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1 Getting started

NanoStringNorm is a suite of tools used to pre-process, run diagnostics, and visualize NanoString nCounter expres-
sion data. nCounter data has some unique features as compared to traditional intensity based arrays. Specifically,
it uses direct digital detection requiring minimal sample intervention. The ‘direct’ refers to the process of counting
individual tagged nucleic acids without any need for amplification and the ‘digital’ nature refers to the capacity to
use absolute and specific quantification, independent of relative measures like intensity or amplification cycles. As
such, the platform is useful for an array of study designs (multiplexed samples, joint miRNA - mRNA code sets)
and sample types (FFPE, plasma, whole lysate).

The consequence of this flexibility is that not all pre-processing methods are valid with all tissues and code sets.
For example, housekeeping genes are a fundamental part of mRNA standardization, however their appropriateness
is not clear for miRNA data. NanoStringNorm emphasizes normalization diagnostics and visualization of results
in order to provide the best data, void of technical artifacts for downstream analysis. Moreover, the package is
designed to be fully extensible in order to support and evaluate new pre-processing methods.

The following vignette describes the general workflow for using NanoStringNorm. In the simplest case, one can run
the NanoStringNorm package on the raw counts without specifying any normalization methods. The output will
be of class NanoStringNorm and can be subsequently plotted for summary review and sample diagnostics.

> require('NanoStringNorm');
> data("NanoString");

> # example 1

> NanoString.mRNA.raw = NanoStringNorm(NanoString.mRNA);

> pdf('my_first_nsn_plot.pdf');
> Plot.NanoStringNorm(NanoString.mRNA.raw, plot.type = 'all');
> dev.off();

2 Importing nCounter Data

The input data usually comes in the form of a structured Excel spreadsheet. You can export the raw count data
from Excel as a delimited text file for use with R. Start by opening the raw worksheet in a blank Excel page for
editing. Copy the count data (row 23) for each sample including the first 3 annotation columns (Code.Class, Name
and Accession) to a separate worksheet or text file. Don’t forget to add the sample IDs (row 5), and remove any
incomplete rows or columns. The resulting tabular data can be saved as a tab delimited file for import into R.

Alternatively, you can import data directly from xls format into R using the function read.xls.RCC based on
core functionality in the gdata package.

> # directly import the nCounter output

> path.to.xls.file <- system.file("extdata", "RCC_files", "RCCCollector1_rat_tcdd.xls",

+ package = "NanoStringNorm");

> NanoString.mRNA <- read.xls.RCC(x = path.to.xls.file, sheet = 1);

You have chosen to import worksheet 1 named RCC Collection. Does that sound correct?

The other sheet names are:

1:RCC Collection

2:Reporter Order

3:__VBA__0

There were 25 samples imported.

Note that spaces in sample names will be replaced by dots.

The first and last 3 sample names found in the dataset are:

X20100728_Watson1-1_HW1D-a_01 X20100728_Watson1-1_HW2B-b_02 X20100728_Watson1-1_HW3B-a_03 X20100728_Watson1-3_HW4D12-B_12 X20100728_Watson1-2_WW44-a_02 X20100728_Watson1-2_WW43-b_01

There were 68 genes imported with the following Code Class breakdown:
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Endogenous Negative Positive

54 8 6

> # only keep the counts and not the header

> NanoString.mRNA <- NanoString.mRNA$x;

3 Standard Normalization Methods

The current normalization procedure recommended by NanoString involves a set of simple aggregations and adjust-
ments using control genes. There are many potential combinations of these parameters which presents a challenge
to end users. In preliminary work no single combination has proven to work best in all situations or study designs.
Therefore, a reasonable approach is to start with one of the better performing combinations and calibrate it if
necessary. The tweaking is based on reviewing the diagnostics and paying close attention to the experimental design
caveats discussed at the end of this document.

The following example is based on a subset of data from an mRNA study observing the response of different
Rat strains to dioxins. The first step is to add some housekeeping genes. In some code sets, specifically miRNAs,
these are already included.

> # specify housekeeping genes in annotation

> data(NanoString);

> NanoString.mRNA[NanoString.mRNA$Name %in%

+ c('Eef1a1','Gapdh','Hprt1','Ppia','Sdha'),'Code.Class'] <- 'Housekeeping';

Next, run a typical normalization. The following is reasonable and in many situations will be sufficient to handle
technical variation. Note the use of the ‘mean’ option for Background correction. This is the least conservative
method of summarizing negative controls and will increase the number of observed false positives due to elevated
uncertainty at lower expression values.

