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Crowdsourced Data Preprocessing with R

and Amazon Mechanical Turk
by Thomas J. Leeper

Abstract This article introduces the use of the Amazon Mechanical Turk (MTurk) crowdsourcing
platform as a resource for R users to leverage crowdsourced human intelligence for preprocessing
“messy” data into a form easily analyzed within R. The article first describes MTurk and the MTurkR
package, then outlines how to use MTurkR to gather and manage crowdsourced data with MTurk
using some of the package’s core functionality. Potential applications of MTurkR include construction
of manually coded training sets, human transcription and translation, manual data scraping from
scanned documents, content analysis, image classification, and the completion of online survey
questionnaires, among others. As an example of massive data preprocessing, the article describes an
image rating task involving 225 crowdsourced workers and more than 5500 images using just three
MTurkR function calls.

Introduction

People use R because it is extensible, robust, and free. It can do many things, but doing those many
things generally requires data structures that can be handled computationally. Yet R users are often
faced with messy data that are not R-ready: handwritten survey responses, digitized texts that cannot
be read by optical character recognition, images, etc. Or an analyst may face machine readable data
but require human interpretation to categorize, translate, or code those data, such as someone wishing
to build an automated classifier needs a human-categorized training set to test their implementation.

In such cases, making the leap from these raw data to R data structures can entail considerable
human labor. Such needs for human labor in data preprocessing has provoked interest in online
crowdsourcing platforms (Schmidt, 2010; Chen et al., 2011) to bring human intelligence to tasks
that cannot be easily accomplished through computation alone. This paper describes the use of
MTurkR (Leeper, 2012) to leverage the Amazon Mechanical Turk (MTurk) crowdsourcing platform
to bring human intelligence into R. The article begins by laying out the need for occasional human
intelligence in data preprocessing, then describes MTurk and its vocabulary, and introduces MTurkR.
The remainder of the article describes the use of MTurkR for crowdsourced data preprocessing.

The need for human intelligence

Some data cannot be computationally processed. Other data can be handled only with difficulty. In
these cases, data processing can be time consuming and expensive because of the human intelligence
required. Archetypal needs for this kind of human intelligence include the collection of data which
cannot be automated (e.g., unstructured or malformed web data), transcription of files into machine-
readable data (e.g., audio, images, or handwritten documents scanned as PDFs), tasks that are laborious
to translate from an R-readable but non-computable data structure into a format that can be readily
analyzed (e.g., text answers to free-response survey questions), or massive-scale machine readable
data that require human interpretation (e.g., the data used in generating a training set for supervised
learning algorithms).

Due to the manual nature of these tasks, processing such data can become challenging as the size
of the dataset increases. Crowdsourcing these data preprocessing needs is therefore one way to obtain
the scalable human intelligence needed to process even very large “messy” datasets. As opposed
to an analyst engaged in manual preprocessing, crowdsourcing offers the possibility to leverage
multiple sources of human intelligence, in parallel, thereby improving reliability and speed. Amazon
Mechanical Turk (MTurk) stands out as one of the largest crowdsourcing platforms currently available
and, given its powerful API, it is now accessible directly in R through MTurkR.

MTurk core concepts

Amazon Mechanical Turk is a crowdsourcing platform designed by Amazon.com as part of its suite
of Amazon Web Service (AWS) tools to provide human intelligence for tasks that cannot be readily,
affordably, or feasibly automated (Amazon.com, 2012). Because MTurk provides the web application
for recruiting, paying, and managing human workers, the effort necessary to move a data cleaning
task into the cloud is relatively effortless and can, in large part, be managed directly in R. While many
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early adopters of MTurk as a data generation tool have come from computer science (Mason and Suri,
2011; Kittur et al., 2008), more recent attention has also emerged in the social sciences where MTurk’s
pool of workers are seen as a low-cost participant pool for human subjects research (Buhrmester et al.,
2011; Berinsky et al., 2010; Paolacci et al., 2010). This article provides a sufficiently general overview of
MTurk and MTurkR to enable its use for a variety of purposes, but focuses primarily on the uses of
MTurk for data preprocessing.1

Key terms

MTurk connects requesters , who are willing to pay workers to perform a given task or set of tasks at a
specified price per task. These “Human Intelligence Tasks” (HITs), are the core element of the MTurk
platform. A HIT is a task that a requester would like one or more workers to perform. Every HIT is
automatically assigned a unique HITId to identify this HIT in the system. Performance of that HIT by
one worker is called an assignment , indexed by a unique AssignmentId, such that a given worker
can only complete one assignment per HIT but multiple workers can each complete an assignment
for each HIT. As a simple example, if a HIT is a PDF file to be transcribed, the researcher might want
three workers to complete the transcription in order to validate the effort and therefore make three
assignments available for the one HIT.

