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This document provides worked examples for several types of model that can
be fitted using MasterBayes. The main emphasis is on the syntax used to specify,
estimate and interpret the models, although in some cases I have tried to explain
the underlying theory. These explanations are intended for non-statisticians and
vary from the patronising to the arcane. I assume a basic familiarity with R.
All example code can be extracted by using the Stangle function on the file
Tutorial.Rnw in the MasterBayes/inst/doc/Figures folder.

> library("MasterBayes")

Many of the models that can be fitted are computationally intensive, and
many routines have been written in compiled C++ code for efficiency. Netherthe-
less, the amount of computing time required by some models may be a limiting
factor, and I incude model run times for many examples. These examples were
run on a dual Xeon 2.8GHz Linux machine with 1Gb RAM. In general the length
of the Markov chain is much shorter that what would be used in a real analysis.
Generally, these examples can be fitted in a few minutes, even seconds, but for
real problems I would suggest running multiple chains for as long as possible.

1 Markov Chain Monte Carlo

In order to fit and interpret models successfully in MasterBayes it will be nec-
essary to have a baisc understanding of Marvov chain Monte Carlo (MCMC)
methods. I will giva a non-technical, heuristic tour of MCMC that should give
an operational understanding of MasterBayes, and in particular the function
MCMCped. I strongly recommend reading one of the many good introductory
texts on the subject; my favourite is Bayesian Data Analysis [Gelman et al.,
2004].

Let’s imagine a model in which there are two parameters of interest, the
probability that territorial males gain paternity over non-territorial males, and
also the probability that old males gain paternity over young males. We will
denote the two parameters as β1 and β2, and group them in the vector β. We
are interested in the joint posterior distribution of these parameters conditional
on the parentage, spatial and age data we have collected (y):

Pr(β1, β2|y) (1)

The posterior probability distribution is a complete description of our state
of knowledge of the true value of β. The posterior is the product of two types of
information, information from the data we have collected (the likelihood) and
information that we have gained from prior experience (the prior).

For some very simple models the posterior distribution can be derived analyt-
ically. Let’s imagine that the equation describing the joint posterior distribution
of β1 and β2 was known and could be plotted (see Figure 1). The area under the
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Figure 1: Bivariate posterior distribution of β

distribution is equal to 1, since we are dealing with a probability, and we can
often summarise the posterior distribution using simple statistics. For example
we could state the values of β1 and β2 for the peak of the distribution, which
would represent the most likely values of β. We could state the width of the
distribution along the β1 axis as a measure of the precision with which we have
estimated β1, and so on.

For most models, however, we cannot derive the posterior distribution ana-
lytically, and we must use MCMC to get an approximation. MCMC relies on
the fact that although we cannot derive the complete posterior, we can calculate
the height of the posterior distribution at a particular set of co-ordinates. In this
example there are only two parameters, so we may be inclined to systematically
go through every likely combination of β1 and β2 and calculate the height of
the distribution at regular distances, and then plot Figure 1. The Markov chain
does exactly this, although it does not move systematically through parameter
space (the β1 and β2 co-ordinates in this case), it moves stochastically, hence the
name ’Monte Carlo’. There are several ways in which we can get the chain to
move in parameter space, and MasterBayes uses a combination of Metropolis-
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Hastings updates and Gibbs sampling.

1.1 Metropolis-Hastings Updates and tunePed Objects

First we need to initialise the chain and specify a set of co-ordinates from which
the chain can start a journey through parameter space. Ideally we would like
to pick a region of high probability, as we do not want to waste time wandering
through regions of low probability: we are not so interested in determining the
height of the distribution outside of Figure 1 as it is virtually flat and close to
zero (or at least we hope so!). MasterBayes uses a mixture of Maximum Like-
lihood and heuristic techniques to detemine the place from which the chain is
launched, the co-ordinates of the starting configuration are denoted βt=0.

After initialising the chain we need to decide where to go next, and this de-
cision is based on two rules. First we have to generate a candidate destination,
and then we need to decide whether to go there or stay where we are. There
are many ways in which we could generate the candidate coordinates, and Mas-
terBayes uses a well tested and simple method. A random set of cordinates are
picked from a multivariate normal distribution that is centered on the initial co-
ordinates βt=0, and has a user specified variance. We will denote this new set of
cordinates as βnew. The question then remains whether to move to this new set
of cordinates or remain at our current co-ordinates βt=0 = βold. If the height of
the distribution at the new set of co-ordinates is greater, then the chain moves
from βold to βnew. If the new set of coordinates is in a region of low probability
then the chain may move there, but not all the time. The probability that the
chain moves to low lying areas, is determined by the relative difference bewteen
the heights of the posterior distribution at the two co-ordinates. If the height of
the distribution at βnew is 5 times less than the height at βold, then the chain
would move to the new set of coordinates 1 in 5 times, and βt=1 would become
βnew. Using these rules we can record where the chain has travelled and gen-
erate an approximation of the posterior distribution. Basically, a histogram of
Figure 1.

The speed with which the chain moves through parameter space is criti-
cal, and in part depends on the variance of the proposal distribution. Say we
initialised the chain at the co-ordinates under the peak of the distribution in
Figure 1, and specified the variance of the proposal distribution to be large
(much larger than the variance of the posterior distribution itself). Many of
the candidate co-ordinates would lie outside of Figure 1 in regions of very low
probability, and since the probability of moving there is low the chain would
sit at the peak for large amounts of time. We would have to run the chain for
many iterations before we could generate a histogram that was an adequate ap-
proximation of Figure 1. Alternatively, we could specify the variance to be very
small, say a thousand times smaller than the variance of the posterior. In this
case the cordintates βnew and βold would be very close, and the chain would
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move almost every iteration since the difference in heights of the posterior at
the two cordintates would be tiny. Although the chain is continuously moving
it is travelling such small distances each iteration that the chain would have to
pass through many iterations before it adequately covered parameter space.

tunePed objects control the variance of the proposal distributions for pa-
rameters updated by Metropolis-Hastings upadtes. By default, the standard
deviation of the proposal distribution will be the standard error of the parame-
ter estimated using Maximum Likelihood. Scaling constants can then be passed
to tunePed which are multiplied by the standard error squared to obtain the
variance of the proposal distribution. Ideally, the chain should move between
20% and 50% of the time, and this can be assessed by specifying verbose=TRUE
in MCMCped. The Metroplis-Hastings accpetance rates are then printed to the
screen during model fitting.

1.2 Gibbs Sampling

Gibbs sampling is a special case of Metropolis-Hastings updates, and MCMCped
uses Gibbs sampling to sample genotypes and parents. In the Metropolis-
Hastings example above, the Markov Chain was allowed to move in both di-
rections of parameter space simulateously. An equally valid approach would
have been to set up two Metropolis-hastings schemes where the chain was first
allowed to move along the β1 axis, and then along the β2 axis. In Figure 2
we have cut the posterior distribution of Figure 1 in half, and the edge of the
surface facing us is the conditional distribution of β1 given that β2 = 0:

Pr(β1|β2 = 0,y). (2)

In some cases, the equation that describes this conditional distribution can
be derived despite the equation for the complete joint distribution of Figure 1
remaining unknown. When the conditional distribution of β1 is known we can
use Gibbs sampling. Lets say the chain at a particular iteration is located at
zero for β2. If we updated β1 using a Metroplis-Hastings algorithm we would
generate a candidate value and evaluate its relative probability compared to
the old value. This procedure would take place in the slice of posterior that is
facing us in Figure 2. However, because we know the actual equation for this
slice we can just generate a new value of β1 directly. This is Gibbs sampling. If
for example, the slice of the posterior that we can see in Figure 2 has a normal
distribution with mean of zero and variance of one, then βnew

1 can be drawn
simply directly from this distribution. This can be much more efficient than
Metropolis-Hastings updates, and avoids the issue of having to specigy the vari-
ance of a proposal distribution.
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Figure 2: Bivariate posterior distribution of β, for postive values of β2

1.3 MCMC Diagnostics

When fitting a model using MCMCped the parameter values through which the
Markov chain has travelled are stored and returned. The length of the chain
(the number of iterations) can be specified using the nitt argument of MCM-
Cped, and should be long enough so that the posterior approximation is valid.
If we had known the joint posterior distribution in Figure 1 we could have set
up a Markov chain that sampled directly from the posterior. If this had been
the case each successive value in the Markov chain would be independent of
the previous value after conditioning on the data, y, and a thousand iterations
of the chain would have produced a histogram that resembled Figure 1 very
closely. However, generally we do not know the joint posterior distribution of
the parameters, and we use Gibbs sampling and Metropolis-Hastings updates
to approximate this distribution. For this reason the parameter values of the
Markov chain at sucessive iterations are usually not idependent and care needs
to be taken regarding the validity of the approximation. MCMCped returns the
Markov chain for continous parameters as mcmc objects, which can be analysed
using the coda pacakge. The function autocorr estimates the level of non-
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independence between succesive samples in the chain1. When autocorrelation is
high the chain needs to be run for longer, and this can lead to storage problems
for high dimensional problems. The argument thin can be passed to MCMCped
specifying the intervals at which the Markov chain is stored.

The approximation obtained from the Markov chain is conditional on the
set of parameter values that were used to initialise the chain. In many cases
the first iterations show a strong dependence on the starting parameteristaion,
but as the chain progresses this dependence may be lost. As the dependence on
the starting parameterisation diminishes the chain is said to converge and the
argument burnin can be passed to MCMCped specifying the number of iterations
which must pass before samples are stored. Assessing convergence of the chain
is notoriously difficult. The posterior distribution in Figure 1 has a simple form
and the convergence of the chain would be easy to acheive. If however, the
posterior was multimodal convergence would be harder to acheive and diagnose.

Pr

ββ1

ββ2

C2

C1

Figure 3: A bimodal bivariate posterior distribution of β.
1Later versions of MasterBayes >2.2 also include the function autocorrP which calculates

an autocorrelation metric for parentage assignements when write_postP="JOINT" is sepcified
in MCMCped.
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For example, imagine a chain was initailised at C1 in Figure 3. The chain
may provide valid approximates for the region of high probablity at small values
of β1 and β2 but it may fail to pass under the low probability ridge that connects
the two high probability regions. Conclusions drawn from a chain initialised a
C2 may be very different, and it is good practice to run multiple chains from
different starting parametrisations (See Section 3.10 for an interesting exam-
ple). For MCMCped models in which the posterior distribution of genotypes is
estimated, it is particularly important to assess the sensitivity of the chain to
different starting configurations. Genotype configurations with high probability
may be separated by configurations of low probability and the chain may mix
poorly. See Section 3.1 for an example where high probability genotype config-
urations are actually separated by configurations of zero probability. In such
cases the chain is said to be reducible and posterior simulation is not possible.