By default the output is a list of sample and gene summary data.frames. In the following example only the
matrix of normalized values is output.

> # example 2

> # normalize mRNA and output a matrix of normalized counts

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA,

+ anno = NA,

+ CodeCount = 'sum',
+ Background = 'mean',
+ SampleContent = 'housekeeping.sum',
+ round.values = FALSE,

+ take.log = FALSE,

+ return.matrix.of.endogenous.probes = TRUE

+ );

##############################

### NanoStringNorm v1.1.20 ###

##############################

There are 25 samples and 49 Endogenous genes

Background: The following samples have an estimated background greater than

3 standard deviations from the mean.

background.zscore

LE4D51.a 3.71

Background: After correction 25 samples and 49
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Endogenous genes have less than 90% missing.

SampleContent: The following samples have sample/rna content greater than

3 standard deviations from the mean.

rna.zscore

LE4D51.a 3.36

NanoStringNorm prints informative diagnostic messages to the screen. Specifically, samples that have normalization
factors three standard deviations from the mean are flagged for review. These large values could reflect a technical
problem and dramatically influence all normalization.

In the following example the geometric mean is used to summarize the CodeCount (positive) and SampleCon-
tent (houskeeping) controls. This minimizes the impact of outlier values. Also, a stringent background correction is
applied (mean + 2 standard deviations) which removes a large proportion of false positives and therefore increases
specificity at the expense of some sensitivity. For preliminary analysis it can be easier to focus on high confidence
results first. For these reasons, the following model is recommended as a first step. Adjustments, can be made
based on review of diagnostics.

For miRNA data the use of mRNA or RNU’s can be problematic, so change the SampleContent method to
’top.geo.mean’.

> # example 3

> # this is the recommended method!

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA,

+ CodeCount = 'geo.mean',
+ Background = 'mean.2sd',
+ SampleContent = 'housekeeping.geo.mean',
+ round.values = TRUE,

+ take.log = TRUE

+ );

##############################

### NanoStringNorm v1.1.20 ###

##############################

There are 25 samples and 49 Endogenous genes

Background: After correction 25 samples and 49

Endogenous genes have less than 90% missing.

SampleContent: The following samples have sample/rna content greater than

3 standard deviations from the mean.

rna.zscore

LE4D51.a 3.13

log: Setting values less than 1 to 1 in order to calculate the log in positive space.

In order to provide more information for diagnostic and preliminary results one can supply binary trait data. Ide-
ally, one would include a mix of design-related covariates such as RNA quality/quantity, FFPE age in addition to
potential biological confounders such as tissue, age, gender, and ethnicity. Results will be presented as differential
expression and correlations with normalization factors.

In this case we are looking at three strains of Rat. Data can be dichotomized using the median, extremes, kmeans
etc. Values must be 1, 2 or NA. For categorical data with greater than two classes, you can convert them to a
set of indicator variables i.e. plate1 vs. all other plates. This has the advantage of simple interpretation of effect
estimates.
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> # setup a binary trait using rat strain

> sample.names <- names(NanoString.mRNA)[-c(1:3)];

> strain1 <- rep(1, times = (ncol(NanoString.mRNA)-3));

> strain1[grepl('HW',sample.names)] <- 2;

> strain2 <- rep(1, times = (ncol(NanoString.mRNA)-3));

> strain2[grepl('WW',sample.names)] <- 2;

> strain3 <- rep(1, times = (ncol(NanoString.mRNA)-3));

> strain3[grepl('LE',sample.names)] <- 2;

> trait.strain <- data.frame(

+ row.names = sample.names,

+ strain1 = strain1,

+ strain2 = strain2,

+ strain3 = strain3

+ );

> # You can also input the gene annotation separately to allow flexibility

> NanoString.mRNA.anno <- NanoString.mRNA[,c(1:3)];

> NanoString.mRNA.data <- NanoString.mRNA[,-c(1:3)];

> #NanoString.mRNA.anno$cool.genes <- vector.of.cool.genes;

> # example 3

> # include a trait for differential expression and batch effect evaluation

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA.data,

+ anno = NanoString.mRNA.anno,

+ CodeCount = 'geo.mean',
+ Background = 'mean.2sd',
+ SampleContent = 'top.geo.mean',
+ round.values = TRUE,

+ take.log = TRUE,

+ traits = trait.strain

+ );

##############################

### NanoStringNorm v1.1.20 ###

##############################

There are 25 samples and 49 Endogenous genes

Background: After correction 25 samples and 49

Endogenous genes have less than 90% missing.

log: Setting values less than 1 to 1 in order to calculate the log in positive space.