In other situations, however, a researcher may want workers to complete a set of related tasks. For
example, the researcher may want to categorize a 5000 text statements such as free response answers
on a survey into a set of fixed categories. Each of these statements could be treated as a separate HIT,
grouped as a HITType with one (or more) assignment available for each HIT. While a worker could
complete all 5000 assignments they might also code fewer (e.g., 50 statements), thereby leaving 4950
assignments for other workers to claim.

Workers choose which HITs to complete and how many HITs they want to complete at any given
time, depending on their own time, interests, and the payments that requesters offer in exchange for
completing an assignment for a given HIT.2 A requester can offer as low as $0.005 per assignment.
Similarly, requesters can pay any higher amount, but that may not be cost-effective given the market
forces in play on MTurk. Workers increasingly expect competitive wages, at a rate of at least U.S.
minimum hourly wage.

Once a worker completes a HIT, the requester can review the assignment — that is, see the
responses provided by the worker to the HIT — and the requester can either approve (and thus pay
the worker the pre-agreed “reward” amount) or reject (and not pay the worker).3 This review process
can be relatively automated or handled manually by the requester.

The MTurk system records all workers that have ever performed work for a given requester and
provides an array of functionality for tracking, organizing, paying, and corresponding with workers.
In particular, the system allows requesters to regulate who can complete HITs through the use of
QualificationRequirements (e.g., a worker’s previous HIT approval rate, their country of residence, or
a requester-defined Qualification such as past performance or previously evaluated skill).

Sandbox environment

One final point is that MTurk has both a “live” website and development sandbox , where the service
can be tested without transacting any money. The sandbox can be a useful place to create and test
HITs before making them available for workers. Note, however, that the two systems — despite
operating with identical code — have separate databases of HITs, HITTypes, Qualifications, Workers,
and Assignments so code may not directly translate between sandbox and the live server.

MTurk API and other packages

Amazon provides a software development kits for Python, Ruby, etc. as well as a rudimentary
command-line utility, but no officially supported client was created for R. The MTurkR package fills

1Users specifically interested in social science survey and experimental applications should consult Leeper
(2013) and the MTurkR documentation.

2Workers also communicate about the quality of HITs and requesters on fora such as TurkOpticon,
http://mturkforum.com/MTurk Forum, http://www.turkernation.com/Turker Nation, and Reddit pages
(hrefhttp://www.reddit.com/r/HITsWorthTurkingFor/HITsWorthTurkingFor and mturk.

3Note that Amazon also charges a surcharge on all worker payments. Also, if the requester thinks the work
merits additional compensation (or perhaps if workers are rewarded for completing multiple HITs of a given
HITType), the requester can also pay a bonus of any amount to the worker at any point in the future.
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this gap, enabling useRs to fully manage an MTurk workflow, from submitting “messy” data to MTurk,
reviewing work completed by workers, and retrieving completed work as an R data.frame.4

The MTurkR package

Before using MTurk, one needs to have an MTurk requester account, which can be created at http:
//www.mturk.com.5 It is also helpful from a practical perspective to have a worker account, so that you
can test your own HITs interactively and have the requester–worker relationship necessary to test
some MTurk features (e.g., contacting workers or setting up Qualifications). MTurkR’s access to the
MTurk API requires Amazon Access Keys, which can be setup at https://console.aws.amazon.com/
iam/home?#security_credential. The keypair is a linked Access Key ID and a Secret Access Key .