1.4 Prior Specifications and priorPed Objects

The posterior distribution is the product of the likelihood and the prior. If a
prior is not specified using the function priorPed, the default is to use an im-
proper uniform prior for all parameters, except allele frequencies, which have a
vague Dirichlet prior. For the size of the unsampled population and the geno-
typing error rates the prior has zero probability for negative values. When the
posterior distribution itself is improper (i.e if the volume under the surfaces
plotted in Figures 1 and 3 are not finite) then the posterior can no longer be
treated as a probability, and inferences taken from it would be compromised.
For some models the data will contain enough information to make the posterior
proper despite an improper prior specification. However, for chains in which a
sampled pedigree has little or no structure (i.e. all parents are unsampled),
or no sampled parents exist for some level of a categorical predictor variable2,
then problems can occur unless informative priors are used. In the extreme
case, models in which parameters are confounded, a proper prior distribution is
required to make the parameters idenitifiable. Imagine that all territorial males
were old, and all non-territorial males were young. If we tried to fit the two
parameters, β1 and β2, in a single model we would run in to difficulties. The
parameters are not identifiable because we cannot distinguish between the two
alternatives; whether territorial males gain more paternity beacuse they hold
a territory, or because they are older. The likelihood surface for β would look
something like Figure 4, with a ridge of high probability extending to infinity.

In this insatnce the Markov chain would wander aimlessly along the ridge,
perhaps even giving the appearance of having converged. MasterBayes will not

2It turns out that this is a common problem in real datasets and has been refered to
as the extreme category problem. For example, the catgorical variable ‘recorded in that

year/only recorded in the previous year’ may be fitted to account for individuals that
were not recorded but may have been alive. If these indiviuals really were dead then the
estimated probability of them having offspring tends to zero which is −∞ on the logit scale.
This problem can usually be idenitified by the chain making long excursions into extreme
values of the parameter space.
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Figure 4: The likelihood of β, when the two parameters are not identifiable
from the data, y

check whether all parameters are idenitifiable.

2 A Worked Example: The Seychelles Warbler

To illustrate the basic methodology, I will use data collected in 1999 from
the Cousin Island population of the endangered Seychelles warbler [Richard-
son et al., 2001].

> data(WarblerP)

> data(WarblerG)

WarblerP is a data frame containing phenotypic data for all individuals
recorded in that year. This includes a unique identifier for each bird, its sex
and the territory it was recorded on. offspring is a binary vector with 1 indic-
dating the bird was born in 1999, and status is a factorial vector with 2 levels
indidcating whether the bird is a dominant or a subordinate. lat and long are
x and y coordinates for the centre of each bird’s territory. WarblerG is a data
frame containing the genotypes of each individual at 14 loci [Richardson et al.,

10



2000].

In this particular year there were 59 offspring, 127 adult females and 121
adult males recorded on the island. We will assume for now that an offspring’s
mother is always found on the same territory as the offspring, but that an
offspring’s father could potentially be any one of the 121 sampled males, or even
a male that was not sampled. Initially, we will focus on modelling the degree
to which offspring and fathers are associated spatially, by estimating the rate
at which the probability of paternity drops with distance from the offspring.
This rate (β) is the exponential rate parameter, and we are interested in its
probability distribution given the data we have collected:

Pr(β|Gobs, lat, long, terr). (3)

G represents genotypes, and we use the subscript obs to indicate observed
rather than actual genotypes. This distinction is necessary when genotyping
error is present (see Section 2.6). Evaluating the problem in this form is in-
tractable, but the problem can be simplified by augmenting with the pedigree,
P : ∫

P

Pr(β, P |Gobs, lat, long, terr)dP . (4)

Equations 3 and 4 are equivalent. In the latter case we estimate the pedigree,
but we also integerate over any uncertainity that may remain regarding its
structure, leaving us with the marginal distribution of β. We will start by fitting
commonly used approximations to equation 4 and end by a fitting a model that
is very close to being exact.

2.1 Phenotypic Predictors

To fit the model we need to start by creating a variable that indicates whether
particular females and particular offspring occur on the same territory. Un-
fortunately the nature of these models precludes us from using the R formula
mini-language, and so variables are created using varPed and then evaluted as
part of the model formula in a PdataPed object

> res1 <- expression(varPed(x = "terr", gender = "Female", relational = "OFFSPRING",

+ restrict = "=="))

x is the variable we are interested in, in this case territories. gender spec-
ifies whether the variable relates to maternity (gender="Female"), paternity
(gender="Male") or both (gender=NULL). The argument relational is a lit-
tle more complex, and sepcifies whether the variable is to be treated as it is
(relational=FALSE), or is to be transformed into a distance. relational="OFFSPRING"
creates a variable that is the distance between x measured in the offspring and
the parent, and relational="MATE" is the distance between x measured in a
potential mother and a potential father. When x is numeric, the transformed
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variable is a Euclidean distance 3. When x is a factor, the transformed variable
is a logical vector with TRUE indicating that x for the two indivdiuals are the
same, and FALSE indicating that they are different. In this example we are deal-
ing with a logical variable that is TRUE when offspring and females are present
on the same territory, and FALSE if not. We could estimate a parameter associ-
ated with this variable which would be interpreted as the probability of within
territory maternity. However, in this case we are assuming that extra territory
maternity does not occur and we can use the argument restrict="==" to re-
tain mothers that have the same territory as the offspring for the transformed
variable. Females that are on a different territory to the offspring are excluded
as mothers. This is essentially a strong prior on the parameter associated with
within territory/extra territory maternity, but is computationaly faster because
excluded mothers can be discarded for particular offspring.

We also need to exclude indidvuals that are born in 1999 as potential parents

> res2 <- expression(varPed(x = "offspring", gender = NULL, relational = FALSE,

+ restrict = 0))

We want to exclude individuals that have 1 in the variable offspring, as
they represent chicks born in 1999. We want to exclude offspring irrelevant of
their sex so gender=NULL and we want to evaluate x as it is (i.e. as a binary
variable). We exclude offspring by specifying restrict=0 which retains indi-
viduals that have 0 in the offspring variable.

The goal of the analysis is to estimate β, the rate at which paternity drops
with distance from an offspring

> var1 <- expression(varPed(x = c("lat", "long"), gender = "Male",

+ relational = "OFFSPRING"))

x in this instance contains two variables that specify the cordinates of each in-
divdual on the island. Because relational="OFFSPRING" this variable is inter-
preted as the Euclidean distance between offspring and fathers (gender="Male")
in 2 dimensions. restrict is not specified indicdiating that all males are po-
tential fathers.

p
(o)
i,j ∝ exp(β

√
(latj − lato)2 + (longj − longo)2) (5)

The full notation for a multinomial model is cumbersome so I’ll express all
models in this form for clarity. A full list of models and the associated varPed

specificiations can be found in Appendix A. p
(o)
i,j is the probability that female

i and male j are the parents of offspring o.

3Later versions of MasterBayes (> 2.1) also include the options relational="OFFSPRINGV"
and relational="MATEV" which create a vector of the difference between the two phenotypes

(but not absoluted). i.e x = xi − xj rather than x =
q

x2
i − x2

j .
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These variables are to be evaluated inside various functions, and they need
to be associated with the data.frame in which x is stored. We also need to
provide data on the sex, age, and id of each individual. This is done by creating
a PdataPed object.

> PdP <- PdataPed(formula = list(res1, res2, var1), data = WarblerP,

+ USsire = TRUE)

The variables are passed as a list to the argument formula, and the relevant
data are contained in WarblerP. In this case variables named id, sex and off-
spring exist in WarblerP and they do not need to be specified explicitly. All
PdataPed objects must contain an id and offspring variable containing unique
identifiers for each individual, and a vetcor indicdating whether records belong
to offspring. If data does not have a sex column, or sex=NULL, the data are
assumed to have been collected from a hermaphrodite system (see Sections 3.9
and 3.10). Elements of the sex vector must be either "Male", "Female" or NA.
In this model we also allow for the presence of unsampled males: USsire=TRUE.

We also need to create a GdataPed object for storing the genotype data and
some associated information

> GdP <- GdataPed(G = WarblerG, categories = NULL)

GdataPed objects store genotype data (G) as a list of genotype objects for
dominant markers (see the package genetics), or genotypeD objects for domi-
nant markers. A list of genotype or genotypeD objects can be directly passed to
the argument G, or a data frame can be passed that is coerced to a list of geno-
type objects using the function genotype.list. The variable id is required,
and links genotypes with individuals. Indivdiuals can have multiple genotypes
if they have been genotyped more than once. If G is a data.frame with a column
named id, id does not have to be explicitly passed to GdataPed. If categories
is not specified then genotyping error rates are assumed not to vary across geno-
types, otherwise categories must be a vector of factors the same length as id.

2.2 Approximate Methods and startPed Objects

The optional startPed object specifies the starting parameterisation for the
model, and logical arguments specifying which parts of the model are to be fixed
at the starting parameterisation and not to be estimated. Maximum likelihood
or heuristic starting parameterisations are used by default, and all estimable
parameters are estimated, unless ortherwise specified. These parameters may
include the pedigree (P), genotypes (G), base population allele frequencies (A),
allelic dropout rates (E1), stochastic genotping error rates (E2), unsampled male
(USsire) and female (USdam) population sizes4, and most importantly the pa-
rameters of the multinomial log-linear model (beta). Estimating all unknown

4In later versions of MasterBayes (>2.1) male and female unsmapled population sizes can
be forced to be equal by specifying estUSsire="USdam" in the startPed object.
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parameters can be computationaly intensive, and preliminary analyses can usu-
ally be caried out using approximate methods. A commonly used approximation
for dealing with genotyping error is to integrate out any uncertainty prior to the
parentage anlaysis (See Section 3.1). We can use the approximation by speci-
fying estG=FALSE; if we were to use the exact solution we would be required to
estimate the actual genotypes of all individuals. When estG=FALSE, error rates
and allele frequencies are also unestimable and need to be specified. If the ap-
proximation is used, the corrected model of genotyping error used by CERVUS
is implemented [Kalinowski et al., 2006], and E2 is the per-allele probability of an
error. In CERVUS this is specified as a per-genotype probaility, and the default
value of 0.005 is close to the CERVUS default (0.01 ≈ 2(1−0.005)0.005+0.0052).
Allele frequencies, if not specified, are taken directly from the genotype data us-
ing the function extractA.