4 Other Normalization Methods

As an alternative to the standard normalization methods proposed by NanoString there is facility to apply an ex-
panding set of additional methods. Some basic strategies include transforming each sample to zscores, the standard
normal distribution based on ranks, and an empirical derived normal distribution. The first two methods have
advantages when comparing results across batches or platforms in the case of joint or meta-analysis. Quantile
normalization on the other hand has the advantage of scaling samples within the same pre-processing batch to a
common empirically derived distribution.

Variance Stabilizing Normalization is also implemented via functionality in the popular vsn package (available
for installation via Bioconductor).

Summary diagnostics and plotting are still available for these methods.
Several examples include:
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> # z-value transformation.

> # scale each sample to have a mean 0 and sd

> # by default all the other normalization methods are 'none'
> # you cannot apply a log because there are negative values

> # good for meta-analysis and cross platform comparison abstraction of effect size

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA,

+ OtherNorm = 'zscore',
+ return.matrix.of.endogenous.probes = TRUE

+ );

> # inverse normal transformation.

> # use quantiles to transform each sample to the normal distribution

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA,

+ OtherNorm = 'rank.normal',
+ return.matrix.of.endogenous.probes = TRUE

+ );

> # quantile normalization.

> # create an empirical distribution based on the median gene counts at the same

> # rank across sample. then transform each sample to the empirical distribution.

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA,

+ OtherNorm = 'quantile',
+ return.matrix.of.endogenous.probes = FALSE

+ );

> # vsn.

> # apply a variance stabilizing normalization.

> # fit and predict the model using 'all' genes i.e. 'controls' and

> # 'endogenous' (this is the default)

> # note this is just a wrapper for the vsn package

> # you could even add strata for the controls vs. the endogenous to review

> # systematic differences

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA,

+ OtherNorm = 'vsn',
+ return.matrix.of.endogenous.probes = FALSE,

+ genes.to.fit = 'all',
+ genes.to.predict = 'all'
+ );

> # vsn.

> # this time generate the parameters (fit the model) on the 'controls'
> # and apply (predict) on the 'endogenous'
> # alternatively you may want to use the endogenous probes for both fitting and predicting

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA,

+ OtherNorm = 'vsn',
+ return.matrix.of.endogenous.probes = FALSE,

+ genes.to.fit = 'controls',
+ genes.to.predict = 'endogenous'
+ );

> # vsn.

> # apply standard NanoString normalization strategies as an alternative to

> # the vsn affine transformation.
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> # this effectively applies the glog2 variance stabilizing transformation

> # to the adjusted counts

> NanoString.mRNA.norm <- NanoStringNorm(

+ x = NanoString.mRNA,

+ CodeCount = 'sum',
+ Background = 'mean',
+ SampleContent = 'top.geo.mean',
+ OtherNorm = 'vsn',
+ return.matrix.of.endogenous.probes = FALSE,

+ genes.to.fit = 'endogenous',
+ genes.to.predict = 'endogenous',
+ calib = 'none'
+ );

5 Static Plotting

There are a number of descriptive, diagnostic and results plots. The following code snippets show how to generate
them.

null device

1

> # plot all the plots as PDF report

> pdf('NanoStringNorm_Example_Plots_All.pdf');
> Plot.NanoStringNorm(

+ x = NanoString.mRNA.norm,

+ label.best.guess = TRUE,

+ plot.type = 'all'
+ );

> dev.off();

> # publication quality tiff volcano plot

> tiff('NanoStringNorm_Example_Plots_Volcano.tiff', units = 'in', height = 6,

+ width = 6, compression = 'lzw', res = 1200, pointsize = 10);

> Plot.NanoStringNorm(

+ x = NanoString.mRNA.norm,

+ label.best.guess = TRUE,

+ plot.type = c('volcano'),
+ title = FALSE

+ );

> dev.off();

> # all plots as separate files output for a presentation

> png('NanoStringNorm_Example_Plots_%03d.png', units = 'in', height = 6,

+ width = 6, res = 250, pointsize = 10);

> Plot.NanoStringNorm(

+ x = NanoString.mRNA.norm,

+ label.best.guess = TRUE,

+ plot.type = c('cv', 'mean.sd', 'RNA.estimates', 'volcano', 'missing',
+ 'norm.factors', 'positive.controls', 'batch.effects')
+ );