MTurkR is implemented in a functional programming style, with the core functionality enabling
the creation of HITs and retrieval of resulting assignment data. All of this functionality is described
here, as well as in detailed examples in the MTurkR package documentation (Leeper, 2012). As a
web API client, the package provides a complete wrapper for all API features using function names
closely mapped onto API endpoints, making it easy to cross-reference MTurk API documentation with
MTurkR functionality. MTurkR performs HTTP requests to the MTurk API using curl (Ooms et al.,
2015) and parses API responses using XML (Temple Lang, 2012). In almost all cases, responses are
converted to R data.frames. In the event an API request fails, error reporting information is returned
instead of the standard data structure.6

A simple “hello world!” test in MTurkR can be performed by checking the balance in one’s
requester account. To do so, first set the AWS credentials as environment variables:

Sys.setenv("AWS_ACCESS_KEY_ID" = "AWSAccessKeyId")

Sys.setenv("AWS_SECRET_ACCESS_KEY" = "AWSSecretAccessKey")

# test connection to live server

AccountBalance()

# test connection to sandbox server

AccountBalance(sandbox = TRUE)

AccountBalance() returns the current balance in U.S. Dollars; for the sandbox, this is always $10,000.
The ‘sandbox’ parameter can also be changed globally with options("MTurkR.sandbox" = TRUE).

Data preprocessing with MTurkR

A common workflow for using MTurk involves starting with a messy data structure and wanting
some better-structured resulting data structure (presumably a data.frame). To use MTurk, the analyst
must break down the messy data structure into a set of individual tasks (HITs), create those HITs via
MTurkR, allow time for workers to complete assignments, and then collect and review completed
assignments before proceeding with analysis of the resulting data in R. How do we achieve this in
MTurkR? I begin by demonstrating how to create a single HIT and then demonstrate more convenient
wrapper functions for creating batches of HITs in bulk.

Creating individual HITs

Creating a HIT requires first registering a HITType, which sets various worker-visible characteristics
of the HIT(s), four of which are required and three that are optional:

• Title, short title for the HIT to be displayed to workers (required)

• Description, a description of the HIT to be displayed to workers (required)

• Reward, in U.S. Dollars (required)

4MTurkR also offers a set of interactive command-line menus for performing MTurkR operations without the
need to write any code. An add-on package called MTurkRGUI implements an even more robust graphical user
interface using platform-independent Tcl/tk. Additional details about these MTurkR features are available in the
package documentation and on the MTurkR wiki: https://www.github.com/leeper/MTurkR.

5Note that MTurk is currently only available to requesters with a United States address and Social Security
number.

6As a convenience, all API requests and responses are stored, by default, in a tab-separated value log file in the
user’s working directory, alongside information about API requests.
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• Duration, in seconds (required)

• Keywords, a comma-separated list of keywords used by workers to search for HITs (optional;
default is empty)

• Assignment Auto-Approval Delay, a time in seconds which specifies when assignments will
automatically be paid if not first rejected (optional; default is 30 days)

• QualificationRequirements, a complex structure which controls which workers can complete
the HIT (optional; default is none)

To register a HITType, at least the first four characteristics just described need to be defined in a
call to RegisterHITType(), for example:

hittype1 <- RegisterHITType(title = "Tell us something",

description = "Answer a single question",

reward = "0.05",

duration = seconds(days=1, hours=8),

keywords = "text, answer, question",

auto.approval.delay = seconds(days=1))

The seconds() function provides a convenient way of converting days, hours, minutes, and
seconds into a total number of seconds. With the HITType created, one can begin creating individual
HITs associated with that HITType using CreateHIT().

A HIT consists of a HITType and various HIT-specific attributes, the most import of which is a
“question” text. This contains the contents of the task as shown to the worker via an HTML iframe on
the MTurk worker website. The question can be specified in one of several ways:

• An HTTPS URL (or “ExternalQuestion”) for a page containing the HIT HTML

• An HTMLQuestion structure, essentially the HTML to display to the worker

• A QuestionForm structure, which is a proprietary markup language used by MTurk

• A HITLayoutID value retrieved from the MTurk requester website7

In addition to one of the above question specifications, the other HIT attributes are:

• Duration, the number of assignments to be created for the HIT (required, default 1)

• Expiration, a time specifying when the HIT will expire and thus be unavailable to workers, in
seconds (required, no default)