2.3 Categorical Estimation

The most popular software for parentage anlaysis is CERVUS [Marshall et al.,
1998]. MasterBayes can fit CERVUS type models as a special case, although
two major differences exist between the MasterBayes implementation and the
CERVUS implementation. Firstly, mothers and fathers can be estimated simul-
taneously in MasterBayes, whereas CERVUS was developed for systems where
one parent is already known5. Secondly, in MasterBayes confidence in parentage
assignments is assesed at the level of individual assignments and the measure of
confidence uses all the information provided by potential parents. CERVUS on
the otherhand assesses confidence at the level of the population, and only uses
the information provided by the two most likely parents [Nielsen et al., 2001].
By default, the model defined in Equation 4 is fitted with the minimal amount
of approximation. To fit a CERVUS type approximation we need to do a little
more work. We need to specify that an approximation is to be used for genotyp-
ing error, and we need to provide point estimates for the allele frequencies and
the genotyping error rate (see Sections 2.2 and 2.6). We also need to specify
that the number of unsampled males is not to be estimated (see Section 2.5),
and that a point estimate of 10 is to be used instead.

> sP <- startPed(estG = FALSE, E2 = 0.005, A = extractA(WarblerG),

+ estUSsire = FALSE, USsire = 10)

CERVUS breaks the problem down into two stages. In the fisrt stage the
pedigree is estimated using the genetic data alone, and this pedigree (or part
of it) is then passed to the second stage, where the spatial parameter, β is
estimated. We start by estimating the pedigree using the function MCMCped
which returns samples of the posterior distribution of all unkowns.

> PdPCervus <- PdataPed(formula = list(res1, res2), data = WarblerP,

+ USsire = TRUE)

> model1 <- MCMCped(PdP = PdPCervus, GdP = GdP, sP = sP, verbose = FALSE)

5Joint estimation of maternity and paternity is now available in version 3 of CERVUS.
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[1] "using an approximation for genotyping error"

Note that we have created a new PdataPed object, PdPCervus, that does
not contain the distance variable as we wish to use the genetic data only to
infer parentage. Beacuse the only unkown in this model is the pedigree the
object model1 only contains a single element (P): the posterior distribution of
the pedigree. By default this is the marginal distribution of parental pairs, and
we can extract the mode of this distribution

> ped1 <- modeP(model1$P, threshold = 0)

> ped1[1:10, ]

[,1] [,2] [,3]
[1,] "N748835" "K278102" "USsire"
[2,] "Z993558" "K278102" "K278027"
[3,] "N748825" "K278115" "N021716"
[4,] "N748841" "N021991" "K278027"
[5,] "N748842" "J368410" "USsire"
[6,] "N748848" "J854303" "K278101"
[7,] "Z993553" "K278011" "J368403"
[8,] "N748838" "N021965" "N021760"
[9,] "N748827" "K278018" "N021839"
[10,] "Z993562" "K278018" "USsire"

In this example the most likely pedigree for the first ten offspring is displayed,
with the offspring, dam and sire in each column. If the most likely father for one
of these offspring is unsampled then the respective element of the sire column
is designated as USsire. For such a simple model, Markov chain Monte Carlo
is redundant as the posterior distribution of the pedigree can be calculated
analyticly

> ped2 <- MLE.ped(getXlist(PdPCervus, GdP), USsire = TRUE, nUSsire = 10)

> ped2[3:12, ]

[,1] [,2] [,3]
[1,] "N748835" "K278102" NA
[2,] "Z993558" "K278102" "K278112"
[3,] "N748825" "K278115" "N021716"
[4,] "N748841" "N021991" "K278027"
[5,] "N748842" "J368410" NA
[6,] "N748848" "J854303" "K278101"
[7,] "Z993553" "K278011" "J368403"
[8,] "N748838" "N021965" "N021760"
[9,] "N748827" "K278018" "N021839"
[10,] "Z993562" "K278018" NA

This is the Maximum Likelihood estimate of P and is equivalent, in this
model, to the Bayesian estimate when all parental combinations have an equal

15



prior probability of being the parents. We will return to the function getXlist
later, and proceed to estimate β assuming the MLE/posterior mode of the pedi-
gree is the true pedigree. We do this by passing the ML pedigree (dam=ped2[,2]
and sire=ped2[,3]) to a startPed object, and by specifying that the pedigree
should not be estimated (estP=FALSE), but should be fixed.

> sP <- startPed(estP = FALSE, dam = ped2[, 2], sire = ped2[, 3],

+ estUSsire = FALSE)

> model2 <- MCMCped(PdP = PdP, sP = sP, verbose = FALSE)

> plot(model2$beta)

> summary(model2$beta)

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
-0.0705708 0.0095894 0.0003032 0.0002839

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
-0.08912 -0.07720 -0.07046 -0.06364 -0.05249

The genetic data are not required since the pedigree is treated as known, and
only the PdataPed object (PdP) needs to be passed to MCMCped. Again, with
such a simple model, Maximum Likelihood gives valid results, and the large
sample approximation for the standard error is close to the Bayesian estimate.

> MLElat <- MLE.beta(getXlist(PdP), ped2)

> MLElat$beta

[,1]
[1,] -0.06987857

> sqrt(MLElat$C)

[,1]
[1,] 0.009572814

Despite the two methods giving similar estimates, they are both severely
biased towards zero; the value of β that would be observed if fathers were
distributed randomly across the island with respect to their offspring. We can
get a feel for this by estimating β for those paternity assignments that had a
probability exceeding 0.9.
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Figure 5: Posterior distribution of β from model2. The posterior is conditional
on the categorical assignment of the pedigree being true. These plots are a
way of summarising a Markov Chain using the coda package. The left plot is
a trace of the sampled posterior, and can be thought of as a time series. The
right plot is a density estimate, and can be thought of a smoothed histogram
approximating the posterior. See Section 1 for more details.

> ped3 <- modeP(model1$P, threshold = 0.9)

> ped3[1:10, ]

[,1] [,2] [,3]
[1,] "N748835" "K278102" NA
[2,] "Z993558" "K278102" NA
[3,] "N748825" "K278115" NA
[4,] "N748841" "N021991" NA
[5,] "N748842" "J368410" NA
[6,] "N748848" "J854303" "K278101"
[7,] "Z993553" "K278011" "J368403"
[8,] "N748838" "N021965" "N021760"
[9,] "N748827" "K278018" NA
[10,] "Z993562" "K278018" NA
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> MLElat3 <- MLE.beta(getXlist(PdP), ped3)

> MLElat3$beta

[,1]
[1,] -0.2965067

> sqrt(MLElat3$C)

[,1]
[1,] 0.0517371

The first thing to notice is that by only using males that have a greater than
0.9 probability of being the father, we are excluding 75% of the offspring from
the analysis. Because of this the standard error of β is more than 5 times larger
than that in the previous model. However, the ML estimate of β is significantly
larger than in the previous model suggesting that our basic model is wrong.

2.4 Full Probability Estimation

The reason that it is wrong is beacuse we have failed to use the information
contained in the phenotypic data to help us estimate the pedigree. Equation 4
can be rewritten

Pr(β, P |Gobs, lat, long, terr)
Pr(P |βGobs, lat, long, terr)

. (6)

and can be simplified under the assumption that the genetic data provide
no information regarding β once the pedigree is known

Pr(Gobs|P )Pr(P |β, lat, long, terr)
Pr(P |β, Gobs, lat, long, terr)

Pr(P , β) (7)

The fundamental difference between the exact solution implemented in Mas-
terBayes and the approximations used in categorical and fractional type ap-
proaches lies in the denominator of equation 7. This equation highlights the
importance of using the phenotypic data to aid pedigree reconstruction, and
the central role that β plays in mediating this information. The CERVUS type
approximation makes the mistake of assuming that only the genetic data are
required to estimate the pedigree [see the information boxes in Hadfield et al.,
2006].

We can fit a model where the pedigree and β are estimated simultanously,
although for now we will retain the CERVUS type approximation for genotyping
error and the number of unsampled males.

> sP <- startPed(estG = FALSE, A = extractA(WarblerG), E2 = 0.005,

+ estUSsire = FALSE, USsire = 10)

> model3 <- MCMCped(PdP = PdP, GdP = GdP, sP = sP, verbose = FALSE)
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[1] "using an approximation for genotyping error"

> plot(model3$beta)

> summary(model3$beta)

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
-0.2548820 0.0309223 0.0009778 0.0015165

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
-0.3190 -0.2736 -0.2534 -0.2336 -0.1978

This estimate is much closer to the ML estimate for the restricted pedigree
ped3, although the standard error is tighter because the whole pedigree is used.
It should also be noted that the ML standard error is artificially low because it
does not take into account the uncertainty in the pedigree. This is another draw
back of the categorical approach; once the pedigree is estimated you then have
to treat it as if it was known with complete certainity, rather than a random
variable.

2.5 Unsampled Parents

Next we will relax the assumption that the number of unsampled males is 10
and simultaneously estimate the number from the data:

> sP <- startPed(estG = FALSE, A = extractA(WarblerG), E2 = 0.005)

> model4 <- MCMCped(PdP = PdP, GdP = GdP, sP = sP, verbose = FALSE)

[1] "using an approximation for genotyping error"

> plot(model4$USsire)

> summary(model4$USsire)

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000
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Figure 6: Posterior distribution of β from model3. The pedigree and β have
been simultaneously estimated, but an approximation for genotyping error has
still been used. It was also assumed that the we size of the unsampled population
and the genotyping error rate were known.

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
35.9265 15.0032 0.4744 0.5258

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
13.39 25.56 33.79 43.99 71.92

The population of Seychelles Warbler on Cousin Island is small and essen-
tially closed. Given that the island has been extensively sampled we have rea-
sonable prior belief that the number of unsampled males is somewhere between
2 and 15, and an estimate of 33.79 unsampled males seems unreasonably large.
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Figure 7: Posterior distribution of the number of unsampled males from model4.
The number of unsampled males, the pedigree and β have all been simultane-
ously estimated, but we have still used an approximation for genotyping error.

We could set up a prior specification that reflected this, but before doing this
it will be usefull to discuss some possible reasons why the model has failed to
estimate the number of unsampled males accurately.