> dev.off();

> # user specified labelling with optimal resolution for most digital displays

> png('NanoStringNorm_Example_Plots_Normalization_Factors.png', units = 'in', height = 6,

+ width = 6, res = 250, pointsize = 10);

> Plot.NanoStringNorm(
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+ x = NanoString.mRNA.norm,

+ label.best.guess = FALSE,

+ label.ids = list(genes = rownames(NanoString.mRNA.norm$gene.summary.stats.norm),

+ samples = rownames(NanoString.mRNA.norm$sample.summary.stats)),

+ plot.type = c('norm.factors')
+ );

> dev.off();
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What is the distribution of gene expression? Existing or potential Housekeeping genes should have modest
to high expression with very low variation. Estimates of the standard deviation of genes can be used for power
calculations.
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housekeeping genes should have high mean and low sd i.e. bottom right of plot.
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A comparison of global gene level variation pre- and post-normalization. The post-normalization curve should
be shifted to the left if the method is properly accounting for technical variation.
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Figure 2: Global gene level variation before and after normalization.
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Is there differential expression in design traits? Do you see known or expected signals among biologically
relevant contrasts? Are there any profiles associated with biological covariates such as age, gender, trx, ethnicity,
or bmi? Including these traits as covariates in a model could dampen any true positive signal if the same genes are
associated with the outcome. Conversely, not including the traits could result in confounded results. Models should
be evaluated carefully.
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11



●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2 4 6

0

2

4

6

8

Gene: Differential Expression
 strain2 (n = 12 vs 13 )

−log2Fold−Change

−
lo

g 1
0P

Top Genes:

1: Sdha
2: Glud1
3: Lasp1
4: Slco1a1
5: Ccbl1
6: RGD1559716_predicted
7: Eef1a1
8: Cyp2a1
9: Sdc1
10: Mug1

1

23

4

5

6
78

910

Figure 4: Volcano plot of Rat strain 2 vs. all other rats. The y-axis is -log10 p-values and the x-axis is fold change.
The size of the points is related to mean expression and the orange colour indicates fold change greater than two.
The two dashed horizontal lines are drawn at p-value = 0.05 and a Bonferroni corrected level.
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Are there any samples with many missing values? Missing values could be caused by a technical failure or as a
result of too little input material.
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In normalizing for sample content you can use Housekeeping genes or an aggregate score of a larger set of non-
Housekeeping genes. Under ideal conditions, both methods should be equivalent. Samples with large deviations
from the best fit line should be investigated. When looking at miRNA code sets a large difference could reflect
contamination by ligation inhibitors. All the miRNA genes undergo ligation, however the mRNA housekeeping
genes do not. If inhibitors are present, this could also affect levels of the other controls and consequently magnify
inter-sample differences.
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estimate for each sample based on the geometric mean of the top 75 expressed genes, and the y-axis is the RNA
estimate based on the geometric mean housekeeping genes.
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Correlation of technical covariates with summary gene features. If still present after normalization, correlation
could indicate residual technical variation or batch effects. This could be problematic if the study has an unbalanced
design, which could result in a gene vs. trait model being confounded by a third technical covariate. For example,
cartridge 1 has a high mean expression level and it contains a large proportion of females. Looking for differential
expression between males and females will be confounded by females being over represented on an outlier cartridge.

In some instances a correlation of design covariate with a summary gene feature could be indicative of the hidden
biological substructure in the data. Biological rationale for observed technical relationships is preferred if possible.
For example, the last cartridge in your dataset is associated with low RNA content and elevated levels of missing
values. You go back and check your lab notes and realize that you prioritized samples based on quality/quantity
for running on the nCounter, so all the poor samples were left to the end.

These correlations can be described as batch effects and can be somewhat tricky to identify due to wide vari-
ations in experimental design and codesets. Generally, a batch effect is the situation when there is a systematic
technical bias that normalization ignores or inadvertantly exacerbates. The following plots try and identify these
situations by showing how sample level summaries (i.e. mean of positive controls) are a associated with specified
traits or technical features. Mean, SD and missing are generally related to the biology and therefore are mostly
descriptive. The sample level summaries for the controls, however should be in most cases, independent of features
of the data. Therefore, any significant difference could be an observed bias. Normalization will take care of minor
fluctuations but large differences i.e. large green dots should be flagged or at least reconciled. For example, if one
biologial subgroup of interest (i.e. tumour tissue vs normal tissue) has much higher RNA content than the other,
then the resulting normalization factor could over-correct and end up actually removing the true signal. Similarly,
if cartridges, dates, or scanners have different levels of positive controls then the standard normalization techniques
are unlikely to fully compensate resulting in bias when evaluating differential expression.