• Annotation, specifying a hidden value that describes the HIT as a reference for the requester
(optional; default is empty)

In most cases, specifying an HTMLQuestion is the easiest approach. This simply means writing a
complete, HTML5-compliant document including a web form that will display some material to the
worker and allow them to enter answer information and submit it to the server. Some examples are
installed with MTurkR, such as:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'/>

<script type='text/javascript'

src='https://s3.amazonaws.com/mturk-public/externalHIT_v1.js'></script>

</head>

<body>

<form name='mturk_form' method='post' id='mturk_form'

action='https://www.mturk.com/mturk/externalSubmit'>

<input type='hidden' value='' name='assignmentId' id='assignmentId'/>

<h1>What's up?</h1>

<p><textarea name='comment' cols='80' rows='3'></textarea></p>

<p><input type='submit' id='submitButton' value='Submit' /></p></form>

<script language='Javascript'>turkSetAssignmentID();</script>

</body>

</html>

7This is useful for creating HITs using MTurkR based on templates created on the MTurk requester website.
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Workers will see a rendered version of the HTMLQuestion, specifically a question — “What’s up?” —
and a multi-line text response they can complete. The Javascript in the HTMLQuestion is essential for
the HIT to behave properly.) To setup this HIT in the MTurk system, we use CreateHIT() using the
HITTypeId created earlier, making the HIT available for 4 days and setting a private annotation field
to remind us about the HIT:

f1 <- system.file("templates/htmlquestion1.xml", package = "MTurkR")

hq <- GenerateHTMLQuestion(file = f1)

hit1 <- CreateHIT(hit.type = hittype1$HITTypeId,

question = hq$string,

expiration = seconds(days = 4),

annotation = "my first HIT")

At this point, we need to wait to allow a worker to submit the assignment. Once that has happened
(and we can check using HITStatus() or GetHIT(hit = hit$HITId)), then we can retrieve assignment
data:

# retrieve all assignments for a HIT

a1 <- GetAssignments(hit = hit1$HITId)

# retrieve all assignments for all HITs for a HITType

a2 <- GetAssignments(hit.type = hittype1$HITTypeId)

# retrieve a specific assignment

a3 <- GetAssignments(assign = a1$AssignmentId[1])

These assignments will be automatically approved after one day (according to the value we speci-
fied in auto.approval.delay when registering the HITType). We can also approve the assignments
manually using ApproveAssignment():

# approve 1 assignment

ApproveAssignments(assignments = a1$AssignmentId[1],

feedback = "Well done!")

# approve multiple assignments

ApproveAssignments(assignments = a1$AssignmentId)

# approve all assignments for a HIT

ApproveAllAssignments(hit = hit1$HITId)

# approve all assignments for all HITs of a HITType

ApproveAllAssignments(hit = hittype1$HITTypeId)

# approve all assignments based on annotation

ApproveAllAssignments(annotation = "my first HIT")

Rejecting HITs works identically to the above but using RejectAssignments(). Feedback is optional
for assignment approval but required for assignment rejection.8

Managing crowdworkers with QualificationTypes

One important consideration when creating a HIT is that every HIT is, by default, available to all
MTurk workers unless QualificationRequirements have been specified in the RegisterHITType()

operation. Furthermore, these QualificationRequirements are attached to a HITType, not an individual
HIT, so HITs directed at distinct subsets of workers need to be attached to distinct HITTypes.

There are several built-in QualificationTypes that can be used as QualificactionRequirements,
including country of residence and various measures of experience on MTurk (e.g., number of
HITs completed, approval rate, etc.). To configure a HITType that will only be available to work-
ers in the United States who have completed greater than 500 approved HITs, we can first use
GenerateQualificationRequirement() to setup a QualificationRequirement structure locally. This
involves naming the QualificationTypes to use in the QualificationRequirement, along with “compara-
tors” and “values”, which we can interpret as logical statements of the form “Locale is equal to US”
and “NumberApproved is greater than 500”:

8Rejected assignments can also be converted to approved within 30 days of the rejection, though the reverse
operation is not possible.
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# shorthand names of location and approval qualifications

q_names <- c("Locale", "NumberApproved")