The problem of accomodating unsampled parents is a difficult one beacuse
the genotypes and phenotypes of unsampled indivduals are by definition unob-
served. This does not mean that information does not exist in the observed
data regarding the genotypes and phenotypes of unsampled individuals. Imag-
ine, that 3 offspring in the north of the island possess an allele that is not present
in the sampled parental population. If genotyping error was low enough we could
be reasonbaly confident in stating that an unsampled male was present in the
north of the island and that his genotype contained the rare allele. However,
using this information is difficult and I use two approximations for dealing with
unobserved genotypes and phenotypes that are based around the same logic.
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Nielsen et al. [2001] gives the likeihood of the total male population size,
sampled and unsampled, given the genotype data and known mother-offspring
pairs:

Pr(G|N ,A) =
no∏
i

N − n

N
Pr(Oi|Mi,A) +

n∑
j=1

1
N

Pr(Oi|Mi,Fj)

 . (8)

N and n are the total and sampled male population sizes, respectively, and
no is the number of sampled mother-offspring pairs. O, M and F are the
genotypes of offspring, mothers, and sampled father’s respectively, and A are
the allele frequencies in the unsampled population. The two genetic likelihoods
are the Mendelian transition probability, Pr(Oi|Mi,Fj), and an approximation
when the genotype of a parent is unknown, Pr(Oi|Mi,A). This approximation
makes several assumptions: a) genotype frequencies can be infered from allele
frequencies under the asumption of Hardy-Weinberg equilibrium; b) the allele
frequencies in the base population are known with certainty; c) genotyping error
does not exist; d) the size of the unsampled population is so large that the allele
frequencies in the unsampled population do not differ from A; and e) O and M
provide no information regarding the genotypes of unsampled males after condi-
tioning on A. Generally, A is estimated from G and an additional assumption
must be made that f) unsampled males and sampled individuals come from the
same statistical poulation with respect to allele frequencies. MasterBayes makes
all these assumptions except b) and c), and I return to assumption e) in Section
3.8.

We can fit Nielsen’s [2001] model using the function MLE.popsize by speci-
fying the genotype error rate to be effectively zero

> MLEUSsire <- MLE.popsize(getXlist(PdP, GdP, E2 = 1e-10), USsire = TRUE,

+ USdam = FALSE)

> MLEUSsire$nUS

[,1]
[1,] 95.24434

> sqrt(MLEUSsire$C)

[,1]
[1,] 30.54465

Even larger! The estimates of the unsampled population size are sensitive
to even low levels of genotyping error, and this is obvious when we fit the same
model but with the genotyping error rate set to 0.01 per allele

> MLEUSsire2 <- MLE.popsize(getXlist(PdP, GdP, E2 = 0.01), USsire = TRUE,

+ USdam = FALSE)

> MLEUSsire2$nUS
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[,1]
[1,] 40.36191

> sqrt(MLEUSsire2$C)

[,1]
[1,] 19.97673

Perhaps we had underestimated the level of genotyping error in our original
models, and this possibility will be returned to in Section 2.6. Another possible
reason why our estimate of the unsampled population may be to high, is because
Equation 8 makes the assumption that unsampled males and sampled males do
not systematicly differ in their ability to sire the sampled offspring.

When we estimate the number of unsampled males using MCMCped Equation 8
has a simpler form because the parameter space is augmented with the pedigree
(See Equation 4):

Pr(P |N) =
no∏
i

[
N − n

N
(1− δobs

i ) +
1
N

δobs
i

]
(9)

Here we have replaced the genetic likelihoods in Nielen’s original equation
with the indicator variable δobs

i . δobs
i takes on the value 1 when offspring i’s

father has been sampled, and 0 otherwise. If we knew the pedigree exactly then
the Maximum Likelihood Estimate for the number of unsampled males (N −n)
is simply the number of offspring with unsampled fathers divided by the average
number of offspring per sampled father:

MLE(N − n) =
nus

o ns
o

n
(10)

where nus
o and ns

o are the number of offspring with sampled and unsampled
parents parents, respectively.

A more general solution than Equation 9 is 6

Pr(P |N) =
no∏
i

 N − n

N − n + E
[

p̂obs
i

p̂miss
i

]
n

(1− δobs
i ) +

1

N − n + E
[

p̂obs
i

p̂miss
i

]
n

δobs
i


(11)

where p̂obs
i and p̂miss

i are the linear predictors of paternity for sampled and
unsampled males, respectively. Nielsen’s original formulation of the problem

6In earlier versions < 2.22 this equation was wrong, as was the code. The original equation

was Pr(P |N) =
Qno

i

»
N−n

N
E

»
p̂obs

i

p̂miss
i

–
(1− δobs

i ) + 1
N

δobs
i

–
, and is invariant to the ratio of

linear predictors. It will not have made a large difference unless unsampled parents had known
phenotype.
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assumes that the expectaion of the ratio in Equation 11 is exactly one, and
the estimate of the male population size has to be interpreted as an effective
population size assuming all males to be equal.

The default in MasterBayes is to assume that this ratio has an expectation
of 1. However, we still need to estimate the distribution of the mean linear
predictor for unsampled individuals (p̂miss

i ) so that we can sample the pedigree
correctly.

The parentage of each offspring is sampled from a multinomial distribution
with each category representing a unique parental combination. The probability
that the offspring falls into one of these categories is based on the Mendelian
transition probability and the linear predictors of potential parents. The number
of categories is equal to (no

d)(n
o
s +1) where no

d and no
s are the number of sampled

females and males that could be the parents of offspring o. An additional no
d

categories are set up in this particular example, representing the pairing of each
female with an unsampled male. The genetic likelihoods for these categories can
be derived folowing Equation 8 and the linear predictor for this category can be
derived following a similar logic.

Under the assumption that sampled and unsampled males come from the
same statistical poulation, I use an approximation based around the central
limit theorem for the distribution of the linear predictor for the unsampled
category. Under the central limit theorem this distribution will be normally
distributed irrespective of the underlying distribution of linear predictors when
the sample size is large (equivalent to assumption a for the genetic likelihoods).
The distribution of the summed linear predictors of unsampled males can then
be obtained using the following

p(
N−n∑

p̂(miss)|p̂(obs)) ≈ N(
(N − n)

n

n∑
p̂(obs),

N(N − n)
n

S2
obs) (12)

which takes into account the sampling variance in calculating the expecta-
tion from the sampled population (avoiding assumption c), and the sampling
variance that arises because the size of the unsampled population is finite (as-
sumption d). S2

obs is the sample variance of the observed linear predictors [see
Gelman et al., 2004, Chapter 7] I should emaphasise at this point that the
approximated linear predictors for missing individuals do not enter into the
likelihoood for β, they are only there to simplify the estimation of the pedigree.
However, if the phenotypes of unsampled inidviuals are known, then the linear
predictors of unsampled inidviduals do not need to be estimated and can enter
into the likelihood for β. In this insatnce the ratio in Equation 11 may not be
unity and assumption f) is relaxed (See Section 3.6 for an example).

We have no information regarding the phenotypes of unsampled males in
the Seychelles Warbler, and therefore the data do not allow us to distinguish
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between a large unsampled population and a smaller population with a reduced
chance of paternity. However, as noted earlier, the discrepancy between our
estimate of 50 unsampled males and our prior belief that the number of males
should be less than 15 may be a consequence of underestimating the level of
genotyping error.

2.6 Genotyping Error

At this point it will be usefull to distinguish between exact and approximate
methods for dealing with genotyping error. A useful notation will be G for
true but unobserved genotypes, and Gobs for observed but possibly erroneus
genotypes. Both methods implicitly or explicitly use this concept, and the aim
is to derive the probability distribution of G from Gobs and what we know about
error rates (ε) and allele frequencies (A). The approximate method defines the
conditional probability of G as

Pr(G|Gobs, ε,A) (13)

whereas the exact solution defines the probability as

Pr(G|Gobs,P , ε,A). (14)

The distinction is subtle. The approximation implicitlty assumes that the
genotypes are collected from unrelated indivdiuals, whereas the exact solution
acknowledges the fact that the indivdiuals are related. By acknowledging this
fact we become aware that the approximation actually throws some information
away; if individuals are related then the observed genotypes of some individuals
actually provide information regarding the actual genotypes of others. The ex-
act solution comes at a computational cost. Because the pedigree is estimated,
P may change with every iteration of the Markov chain and the probability in
Equation 14 has to be updated each cycle. Beacase the probability distribution
of G does not depend on P in the approximation, Equation 13 only needs to be
evaluated once, prior to pedigree estimation. This is only true, however, if error
rates and allele frequencies (in the base population) are known with complete
certainity.

At this point we can drop the approximation for genotyping error and work
with the exact solution, allowing us to estimate genotyping error rates and the
allele frequencies in the parental generation. This becomes computationally
demanding, as the probability distribution for each individual’s genotype has
to be calculated and sampled from each iteration of the Markov chain. When
the exact solution is used we switch from the CERVUUS model of genotyping
error to one proposed by [Wang, 2004]. The CERVUS model is mathematically
convenient but is unlikely to be biologically realistic. The main assumption of
the CERVUS model is that an erroneous genotype is scored as another genotype
(including itself) with a probability equal to that genotypes frequency in the
population. In Wang’s model an allele is assumed to be misscored as any other

25



allele with equal probability (ε2). In addition, the process of allelic dropout is
also modelled with the probability of an allele droping out being denoted as ε1

> model5 <- MCMCped(PdP = PdP, GdP = GdP, verbose = FALSE)

> plot(model5$E1)

> plot(model5$E2)

> plot(model5$USsire)
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Figure 8: The marginal posterior distributions of the error rates and the num-
ber of unsampled males from model5. All unknowns have been simultaneously
estimated.

The chain is slow to mix when genotypes are estimated and successive sam-
ples from the posterior show autocorrelation

> autocorr(model5$E1)

, , E1

E1
Lag 0 1.00000000
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Lag 1 0.41765511
Lag 5 0.13362918
Lag 10 0.07404815
Lag 50 -0.04446042

The chain needs to be run for longer to ensure that we gather independent
samples from the posterior, but nethertheless it is clear that we had underesti-
mated the aamount of genotyping error (see Figure 8). Allelic drop out appears
to occur for about 1 in 100 genotypes, but the stochastic error rate appears
higher at around 1 in 25. The posterior for the number of unsampled males
now looks more reasonable but there is still alot of uncertainity and a judicious
use of prior information seems reasonable. The log normal is used as the prior
specification for the number of unsampled males (see Figure 9)

> pP <- priorPed(USsire = list(mu = log(5), sigma = 0.5))

> model6 <- MCMCped(PdP = PdP, GdP = GdP, pP = pP, tP = tunePed(USsire = 0.1),

+ verbose = FALSE)

> plot(model6$USsire)

3 Further Examples using Simulated Data

To illustrate some further functionality we will use the functions simpedigree
and simgenotypes to simulate pedigrees and genotypes according to certain
models and then analyse them. We will use an estimate of the Seychelles Warbler
allele frequencies to sample genotypes from.

> A <- extractA(WarblerG)

3.1 Error Rate Estimation with and without a Pedigree

To start we will simply estimate genotyping error for two data sets, one in
which the information comes from individuals being sampled multiple times
and one in which the information comes from the pedigree. We will simulate a
large dropout rate (10% of alleles in a heterozygous state) but a low level of of
stochastic error (≈ 1% of single locus genotypes).

