files). Approve this decision (which is
acceptable for everyone except for some network administrators).

For a given computer, you’ll need to install a package only once for each version of R (new versions of R
are released every few months). However, you’ll need to load a package in every session that you call its
functions. To load NlsyLinks, type either library(NlsyLinks) or require(NlsyLinks); (the difference between
the two commands is likely irrelevant for your uses.) Loading reads NlsyLinks information from the hard drive
and places it in temporary memory. Once it’s loaded, you won’t need to load it again until R is closed and
reopened later.

Developers are continually improving their packages by adding functions and documentation. These newer
versions are then uploaded to the CRAN servers. You may update all your installed packages at once by
typing update.packages(). The command checks a CRAN server for newer versions of the packages installed
on your local machine. Then they are automatically downloaded and installed.
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The grant supporting NlsyLinks extends until Summer 2014. Until then, we’ll be including new features and
documentation, as we address additional user needs (if you have suggestions, we’d like to hear from you).
When the NLSY periodically updates its data, we’ll update our kinship links (embedded in NlsyLinks) with
the newest information.
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E Notes

This package’s development was largely supported by the NIH Grant 1R01HD65865, “NLSY Kinship Links:
Reliable and Valid Sibling Identification” (PI: Joe Rodgers; Vignette Construction by Will Beasley)

F Version Information

� R version 2.15.2 (2012-10-26), x86_64-w64-mingw32

� Locale: LC_COLLATE=English_United States.1252, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, graphics, grDevices, methods, stats, utils

� Other packages: boot 1.3-7, knitr 0.9, lavaan 0.5-10, MASS 7.3-22, mnormt 1.4-5, NlsyLinks 1.018,
quadprog 1.5-4

� Loaded via a namespace (and not attached): digest 0.6.0, evaluate 0.4.3, formatR 0.7, stats4 2.15.2,
stringr 0.6.2, tools 2.15.2
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