# comparators ("==" for location and ">" for past approvals)

q_comparators <- c("==", ">")

# qualification values ("US" for location and "500" for past approvals)

q_values <- c("US", 500)

# convert these values into a QualificationRequirement

qreq2 <- GenerateQualificationRequirement(q_names,

q_comparators,

q_values,

preview = TRUE)

We then pass this structure as the qual.req argument to RegisterHITType() to create a new HITType
with these QualificationRequirements:

# Register HITType using the QualificationRequirement

hittype2 <- RegisterHITType(title = "Tell us something",

description = "Answer a single question",

reward = "0.05",

duration = seconds(days=1, hours=8),

keywords = "text, answer, question",

auto.approval.delay = seconds(days=15),

qual.req = qreq2)

This attaches a QualificationRequirement to all HITs created within this new HITType, preventing
workers who fail to meet the Qualifications from working on (or in this case, given preview = TRUE,
even viewing the HITs).9

In addition to using the built-in QualificationTypes, you can also manage workers in other ways.
One way is to block workers who consistently perform inadequate work using BlockWorkers(). This
should be used sparingly, however, as workers who are repeatedly blocked will have their MTurk ac-
counts disabled. You can see a data.frame of previously blocked workers using GetBlockedWorkers()

and unblock workers using UnblockWorkers(). In addition, it is possible to email workers using
ContactWorkers() and supply optional bonus payments using GrantBonus(). These can be useful
for managing complex project, incentivizing good work, and inviting well-performing workers to
complete new projects.

QualificationRequirements set for a HITType can also be used to manage workers’ access to
HITs. The built-in QualificationTypes are quite useful for this, but requesters can also create more
tailored QualificationTypes based on other criteria. A common use case is to only allow new workers
to complete a HIT. To achieve this, we need to create a new QualificationType, assign that Qual-
ificationType to past workers, and then create a new HITType using this QualificationType as a
QualificationRequirement:

# create the QualificationType

thenewqual <- CreateQualificationType(name = "Prevent Retakes",

description = "Worked for me before",

status = "Active",

auto = TRUE,

auto.value = 100)

# assign qualification

AssignQualification(qual = thenewqual$QualificationTypeId,

workers = hit1$WorkerId,

value = "50")

# generate QualificationRequirement

qreq3 <- GenerateQualificationRequirement(thenewqual$QualificationTypeId,"==","100")

9HITTypes cannot be edited. If you attempt to create two HITTypes with identical properties, they will be
assigned the same HITTypeId. If you modify any attribute, a new HITType will be created. If you have HITs that
you would like to assign to a different HITType, use ChangeHITType().
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# create HIT, implicitly generating HITType

hit2 <- CreateHIT(question = hq$string,

expiration = seconds(days = 4),

assignments = 10,

title = "Tell us something",

description = "Answer a single question",

reward = "0.05",

duration = seconds(days=1, hours=8),

keywords = "text, answer, question",

auto.approval.delay = seconds(days=15),

qual.req = qreq3,

annotation = "my second HIT")

To explain what is happening here, we create a new QualificationType that workers can “request”
through the MTurk website. If they request it, they will automatically be assigned a score of 100 on the
QualificationType. We then assign this QualificationType to all of our workers from our first HIT but
at a score lower than the automatically granted value. We next create a QualifciationRequirement that
will make a HIT only available to those with the automatically granted value, and we finally attach
this to a HITType that we create atomically within our call to CreateHIT(). Now 10 new workers can
complete this HIT, excluding the worker(s) that completed work on our first HIT.

QualificationTypes and QualificationRequirements on HITTypes allow a requester to manage a
large pool of workers in complex ways. Workers that have been assigned scores on a QualificationType
can be retrieved using GetQualifications(), or modified using UpdateQualificationScore(). The
attributes of the QualificationType itself can be changed using UpdateQualificationType(), and the
QualificationType and all associated scores can be deleted using DisposeQualificationTypes().10

QualificationTypes can also be configured with a “qualification test” that allows workers to submit
provisional work as a measure of abilities and then Qualifications can be approved/revoked manually
based on their responses or even configured with an “AnswerKey” that will automatically evaluate
the worker’s test performance and assign a score for the QualificationType. Again, the MTurkR
documentation includes extended examples and possible use cases.