> ped <- matrix(NA, 50, 3)

> ped[, 1] <- 1:50

> G <- simgenotypes(A = A, E1 = 0.1, E2 = 0.005, ped = ped, no_dup = 2)

> tP <- tunePed(E1 = 15)

> GdP <- GdataPed(G = G$Gobs, id = G$id)

> model.dupE <- MCMCped(GdP = GdP, tP = tP, verbose = FALSE)

> summary(model.dupE$E1)

Iterations = 1:1000
Thinning interval = 1
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Figure 9: The marginal posterior distribution of the number of unsampled males
from model6. In this model an informative prior was used.

Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
0.0958506 0.0097635 0.0003087 0.0003627

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.07777 0.08908 0.09567 0.10187 0.11620

> summary(model.dupE$E2)

Iterations = 1:1000
Thinning interval = 1
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Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
4.624e-03 2.294e-03 7.254e-05 1.086e-04

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.001239 0.002921 0.004238 0.005955 0.010264

> plot(model.dupE$E2)

The posterior summaries are consistent with the data we simulated, but no-
tice that the mean may not be a very good summary of the central tendency of
the posterior distribution for stochastic error (see Figure 10)7. We can simulate
a similar set of data but with pedigree information

> ped <- matrix(NA, 100, 3)

> ped[, 1] <- 1:100

> ped[, 2][51:100] <- 1:50

> G <- simgenotypes(A = A, E1 = 0.1, E2 = 0.005, ped = ped, no_dup = 1)

> sP <- startPed(dam = ped[, 2])

> GdP <- GdataPed(G = G$Gobs, id = G$id)

> model.pedE <- MCMCped(GdP = GdP, sP = sP, tP = tP, verbose = FALSE)

> summary(model.pedE$E1)

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
0.0798425 0.0117579 0.0003718 0.0004700

2. Quantiles for each variable:

7Johnson and Haydon [2007] claim that MasterBayes overestimates error rates by 31%
when error rates are low (compared to a downward bias of 18% for Pedant). However, large
scale simulation shows that MasterBayes is unbiased (if such a thing exists in a Bayesian
analysis) if the posterior mode is used rather than the posterior mean.
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Figure 10: The marginal posterior distribution of stochastic error rate from
model.dupE. The mode is probably a better summary of central tendency as
the expectation of E2 may not coincide with the most likely value it could take.

2.5% 25% 50% 75% 97.5%
0.05774 0.07143 0.07935 0.08780 0.10261

> summary(model.pedE$E2)

Iterations = 1:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
0.0042802 0.0037796 0.0001195 0.0002858
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2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
7.568e-05 1.428e-03 3.223e-03 6.312e-03 1.342e-02

The posterior from the second data set has greater variance. With respect
to genotyping error, multiple samples from the same individual are more infor-
mative than genotypes typed once in mother-offspring pairs. If individuals have
been typed more than once then this information should be included in pedigree
reconstruction as it improves error rate estimation and increases the precision
with which an indivdiual’s genotype is estimated.

In Section 1.3 I mentioned the fact that MCMC may be sensitive to the
starting parameterisation, and that this is particularly so when the posterior
distribution is high-dimensional and multimodal. The posterior distribution of
genotypes has these properties, and high probability genotype configurations
may seperated by regions of zero probability when pedigree data exist. As
an example we will specify a random (but legal) starting configuration for the
previous model:

> stG <- simgenotypes(A = A, E1 = 0, E2 = 0, ped = ped, no_dup = 1)

> sP <- startPed(dam = ped[, 2], G = stG$Gobs)

> model.config <- MCMCped(GdP = GdP, sP = sP, tP = tP, verbose = FALSE)

> plot(model.config$E2)

When only dams are known the chain still mixes well and the chain converges
very rapidly despite the absurd starting configuration (see Figure 11). However,
we can simulate genotypes down a pedigree when both dams and sire are known.
We will analyse the data using two chains, one initialised at the true genotype
configuration, and one initialised at a random but legal configuration.

> ped <- matrix(NA, 150, 3)

> ped[, 1] <- 1:150

> ped[, 2][101:150] <- 1:50

> ped[, 3][101:150] <- 51:100

> G <- simgenotypes(A = A, E1 = 0.1, E2 = 0.005, ped = ped, no_dup = 1)

> sP <- startPed(dam = ped[, 2], sire = ped[, 3], G = G$G)

> GdP <- GdataPed(G = G$Gobs, id = G$id)

> model.DS1 <- MCMCped(GdP = GdP, sP = sP, tP = tP, verbose = FALSE)

> stG <- simgenotypes(A = A, E1 = 0.1, E2 = 0.005, ped = ped, no_dup = 1)

> sP <- startPed(dam = ped[, 2], sire = ped[, 3], G = stG$G)

> model.DS2 <- MCMCped(GdP = GdP, sP = sP, tP = tP, verbose = FALSE)

> post.max <- max(c(model.DS1$E2, model.DS2$E2))

> plot(c(model.DS1$E2), type = "l", col = "blue", ylim = c(0, post.max))

> lines(c(model.DS2$E2), type = "l", col = "red")

Clearly, the chains are sampling from different regions of the posterior (Fig-
ure 12). Methods exist for traversing these regions [Sheehan, 2000, Lange, 2002]
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Figure 11: The marginal posterior distribution of stochastic error rate from
model.config. This posterior should be identical to the posterior in Figure 10,
although the chain was initilised in a very low probability region of genotype
parameter space.

but these are hard to implement on fixed pedigrees, let alone pedigrees that
are being constantly updated. However, when the pedigree is not fixed, zero
probability regions do not exist because all genotype congigurations have a pos-
itive probability under some pedigree configuration. Nethertheless, there may
be regions of very low probability connecting high probability regions, and the
chain may not mix well.

3.2 Mismatch Tolerence and Computational Efficency

The number of potential parental combinations is not linear in the number of
potential mothers and fathers. With 50 candidate mothers and 50 candidate
fathers the number of parental combinations is 2500. This can slow the chain
down because each iteration, and for each offspring 2500 Mendelian likelihoods
have to be recalculated. Also, we have to sample parents from a multinomial
distribution with as many categories. When genotyping error is low, we can
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Figure 12: Samples from the posterior distribution of stochastic error rate es-
timated from the data set Gobs. The two chains were initialised at the true
genotype configuration (blue), and a random congiguartion (red).

safely assume that potential parents that have many mismatches with an off-
spring have a probability close to zero of being the true parents. The argument
mm.tol can be passed to MCMCped specifying the number of mismatches that will
be tolerated for a potential parent8.

To illustrate I have simulated a pedigree where body size has a strong effect
on both paternity and maternity. However, the effect of body size is not the
same for the sexes: large males have an increased chance of gaining paternity,
but small females are more fecund. Following the notation of Equation 5:

p
(o)
i,j ∝ exp(β1sizei + β2sizej) (15)

8Later versions of MasterBayes (> 2.1) also include the argument jointP. When
jointP=FALSE then an alternative Gibbs sampler is used which samples dams conditional on
sires, followed by sires conditional on dams. The chain may mix slower (per number of itera-
tions) than the default jointP=TRUE, but the chain may iterate much faster if ninj >> ni+nj ,
where ni and nj are the number of potential dams and sires.
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A pedigree is simulated with β1 and β2 set to -1 and 1, respectively.

> sex <- c(rep("Female", 50), rep("Male", 100))

> offspring <- c(rep(0, 100), rep(1, 50))

> size <- rnorm(150, 10)

> data.MM <- as.data.frame(list(id = 1:150, sex = sex, offspring = offspring,

+ size = size))

> res1 <- expression(varPed(x = "offspring", restrict = 0))

> var1 <- expression(varPed(x = "size", gender = "Male"))

> var2 <- expression(varPed(x = "size", gender = "Female"))

> PdP <- PdataPed(formula = list(res1, var1, var2), data = data.MM)

> simped <- simpedigree(PdP, beta = c(1, -1))

> G <- simgenotypes(A = A, E1 = 0.005, E2 = 0.005, ped = simped$ped,

+ no_dup = 1)

> GdP <- GdataPed(G = G$Gobs, id = G$id)

> model_pedMM999 <- MCMCped(PdP = PdP, GdP = GdP, verbose = FALSE)

> model_pedMM2 <- MCMCped(PdP = PdP, GdP = GdP, mm.tol = 2, verbose = FALSE)

> model_pedMM1 <- MCMCped(PdP = PdP, GdP = GdP, mm.tol = 1, verbose = FALSE)

> summary(model_pedMM999$beta)[[1]][, 1:2][1:2, ]

Mean SD
size.D 0.9487343 0.1564830
size.S -0.8567577 0.1290054

> summary(model_pedMM2$beta)[[1]][, 1:2][1:2, ]

Mean SD
size.D 0.9666110 0.1616535
size.S -0.8644591 0.1225466

> summary(model_pedMM1$beta)[[1]][, 1:2][1:2, ]

Mean SD
size.D 0.9585069 0.1660709
size.S -0.8569236 0.1225317

The posterior distributions of β are almost identical, despite excluding par-
ents with several mismatches. However, the saving in computer time was large:
the first model took almost 15 minutes to fit where the last model took under
3.

3.3 Equivalence with Poisson Models

If we knew the pedigree we may be inclined to fit a generalised linear model
with a Possion error distribution and log link to the data set data.MM. We can
analyse the relationship between female body size and fecundity by counting
the number of offspring per female, and using the standard glm function in R
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> counts <- rep(0, 50)

> noff <- table(simped$ped[, 2])

> counts[as.numeric(names(noff))] <- counts[as.numeric(names(noff))] +

+ noff

> model.Pd <- glm(counts ~ size[1:50], family = "poisson")

> summary(model.Pd)

Call:
glm(formula = counts ~ size[1:50], family = "poisson")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7051 -0.8373 -0.6440 0.4065 1.9651

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.7396 1.6199 -6.012 1.83e-09 ***
size[1:50] 0.9308 0.1477 6.304 2.91e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 86.281 on 49 degrees of freedom
Residual deviance: 42.987 on 48 degrees of freedom
AIC: 108.86

Number of Fisher Scoring iterations: 5

The slopes are virtually the same, but the standard errors are a little larger
for the MCMCped model, reflecting uncertainity in the pedigree. However, because
size is such a good predictor of parentage, and the genotype data are relatively
informative, the pedigree is resolved quite well.

> table(simped$ped[, 2:3][101:150, ] == modeP(model_pedMM999$P)[,

+ 2:3])

FALSE TRUE
12 88

The modal parenatge assignments are close to the true pedigree, with 88%
of assignments correct. One important difference arises because MCMCped uses
a mutinomial log-linear model rather than the Poisson log-linear model used
above. The models are very similar except the multinomial model conditions on
the number of counts (offspring) whereas the Possion model does not. Conse-
quently the number of parameters in a multinomial model (excluding the count
total) is one less than the equivalent Poisson model. In the above example
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an intercept term is not calculated becuase it can be derived directly from the
number of parental combinations and the number of offspring which we have
conditioned on [McCullagh and Nelder, 1989].