Correlation of biological covariates with summary gene features. While not strictly ‘batch effects’, any associa-
tion could introduce a bias. For example, a large proportion of your tumour samples have high levels of missing
values. This could be biologically plausible, or it could reflect a technical artifact (e.g. the tumour samples were
taken from very old and degraded FFPE blocks).
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Figure 7: Batch effects and potential confounding. The x-axis lists binary traits and design variables. The y-axis
is the difference between between the two levels of the trait for the specified sample summary feature. Usually, the
trait label on the x-axis reflects the group being compared. i.e. strain1 vs the rest or cartridge2 vs the rest. Sample
summaries can be mean counts, sd, proportion of missing (0 counts) or related to the controls probes. The location
of the dots relative to the horizontal line show how different that group is relative to the rest. Green dots indicate
that the difference is signicant based on a t-test and the size is proportional to the level of significance. For example
strain2 (column 2) has a much larger mean count than all the other strains and also significantly less missing. Note
that summaries for the controls are generated sequentially according to what was specified in the NanoStringNorm
call. Therefore, the summarization of the PositiveControls is based on the raw counts while the RNA Content is
based on the data adjusted for Positive and Negative controls.
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It is important to review the quality and quantity of the normalization factors. The batch effects above show how
these factors relate to groups of samples, while in contrast, the normalization factors plot shows these summaries at
the sample level. A perceived batch effect could be the result of one or two outlier or influential samples. Samples
that fluctuate beyond 100% from the mean are labelled for review.
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Figure 8: Barplot of normalization factors used to correct the data. For each sample the CodeCount (positive
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outliers. Any sample or group of samples that have very high or low bars could be influential outliers.
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The following show the distribution of the observed versus expected positive and negative controls. The negative
controls should be tightly clustered and the positive controls should show a strong linear trend. If any sample has
a slope or intercept that strongly deviates from other samples then it should be used carefully. If any sample is
flagged for any reason then these plots are a good place to start in the diagnostic process.
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Figure 9: Scatterplot of positive and negative control counts. The green points show the expected concentration in
fM of spiked in positive controls vs. the observed normalized counts. A best fit line is added where the intercept
reflects sensitivity. Orange dots represent the negative controls.
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6 Interactive Plotting

A set of Google Motion charts can be produced based on functionality in the googleVis package. These are highly
interactive plots based on sample and gene summary output. The plots are very useful for the purposes of presenta-
tions and user directed data exploration. For example, one can compare the differential expression of uncorrelated
traits to find unexpected overlaps.

By default the plots are rendered in your browser using a built in web server. For distribution and later use
you will need to save the resulting html files. The use of a web server is required to display the results, and there-
fore the program attempts to download mongoose embedded web server http://code.google.com/p/mongoose/

(License MIT). After starting the binary/executable you can access the plots at http://127.0.0.1:8080.

19

http://code.google.com/p/mongoose/
http://127.0.0.1:8080


The first example displays the plots in your browser the second saves them for later use.

> # plot the sample summaries to your browser

> Plot.NanoStringNorm.gvis(

+ x = NanoString.mRNA.norm,

+ plot.type = c('gene.norm', 'sample'),
+ save.plot = FALSE

+ );

> # plot the gene summaries to a directory for distribution and later viewing

> # note. if you save.plot = TRUE the default for path to mongoose is "web" i.e. it tries to download from online.

> # alternatively, you can specify a path to the binary or use "none" as below.