When we are done with HIT and all of its assignment data, we can delete it from the system using
DisposeHIT(). This is not a reversible action, so it should be used with caution. HITs will be deleted
automatically by Amazon after a period of inactivity, but cleaning up unneeded HITs can be useful
given that there is no particularly good way to search for HITs within the system. The SearchHITs()

operation simply returns a sorted data.frame of all HITs.

Creating multiple HITs

In addition to creating single HITs, MTurkR offers functionality to manage very large projects involv-
ing many HITs. This section describes that functionality in detail.

There are four functions that have been added to MTurkR as of v0.6.5 (available on CRAN since
25 May 2015) to facilitate the bulk creation of HITs, for example for the earlier use case of creating a
training set of open-ended text responses for a classification algorithm. These functions are wrappers
for CreateHIT() designed to accept different kinds of input for the question argument and cycle
through those inputs to create multiple HITs. They are:

• BulkCreate() provides a low-level loop around CreateHIT() that takes a character vector of
question values as input

• BulkCreateFromHITLayout() provides functionality for creating multiple HITs from a HITLay-
out created on the MTurk Requester website

• BulkCreateFromTemplate() provides higher-level functionality that translates a HIT template
and a data.frame of input values into a series of HITs

• BulkCreateFromURLs() provides a convenient way of creating multiple HITs from a character
vector of URLs

The last two of these are likely to be most useful, so I provide extended examples below.

GenerateHITsFromTemplate() works from a template HTMLQuestion document containing place-
holders for input values and a data.frame of values, one set of values per row. An example template is
installed with MTurkR:

10If a QualificationType is requestable but not automatically approved, Qualification scores have be granted
manually by the requester using additional functions GetQualificationRequests(), GrantQualification(), and
RevokeQualification() can be used to manage requests.
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<!DOCTYPE html>

<html>

<head>

<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'/>

<script type='text/javascript'

src='https://s3.amazonaws.com/mturk-public/externalHIT_v1.js'></script>

</head>

<body>

<form name='mturk_form' method='post' id='mturk_form'

action='https://www.mturk.com/mturk/externalSubmit'>

<input type='hidden' value='' name='assignmentId' id='assignmentId'/>

<h1>${hittitle}</h1>

<p>${hitvariable}</p>

<p>What do you think?</p>

<p><textarea name='comment' cols='80' rows='3'></textarea></p>

<p><input type='submit' id='submitButton' value='Submit' /></p></form>

<script language='Javascript'>turkSetAssignmentID();</script>

</body>

</html>

This template contains two placeholders ‘${hittitle}’ and ‘${hitvariable}’. GenerateHITsFromTemplate()
will replace these placeholders with values specified by the hittitle and hitvariable columns in an
input data.frame, creating set of unique HITs as one batch.

# create input data.frame

inputdf <- data.frame(hittitle = c("HIT title 1", "HIT title 2", "HIT title 3"),

hitvariable = c("HIT text 1", "HIT text 2", "HIT text 3"),

stringsAsFactors = FALSE)

# create HITs

bulk1 <-

BulkCreateFromTemplate(template = system.file("template.html", package = "MTurkR"),

input = inputdf,

annotation = paste("Bulk From Template", Sys.Date()),

title = "Describe a text",

description = "Describe this text",

reward = ".05",

expiration = seconds(days = 4),

duration = seconds(minutes = 5),

auto.approval.delay = seconds(days = 1),

keywords = "categorization, image, moderation, category")

The response structure for these functions is a list of single-row data.frames. If all HIT creation opera-
tions succeed, then the response can easily be converted to a data.frame using do.call("rbind",bulk2),
but users will typically only need to examine this structure if errors occurred. Details about the indi-
vidual HITs can be retrieved at any time using GetHITs() or SearchHITs().