3.4 Interactions and Reparameterisation

Next we will consider a model similar to that above, but we will have a constant
effect of size for both sexes. However, we will incude a second variable age which
has two levels: old and young. We will fit both main effects together with an
interaction. Interactions can fitted by adding an extra element to the formula
argument that is list containing the two varPed expressions to be combined 9.

p
(o)
i,j ∝ exp(β1δi+β1δj+β2sizeiδi+β2sizejδj+β3sizei(1−δi)+β3sizej(1−δj))

(16)
The δ variables take on the values 1 if the individual is young, and zero if not.

Notice that although there are six terms in Equation 16 there only 3 parameters
to be estimated because the variables are assumed to have consistent effects on
both maternity and paternity.

> age <- gl(2, 1, 150, label = c("old", "young"))

> data_INT <- cbind(data.MM, age)

> res1 <- expression(varPed(x = "offspring", restrict = 0))

> var1 <- expression(varPed(x = "size"))

> var2 <- expression(varPed(x = "age"))

> PdP <- PdataPed(formula = list(res1, var1, var2, list(var1, var2)),

+ data = data_INT)

> simped <- simpedigree(PdP, beta = c(0.5, 10, -1))

> G <- simgenotypes(A = A, E1 = 0.005, E2 = 0.005, ped = simped$ped,

+ no_dup = 1)

> GdP <- GdataPed(G = G$Gobs, id = G$id)

> model.INT <- MCMCped(PdP = PdP, GdP = GdP, mm.tol = 1, verbose = FALSE)

Markov chains do not mix well when the posterior distribution of the pa-
rameters are not independent. Indeed, the autocorrelation approaches 1 despite
a thinning interval of 10 (See Figure 13).

> plot(model.INT$beta)

> autocorr(model.INT$beta)[, , 3]

9In earlier versions of MasterBayes (< 2.2) interactions could only be fitted when both
terms were included as main effects. In later versions interactions can be fitted without main
effects. This type of model is more appropriate if for example, you want to test whether
pollen dispersal differs between years. In this model you would be interested in fitting a year
by distance interaction and the main effect of distance, but generally fitting a main effect of
year is not appropriate.
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size age.young size.age.young
Lag 0 -0.679447739 -0.99182549 1.000000000
Lag 1 -0.168695476 -0.27650174 0.276980894
Lag 5 -0.008297778 -0.04498004 0.049770485
Lag 10 0.045420532 0.01070933 -0.005485801
Lag 50 -0.008027279 -0.02455821 0.022886000

0 200 400 600 800 1000

0.
0

0.
4

0.
8

Iterations

Trace of size

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

N = 1000   Bandwidth = 0.04082

Density of size

0 200 400 600 800 1000

0
4

8
12

Iterations

Trace of age.young

0 5 10 15

0.
00

0.
10

N = 1000   Bandwidth = 0.5508

Density of age.young

0 200 400 600 800 1000

−
1.

2
−

0.
6

0.
0

Iterations

Trace of size.age.young

−1.5 −1.0 −0.5 0.0

0.
0

1.
0

N = 1000   Bandwidth = 0.05489

Density of size.age.young

Figure 13: The marginal posterior distributions for the three elements of beta
from model.INT. The intercpet for young individuals age.young is evaluated
at a size of 0, which lies well outside the distribution of size observed in the
population.

The dependency between slopes and intercpets in regression models is well
know and we can alleviate the problem by simply centering the covariate, size.
The intercept is now evaluated at the population mean for size (10) rather than
at a size of zero

> data_INT[, "size"] <- size - 10

> PdP <- PdataPed(formula = list(res1, var1, var2, list(var1, var2)),

+ data = data_INT)

> model.INT.cntr <- MCMCped(PdP = PdP, GdP = GdP, mm.tol = 1, verbose = FALSE)
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> plot(model.INT.cntr$beta)

> autocorr(model.INT.cntr$beta)[, , 3]

size age.young size.age.young
Lag 0 -0.6833482238 -0.034066030 1.00000000
Lag 1 -0.1562431963 -0.009102893 0.28964502
Lag 5 0.0003164919 -0.005746424 -0.03614487
Lag 10 0.0372870968 0.021355725 -0.05675842
Lag 50 -0.0512534320 -0.053455951 0.02039196
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Figure 14: The marginal posterior distributions for the three elements of beta
from model.INT, but with the intercpet for young individuals age.young eval-
uated at the average size of 10.

Despite having similiar Metropolis-Hastings acceptance rates the second
chain mixes much better, and the parameters have a better biological inter-
pretation: at the average size no differences in the ability to reproduce exists
between young and old individuals; the posterior distribution of age.young is
centered around zero (Figure 14). However, as old individuals get larger their
ability to reproduce increases (size is positive - the true underlying slope is 0.5),
but young indivdiuals have a significantly shallower slope (size.age.young is
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less than zero). The contrasts are set up so that size.age.young is is the dif-
fernce between the slopes of young and old inidviduals. Inference from posterior
samples is very flexible. If we wish to see whether the slope is so shallow it is in
fact likely to be negative we can create the posterior distribution for the young
slope

> young.slope <- mcmc(model.INT.cntr$beta[, 1] + model.INT.cntr$beta[,

+ 3])

> plot(young.slope)
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Figure 15: The marginal posterior distribution for the slope of young individuals
from model model.INT.cntr.

There is good evidence that the slope for young individuals is negative (Fig-
ure 15). In fact the pedigree was simulated so that the slopes would be of the
same magnitude (0.5), but with different signs. In this instance the sexes fol-
lowed the same rules with regard to reproduction, and we can fit a single GLM
across the sexes

> counts <- rep(0, 100)

> noff <- table(c(simped$ped[, 2], simped$ped[, 3]))
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> counts[as.numeric(names(noff))] <- counts[as.numeric(names(noff))] +

+ noff

> par_age <- age[1:100]

> par_size <- size[1:100] - 10

> model.Pint <- glm(counts ~ par_age * par_size, family = "poisson")

> summary(model.Pint)

Call:
glm(formula = counts ~ par_age * par_size, family = "poisson")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.85658 -1.16297 -0.07152 0.61389 2.45469

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1857 0.1636 -1.136 0.256104
par_ageyoung 0.1478 0.2223 0.665 0.506146
par_size 0.3676 0.1359 2.705 0.006838 **
par_ageyoung:par_size -0.6878 0.1856 -3.705 0.000211 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 112.684 on 99 degrees of freedom
Residual deviance: 98.845 on 96 degrees of freedom
AIC: 254.14

Number of Fisher Scoring iterations: 5

A Poisson GLM indicates the same thing: young and old indivdiuals do
not appear to behave differently at the average body size. However, the slope
for old individuals is significantly positive, and the slope for young individuals
differs significantly from the slope of old indivdiuals. Testing whether young
individuals have a negative slope would involve setting different contrasts.

3.5 Interpreting Parameters Associated with Categorical
Variables

Imagine an experiment in which 30 males are randomly selected from a large
population and treated, and we are interested in whether the treatment af-
fects fecundity. We would like a statistic that does not depend on the number
of treated and control males in the population. We are not interested in the
probability that an offspring has a treated father compared to a control father,
because this probability could be increased by simply treating a greater propor-
tion of males. The default in MasterBayes is to estimate the logs odd ratio (β)
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of a male siring an offspring if that male had been treated compared to if it had
been left untreated, where

β = log

[
θ

1− θ

]
= logit(θ) (17)

and θ is the probability if that male had been treated. A nice property of
posterior distributions is that we can take the inverse logit transformation of
the samples gathered for the posterior distribution of β to make valid inferences
about the posterior of θ.

When the number of treated (NE) and untreated (NC) potential fathers is
known, and does not vary between offspring we can derive the probability that
an offspring will be sired by a treated male (θo):

θo =
θNE

θNE + (1− θ)NC
, (18)

and also the logs odd ratio

βo = logit(θo) (19)

By default MasterBayes estimates β, although βo can be estimated using
the argument merge=TRUE in varPed. When the number of experimental and
non-experimental males are known, and the sets of potential fathers for all
offspring are equal, there is no statistical reason for choosing β over βo since
they are functionally equivalent. However, there are cases when β and βo are not
equivalent and care needs to be taken when choosing between the two models.
A classic example of when βo would be favoured over β is when estimating the
level of extra-pair paternity.

3.6 Unsampled Parents with Known Phenotypes: Esti-
mating Extra-pair Paternity

Consider a study site with 50 territories, each of which contains a pair of adults.
We will assume that the mother of all offspring on a given territory is the terri-
torial female, but some offspring may be sired by males from another territory.
Let’s imagine that we have sampled all the individuals on half the territories,
and would like to know a) the extra-pair paternity rate, and b) the number of
unsampled territories, which in this case is 25. We will start by simulating a
pedigree with an extra-pair paternity rate of 20%.

> sex <- c(rep("Male", 50), rep("Female", 125))

> terr <- as.factor(c(1:50, 26:50, rep(26:50, each = 4)))

> offspring <- c(rep(0, 75), rep(1, 100))

> data_EPP <- as.data.frame(list(id = 1:175, sex = sex, offspring = offspring,

+ terr = terr))

> res1 <- expression(varPed(x = "terr", gender = "Female", relational = "OFFSPRING",
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+ restrict = "=="))

> var1 <- expression(varPed(x = "terr", gender = "Male", relational = "OFFSPRING"))

> res2 <- expression(varPed(x = "offspring", restrict = 0))

> PdP <- PdataPed(formula = list(res1, var1, res2), data = data_EPP)

> EPP <- 0.8/(0.8 + (0.2/49))

> simped <- simpedigree(PdP, beta = logit(EPP))

> G <- simgenotypes(A = A, E1 = 0.01, E2 = 0.01, ped = simped$ped,

+ no_dup = 1)

> GdP <- GdataPed(G = G$Gobs, id = G$id)

> rm_males <- 1:25

> data_EPP_miss <- data_EPP[-rm_males, ]

> GdP_miss <- GdataPed(G = lapply(G$Gobs, function(x) {

+ x[-rm_males]

+ }), id = G$id[-rm_males])

Notice the argument merge=FALSE is passed to varPed for var1 indicating
that we are estimating β, not the within-pair paternity rate which in this case
is βo = 0.8. Also, we are treating the unsampled males as if they came from
the same statistical population as the sampled males (USvar=NULL), although
we know that the logical variable indicating whether offspring and males are on
the same territory should be FALSE for unsampled males.