> Plot.NanoStringNorm.gvis(

+ x = NanoString.mRNA.norm,

+ plot.type = c('gene.norm', 'sample'),
+ save.plot = TRUE,

+ path.to.mongoose = 'none',
+ output.directory = "NanoStringNorm_Interactive_Plot"

+ );

Figure 10: A screen capture of the interactive Google chart for genes. Axis, colour and point size can be altered for
any gene or for trait level summaries.
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Figure 11: A screen capture of the interactive Google chart for samples. Axis, colour and point size can be altered
for any gene or for trait level summaries.
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7 Best Normalization Method

Different code sets and study designs are better suited towards alternative normalization strategies. This is an area
of active research and development. In this section I’ll outline several basic strategies for evaluating how well a
particular method is doing at removing technical variation. The function norm.comp is a simple interface for looping
over a set of methods and summarizing comparisons. Options include:

1. Signal to noise or Coefficient of Variation (CV) for control genes. The CV of the Positive controls is pro-
portional to the technical variability introduced by the nCounter platform. The CV for the Housekeeping
controls is proportional to the confounding biological variation due to sample input. The mean Endogenous
CV shows the global noise of experimentally observed genes. Methods that minimize the CV are generally
considered better. Be careful in comparing methods that change the scale of the measured counts i.e. zscores
and vsn.

2. Correlation between replicates. If multiple groups of replicates are assayed then the Intra Class Correlation
(ICC) is calculated. ICC is defined as the ratio of between group variation to the total variation. Variation
between groups is relative to the correlation within groups. Replicates can be purely technical or reflect
experimental design influences. For example titrations of different input RNA, samples run on different dates
or even well chosen biological replicates.

3. Trait Discrimination. A method that maximizes trait difference i.e. Tumour - Normal status, could be
considered good at removing technical variation. Similarly, any method that maximizes the predictive accuracy
between two datasets would be desirable. This is not yet implemented.

Ideally, for large projects and new code sets, a pilot study will be run in order to optimize the normalization
choice. For past projects we have chosen triplicate titrations of four samples and triplicate technical replicates for
two tumour and two normal samples. Both designs require a twelve samples or a single cartridge.

> # compare normalization methods using coefficient of variation

> # of controls (CV) and correlation of replicates (ICC)

>

> # specifiy housekeeping genes in annotation

> NanoString.mRNA[NanoString.mRNA$Name %in%

+ c('Eef1a1','Gapdh','Hprt1','Ppia','Sdha'),'Code.Class'] <- 'Housekeeping';
> # strain x experimental condition i.e. replicate.

> # this is only a small subset of the original data used for the plot

> biological.replicates <- c("HW_1.5_0","HW_1.5_0","HW_1.5_0","HW_1.5_100","HW_1.5_100","HW_1.5_100",

+ "HW_6_100","HW_6_100","HW_3_100","HW_3_100","HW_3_100","HW_3_100",

+ "LE_19_0","LE_19_0","LE_19_0","LE_96_0","LE_96_0","LE_96_0","HW_10_100",

+ "HW_10_100","HW_10_100","HW_10_100","HW_6_100","HW_6_100","HW_96_0");

> norm.comp.results.test <- norm.comp(

+ x = NanoString.mRNA,

+ replicates = biological.replicates,

+ CodeCount.methods = 'none',
+ Background.methods = 'none',
+ SampleContent.methods = c('none','housekeeping.sum', 'housekeeping.geo.mean',
+ 'top.mean', 'top.geo.mean'),
+ OtherNorm.methods = 'none',
+ verbose = FALSE

+ );

In this example zscore normalization is ranked the highest based on ICC and interestingly sample content is
better adjusted using total RNA and not the Housekeeping gene.
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Figure 12: A histogram of ICC for all possible normalization methods on the rat strain data.
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8 Study Design Related Issues

Based on the analysis of a number of miRNA and mRNA datasets, we’ve noticed several situations that tend present
analytical challenges:

• Mixed tissues. Jointly pre-processing different tissues with very different expression distributions (i.e. presence
of inhibitor’s or T/N). This can introduce technical artifacts which increase false positive differences.

• Mixed samples. Including both frozen and FFPE sometimes produces dramatic differences even between
replicates. Large variation in fixation process and date can also influence RNA integrity. This has been
flagged in several studies.

• Housekeeping gene choice. Some common genes have been shown to be associated with phenotypes. Also,
the validity of using mRNA in miRNA studies is unclear. In NanoString code sets the mRNA probes do not
undergo ligation and therefore are under different technical influences.

• Using global or top normalization when a large proportion of genes are associated with phenotype (i.e. EBV
and NPC).

• Plasma or circulating profiles. Very specific care needs to be taken on concise input volumes and quantification.
Moreover, additional spike-in controls are needed. Inhibitors have been shown to be an issue.

• nCounter batch variability. While not as of yet quantified, date is a contributing factor. Jointly normalizing
and analyzing data across multiple batches should be done carefully.

At this time, adaptable methods are being developed which better account for experimental design and technical
variability. This document will be updated as more information becomes available.
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