> PdP_miss <- PdataPed(formula = list(res1, var1, res2), data = data_EPP_miss,

+ USsire = TRUE)

> model.miss <- MCMCped(PdP = PdP_miss, GdP = GdP_miss, verbose = FALSE)

> plot(model.miss$beta)

> plot(model.miss$USsire)

The estimate of β seems reasonable given that logit(EPP)=5.28 (Figure
16), but the number of unsampled males is much smaller than we anticipated
(Figure 17). This is beacuse we left USvar=NULL, and approximated the summed
linear predictors of unsampled males from the linear predictors of sampled males
(see Section 2.5). In fact the probability that an unsampled male gains paternity
over a sampled male are not equal, since unsampled males are always extra-pair
fathers but sampled males may be within-pair fathers.

When USvar=NULL, the records of unsampled fathers do not enter into the
likelihood equation for β, and so β is valid. However, our primary interest was
in the within-pair paternity rate, βo, and we can use equation 18 to obtain the
posterior

> theta <- inv.logit(model.miss$beta)

> NW <- 1

> NE <- 24

> theta_o <- (NW * theta)/(NW * theta + NE * (1 - theta))

> plot(mcmc(theta_o))
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Figure 16: The marginal posterior distribution of β from model.miss. This is
the log odds ratio of a male scoring paternity if it had been on the offspring’s
territory compared to if it had been on a different territory. The pedigree is
sampled assuming that the phenotypes of unsampled males are unknown.

Given the mode of the posterior of β is very close to 5.28 (Figure 16), it seems
surprising that the mode of the within-pair paternity rate is not 0.8 (Figure 18).
We can go one step better and specify that the phenotypes of the unsampled
males are known

> var2 <- expression(varPed(x = "terr", gender = "Male", relational = "OFFSPRING",

+ USvar = FALSE))

> PdP_miss2 <- PdataPed(formula = list(res1, var2, res2), data = data_EPP_miss,

+ USsire = TRUE)

> model.miss2 <- MCMCped(PdP = PdP_miss2, GdP = GdP_miss, verbose = FALSE)

> plot(model.miss2$beta)

> plot(model.miss2$USsire)

Once again β is estimated correctly (Figure 19), but this time the number of
unsampled males is estimated correctly, although considerable uncertainty re-
mains (Figure 20). In part this is due to the moderate levels of genotyping error.
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Figure 17: The marginal posterior distribution of the number of unsampled
males from model.miss, when the pedigree is sampled assuming that the phe-
notypes of unsampled males are unknown. The actual number is 25!

We can derive the posterior distribution for within-pair paternity by combin-
ing the posterior distribution of β with the number of unsampled males, which
we have assumed are extra-territorial males.

> theta <- inv.logit(model.miss2$beta)

> NW <- 1

> NE <- 24 + model.miss2$USsire

> theta_o <- (NW * theta)/(NW * theta + NE * (1 - theta))

> plot(mcmc(theta_o))

The estimate of within-pair paternity from model.miss2 is plotted in Figure
21. Alternativley we can fit within-pair paternity explicitly using the argument
merge.

> var3 <- expression(varPed(x = "terr", gender = "Male", relational = "OFFSPRING",

+ USvar = FALSE, merge = TRUE))
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Figure 18: The marginal posterior distribution of βo derived from model.miss.
βo should be the level of within pair paternity in the population (80%) but we
can see that this value has a small posterior probability. This may be down
to sampling error alone, but in fact the estimate is consistently biased upwards
because the pedigree is sampled assuming that the phenotypes of unsampled
males are unknown.

> PdP_miss3 <- PdataPed(formula = list(res1, var3, res2), data = data_EPP_miss,

+ USsire = TRUE)

> model.miss3 <- MCMCped(PdP = PdP_miss3, GdP = GdP_miss, verbose = FALSE)

> theta_o <- inv.logit(model.miss3$beta)

> plot(mcmc(theta_o))

In this example the estimate of within-pair paternity in model.miss2 (Fig-
ure 21) and model.miss3 (Figure 22) are equivalent, but for analyses where the
set of males varies between offspring the two models would not be equivalent.
For example, if the aim was to model a constant extra-pair paternity rate across
years but the male population size fluctuated between years then the argument
merge=TRUE would have to be specified. In this instance, a post-hoc transforma-
tion of β and the number of unsampled males would not yield a valid posterior
for βo as it did in the simple example above (Figure 21).
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Figure 19: The marginal posterior distribution of β derived from model.miss2.
As in Figure 16 this is the log odds ratio of a male scoring paternity if it had been
on the offspring’s territory compared to if it had been on a different territory.
However, in this model the pedigree is sampled assuming that the unsampled
males have to be extra-pair, and these males contribute to the likelihood of β.

3.7 Assortative Mating and Heritability

Assortative and disassortative mating can modelled using the argument rela-
tional="MATE" in varPed. This sets up a variable for the distance between
male and female phenotypes. If the variable is numeric then this distance is
Euclidean, if the variable is categorical then the distance is simply one or zero,
depending on whether the sexes belong to the same category or not. Below we
will consider a population of 10 males, 10 females, and 30 offspring. There are
2 mating types, + and -, and they are distributed evenly across and within the
sexes. The aim is to test whether unions such +/+ and -/- occur more often
than +/- unions, than would be expected by chance. We will simulate data
where assortative unions are 3 times more likely than disassortative unions than
would be expected under random mating.
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Figure 20: The marginal posterior distribution of the number of unsampled
males from model.miss2. The true number is 25.

p
(o)
i,j ∝ exp(β1δi,j) (20)

δi,j takes on the value one when the mating type of female i matches the
mating type of male j, and β1 in this example is log(3).

> id <- 1:50

> sex <- rep(c("Male", "Female"), each = 10, length = 50)

> offspring <- c(rep(0, 20), rep(1, 30))

> MT <- gl(2, 1, 50, labels = c("+", "-"))

> test.data <- data.frame(id, offspring, MT, sex)

> res1 <- expression(varPed("offspring", restrict = 0))

> var2 <- expression(varPed(c("MT"), gender = "Female", relational = "MATE"))

> PdP <- PdataPed(formula = list(res1, var2), data = test.data)

> simped <- simpedigree(PdP, beta = logit(0.75))

> table(MT[as.numeric(simped$ped[, 2])] == MT[as.numeric(simped$ped[,

+ 3])])
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Figure 21: The marginal posterior distribution of within-pair paternity esti-
mated from the posterior distributions of β and the number of unsampled males
from model.miss2.

FALSE TRUE
9 21

> G <- simgenotypes(A = A, E1 = 0.005, E2 = 0.005, ped = simped$ped,

+ no_dup = 1)

> GdP <- GdataPed(G = G$Gobs, id = G$id)

> model.ass.mat <- MCMCped(PdP = PdP, GdP = GdP, verbose = FALSE)

> plot(mcmc(inv.logit(model.ass.mat$beta)))

Mating types may well be inherited, and if we had data on the mating
types of offspring we may be inclined to also model the distance between off-
spring and parental phenotypes using the argument relational="OFFSPRING".
A cautionary note should be made about using relational="OFFSPRING" to
model the transmission of phenotypes between parents and offspring. If the
individuals in the above example were haploid, and mating type was under the
control of a single locus then the function relational="OFFSPRING" may cap-
ture the genetic process quite well. On the otherhand, if the organisms were
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Figure 22: The marginal posterior distribution of within-pair paternity esti-
mated directly in model.miss3. The posterior distribution is exactly equivalent
to that shown in Figure 21.

diploid then the model would certainly not be consistent with a genetic process.
Likewise, parameters associated with continuous variables derived using rela-
tional="OFFSPRING" should not be interpreted as a measure of heritibility in
the quantitative genetic sense, although they will be related. Future work is
planned in this direction.

3.8 Longitudinal Data and Multigenerational Pedigrees

MasterBayes is able to work with longitudinal data, allowing the possibility
of reconstructing multigenerational pedigrees. To work with longitudinal data
a time variable needs to be passed to PdataPed. It is VERY important that
inidviduals with offspring records do not appear as potential parents of offspring
with records in the same cohort, or a previous cohort 10 The argument restrict

10In later versions of MasterBayes (> 2.1) the argument checkP=TRUE can be passed to
MCMCped. This relaxes the restriction that potential parents do not appear in the set of potential
offspring, and so can be used to estimate pedigrees when cohort or age data do not exist. In
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Figure 23: The posterior distribution of logit−1(β). In this instance the frequen-
cies of the two mating types are exactly 0.5 both within sexes, and between the
sexes, and this is the expected proportion of offspring resulting from the union
of +/+ and -/- parents.

can be passed to varPed to ensure this does not happen. By not doing this you
are allowing for the possibility that an individual can be both the parent and
an offspring of another.

> id <- 1:50

> year <- rep(1:4, each = 50)

> for (yr in 1:3) {

+ id <- c(id, sample(id[year == yr], 25))

+ id <- c(id, max(id) + 1:25)

+ }

such cases the probability that indiviual i is the offspring of individual j may have a similar
posterior probability to the reverse scenario where indiviual j is the offspring of individual
i. The new function post.pairs will calculate posterior probabilities for 2 indiviuals falling
into a certain relationship (e.g. parent-offspring or offspring-parent) when the joint posterior
distribution of pedigrees are stored (i.e. write_postP="TRUE" is passed to MCMCped).
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> sex <- rep(c("Male", "Female"), max(id))[id]

> off.within.cohort <- c(rep(0, 25), rep(1, 25))

> offspring <- c(rep(0, 50), rep(off.within.cohort, 3))

> lat <- runif(200)

> long <- runif(200)

> data.ped <- data.frame(id, sex, offspring, lat, long, year)

> res1 <- expression(varPed(x = "offspring", restrict = 0))

> res2 <- expression(varPed(x = "year", relational = "OFFSPRING",

+ restrict = "=="))

> var1 <- expression(varPed(x = c("lat", "long"), lag = c(0, 0),

+ relational = "OFFSPRING"))

> PdP <- PdataPed(formula = list(res1, res2, var1), data = data.ped,

+ timevar = year)

> P <- simpedigree(PdP, beta = -1)$ped

> G <- simgenotypes(A = A, ped = P)

> GdP <- GdataPed(G = G$Gobs, id = G$Gid)

> model.ped <- MCMCped(PdP, GdP, mm.tol = 1, verbose = FALSE)

> plot(model.ped$beta)

Several problems currently exist with reconstructing multigenerational pedi-
grees using MasterBayes. The first, and perhaps the biggest problem is the
assumption that those individuals classed as coming from the base population
(including unsampled individuals) are actually unrelated. For example, if the
mother of two sisters (A and B) was not sampled, but sister B was in the
set of potential mothers for sister A, then there is a high chance that sister B
would be picked as sister A’s mother [Thompson, 1976]. Modelling the possi-
bility that sampled individuals may be related through unsampled individuals
is a challenging problem with a long history. In the future I may incorporate
the reversible jump MCMC methods outlined in Emery et al. [2001] to try
and alleviate the problem that full-siblings without sampled parents cause. A
second problem with the reconstruction of multigenerational pedigrees, which
has recieved much less attention is the problem of inbreeding avoidance. The
likelihood of a genotype configuration given a pedigree can be calculated us-
ing the Elston-Stewart algorithm [Elston and Stewart, 1971], which is based
on the product of the Mendelian transition probabilities across offspring. Most
parentage and sib analyses are special cases or approximations of this algorithm.
However, a pedigree has both marriages and births, and an implicit assumption
when calculating the likelihood of genotypes given a pedigree is that marriages
are independent of genotype. When inbreeding avoidance, or selfing is practised,
this assumption breaks down, and could compromise pedigree reconstruction.

3.9 Hermaphrodites and Selfing Rates

An extreme form of inbreeding is selfing in hermaphrodites. MasterBayes is able
to work with hermaphrodite systems by not passing a sex vector to PdataPed.
Currently, MasterBayes can be forced to model selfing in hermaphrodites al-
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Figure 24: The posterior distribution of beta, the rate at which the probabil-
ity of parentage drops with distance from the offspring. This parameter was
estimated from a multigenerational pedigree where longitudinal data had been
collected. In this toy example, the model was consistent with the data, but
for multigenerational problems appropriate models are hard to construct and
caution needs to be exercised.

though it is inefficent (the following example took 5 minutes depsite a mismatch
tolerance of 1). More efficient methods will be developed in the future, but
a small example will highlight the logic behind the approach, and some of its
pitfalls.

> id <- as.factor(1:100)

> offspring <- c(rep(0, 25), rep(1, 75))

> Herm <- data.frame(id, offspring)

> res1 <- expression(varPed(x = "offspring", restrict = 0))

> var1 <- expression(varPed(x = "id", relational = "MATE"))

> PdP <- PdataPed(formula = list(res1, var1), data = Herm)

> P <- simpedigree(PdP, beta = logit(0.9))$ped

> G <- simgenotypes(A = A, ped = P)

> GdP <- GdataPed(G = G$Gobs, id = G$Gid)
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> model.herm <- MCMCped(PdP, GdP, mm.tol = 1, verbose = FALSE)

> plot(inv.logit(model.herm$beta))
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Figure 25: The posterior distribution of logit−1β: the probability that an
individual mates with itself compared to another random individual in a
hermaphrodite system.

The model is essentialy one of assortative mating for id, although the geno-
type updating algorithm becomes a little more complex11. logit(beta) should
be interpreted as the probability that an individual mates with itself compared
to another random individual (Figure 25). As in Section 3.6, Equation 18 can
be used to get the posterior distribution for the expected proportion of offspring
produced by selfing. An important conisderation when the system does not mate
randomly is the assumption of Hardy-Weinberg equilibrium. When evaluating
Equation 14, genotype frequencies enter into the probability for the true geno-
types of base individuals and also those offspring with one or more unsampled
parents. These genotype frequencies are calculated from the allele frequencies

11The genotype updating algorithm in earlier versions of MasterBayes (<2.1) had a bug
that caused problems when updating the genotypes of individuals that had offspring produced
through selfing.
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under the assumption of Hardy-Weinberg equilibrium. For these individuals,
the probability distribution of the true genotypes is largely dominated by the
observed genotype data rather than the genotype frequencies, and violations of
Hardy-Weinberg equilibrium may not be that important. However, when un-
sampled parents are present an approximation for the genetic likelihood is used
(see Section 2.5) that is more reliant on the information imparted by genotype
frequencies, and care needs to be taken.

3.10 Schrodinger’s Hermaphrodite Cat

Monoecy in plants is a common phenomenon; each flower is unisexual but flow-
ers of both sex can be found on the same plant. The genotype data (unless the
fruit or organelles have been typed) provide no information whether an offspring
is produced from the male or female flowers of an individual. The only informa-
tion the genotype data provide is whether the individual is a parent. However,
let’s say we measure the proportion of male flowers on the adult plants and
this measure positively covaries with pollen production but negatively covaries
with seed production. Alternatively, we could have measured something less
sugestive like the distance beween offspring and parents. MasterBayes can fit
gender specific variables to hermaphrodite data but the resulting posteriors are
ambiguous with respect to any notion of gender.

To illustrate, we will simulate data from a monoecious population in which
the proportion of male flowers on each individual varies substantially. The
number of offspring produced by each individual is independent of the proportion
of male flowers, but individuals with proportionally more male flowers produce
more offspring through pollination. We will start with a very strong relationship
between ’paternity’ and the number of male flowers.

> id <- as.factor(1:100)

> offspring <- c(rep(0, 25), rep(1, 75))

> Prop.male.flowers <- rbeta(100, 10, 10)

> SeedPollen <- data.frame(id, offspring, Prop.male.flowers)

> res1 <- expression(varPed(x = "offspring", restrict = 0))

> var1 <- expression(varPed(x = "Prop.male.flowers", gender = "Male"))

> var2 <- expression(varPed(x = "Prop.male.flowers", gender = "Female"))

> PdP <- PdataPed(formula = list(res1, var1, var2), data = SeedPollen)

> P <- simpedigree(PdP, beta = c(-7.5, 7.5))$ped

> G <- simgenotypes(A = A, ped = P)

> GdP <- GdataPed(G = G$Gobs, id = G$Gid)

> model.mon <- MCMCped(PdP, GdP, mm.tol = 1, verbose = FALSE)

> plot(model.mon$beta)

Figure 26 looks reasonable but what happens if we simulate some data
where the proportion of male flowers is not such a good predictor of ’pater-
nity/maternity’?
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Figure 26: The posterior distribution of β: the parameters of the log-linear re-
lationship between the number of male flowers on a monoecious plant and the
probability of producing offspring from female and male flowers, respectively.
The relationships are very strong and the chain gets stuck in a region of param-
eter space of high probability. A mirror image of this distribution exists outside
of the parameter space sampled.

> P <- simpedigree(PdP, beta = c(-4, 4))$ped

> G <- simgenotypes(A = A, ped = P)

> GdP <- GdataPed(G = G$Gobs, id = G$Gid)

> model.mon2 <- MCMCped(PdP, GdP, mm.tol = 1, verbose = FALSE)

> plot(model.mon2$beta)

We see that the posterior distribution is actually bimodal (Figure 27)! We
can be fairly confident that the proportion of male flowers indicates the probabil-
ity of polination versus seed production, but we have no way of saying what the
sign of the relationship is: whether the proportion of male flowers is positively
correlated with pollination and negatively correlated with seed production or
vica versa. We could probably make an informed guess, but with more amigu-
ous varables it may not be possible to do so. If any one has any idea on how to
set up a sensible prior for this type of model, please email me.
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Figure 27: The posterior distribution of β: the parameters of the log-linear
relationship between the number of male flowers on a monoecious plant and the
probability of producing offspring from female and male flowers, respectively.
The relationships are not so strong as in Figure 26, and the chain is able to
sample from the full posterior, albeit with a lot of autocorrelation.

A A Lightning Tour of Model Specification

p
(o)
i,j is the probability that female i and male j are the parents of offspring o.
x are explanatory variable(s), and β the vector of associated parameter(s). t
indicates the time (timevar in a PdataPed object) to which the offspring record
belongs. For continous variables...

varPed(x, gender="Female")

p
(o)
i,j ∝ exp(β1xi...) (21)

varPed(x, gender="Male")

p
(o)
i,j ∝ exp(β1xj ...) (22)

varPed(x)
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p
(o)
i,j ∝ exp(β1(xi + xj)...) (23)

varPed(x, gender="Female", relational="OFFSPRING")

p
(o)
i,j ∝ exp(β1(|xi − xo|)...) (24)

varPed(x, gender="Female", relational="OFFSPRINGV")

p
(o)
i,j ∝ exp(β1(xi − xo)...) (25)

varPed(x, gender="Female", relational="MATE")

p
(o)
i,j ∝ exp(β1(|xi − xj |)...) (26)

varPed(x, gender="Female", relational="MATEV")

p
(o)
i,j ∝ exp(β1(xi − xj)...) (27)

varPed(x, gender="Female", lag=c(-1,-1))

p
(o)
i,j ∝ exp(β1xi,t−1...) (28)

varPed(x, gender="Female", lag=c(-1,-1), relational="OFFSPRING")

p
(o)
i,j ∝ exp(β1(|xi,t−1 − xo,t|)...) (29)

varPed(x, gender="Female", lag=c(0,0), relational="MATE",
lag_relational=c(-1,-1))

p
(o)
i,j ∝ exp(β1(|xi,t − xj,t−1|)...) (30)

varPed(x, gender="Male", lag=c(0,0), relational="OFFSPRING",
lag_relational=c(-1,-1))

p
(o)
i,j ∝ exp(β1(|xj,t − xo,t−1|)...) (31)

For a categorical variable with two levels (A and B) the model specified by
varPed(x, gender="Female") takes on the form

p
(o)
i,j ∝ exp(β1δi...) (32)

where δi is an indicator variable taking the value 1 if xi is equal to the first
level of x and zero otherwise. β1 is then the log odds ratio of the two levels of x
with respect to maternity. If merge=TRUE is specified then β1 may vary across
offspring, and βo is estimated. βo is related to β1:
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βo = logit
[

θNA

θNA + (1− θ)NB

]
(33)

where θ is the inverse logit transformation of β1, and NA and NB are the
number of potential mothers that have level A and B for x. If NA and NB are
invariant over offspring the models are functionally equivalent.

The denominator of the multinomial likelihood is the summed linear pre-
dictors of all possible parents (after setting up a contrast with the baseline
parents) [Smouse et al., 1999]. Designating the first set of parents as baseline,
the contrast for each set of parents is simply:

η
(o)
i,j = log

[
p
(o)
i,j

p
(o)
1,1

]
(34)

and the likelihood of β

Pr(x|β) =
no∏
o

 exp(η(o)
d,s)∑n

(o)
i

i=1

∑n
(o)
j

j=1 exp(η(o)
i,j )

 (35)

where no, n
(o)
i and n

(o)
j are the number of offspring, the number of potential

mothers for offspring o, and the number of potential fathers for offspring o,
respectively. d and s are the actual parents of offspring o. The set of possible
parents in the denominator of the multinomial likelihood are those that are not
excluded using the argument restrict. However, if the argument keep=TRUE
is used then the denominator of the likelihood will include excluded parents
depsite the fact that d 6= i and s 6= j.
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