Now, we simply need to wait for the workers to complete their assignments. Because we supplied
the same value for the annotation to all of these HITs, the results for all associated assignments can
easily be retrieved using GetAssignments():

# get assignments using annotation

a1 <- GetAssignments(annotation = paste("Bulk From Template", Sys.Date()))

# get assignments using HITTypeId

a2 <- GetAssignments(hit.type = bulk1[[1]]$HITTypeId)

Unfortunately, MTurk does not return the contents of the question parameter with the completed
assignments. However HITId is included so it is trivial to merge the input data.frame with the
assignment data.frame so that we can compare the original data (e.g., open-ended response text) to
the information supplied by workers (e.g., the classification):

# extract HITIds from `bulk1`

inputvalues$HITId <- do.call("rbind", bulk1)$HITId

# merge `inputvalues` and `assignmentresults`

merge(inputdf, a1, all = TRUE, by = "HITId")
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BulkCreateFromURLs() behaves similarly but accepts a character vector of URLs to be used as
ExternalQuestion values. This function requires a frame.height argument to specify the vertical size
of the HIT as shown to workers.11

bulk2 <-

BulkCreateFromURLs(url = paste0("https://www.example.com/",1:3,".html"),

frame.height = 450,

annotation = paste("Bulk From URLs", Sys.Date()),

title = "Categorize an image",

description = "Categorize this image",

reward = ".05",

expiration = seconds(days = 4),

duration = seconds(minutes = 5),

auto.approval.delay = seconds(days = 1),

keywords = "categorization, image, moderation, category")

Addressing problems

Sometimes things go wrong. Perhaps the HITs contained incorrect information or the work being
performed is of low quality because of a mistake in the HIT’s instructions. When these situations occur,
it is easy to address problems using a host of HIT-management functions. To expire a HIT early, simply
call ExpireHIT() specifying a HITId, HITTypeId, or annotation value. To delay the expiration of HIT,
ExtendHIT() with a add.seconds parameter extends the specified HIT(s) by the specified number of
seconds. A call to ExtendHIT() with the add.assignments parameter increases the number of available
assignments for the HIT(s).12

One other useful set of operations provided by MTurk is a “notification” system that allows
requesters to receive messages about various HITType events either via email or to an AWS Simple
Queue Service (SQS) Queue (see MTurkR documentation for examples of the latter). Notifications
can be triggered by various events and can be used as an alternative to actively monitoring the status
of a HIT vai HITStatus(). Here is an example notification to send an email whenever a HIT in our
HITType expires:

n <- GenerateNotification("requester@example.com",

event.type = "HITExpired")

SetHITTypeNotification(hit.type = hittype1$HITTypeId,

notification = n,

active = TRUE)

An example of massive-scale photo rating

To demonstrate the ease with which MTurkR can be used to preprocess a massive amount of data, I
provide an example of a large-scale photo rating task. Here, I was interested in obtaining a rating of
“facial competence” for U.S. politicians compared with ratings of faces from the general U.S. population.
Facial competence is said to enhance politicians’ electoral success, but previous studies have never
compared these to a general population sample. Are politicians generally more facially competent
than other individuals? While this is a modest research question, it demonstrates well the immense
human effort needed to draw even simple conclusions from messy data structures.

To provide a sampling of politicians’ faces, I scraped photos of 533 members of 113th U.S. Congress
from the website of the Government Printing Office. I then combined these photo data with 5000
randomly sampled images from the 10K U.S. Adult Faces Database (Bainbridge et al., 2013), which
provides a nationally representative sampling of U.S. faces, and standardized the image size and
resolution across all faces.13 To rate facial competence, I created a simple one-question HIT using
HTML (see Figure 1) that displayed one of the faces and asked for a rating of facial competence on a 0
to 10 scale.14 I include the complete HTML file in supplemental materials for this article.

11MTurk displays the page specified by the ExternalQuestion URL inside an HTML iframe on the worker site.
12Note that this number must be positive and, therefore, the number of available assignments cannot be reduced.

If you need to reduce the number of assignments completed for a HIT, simply expire the HIT once the desired
number of assignments have been completed.

13Complete code to perform the scraping and image processing are provided along with supplemental material
for this article at https://github.com/leeper/mturkr-article (http://dx.doi.org/10.5281/zenodo.33595).

14The HIT additionally included questions to address possible problems (i.e. a subject recognizes a face or the
image did not display properly).
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Figure 1: Example Photo Rating HIT

After uploading all 5533 images to an Amazon Simple Storage Service (S3) bucket, which is a
simple cloud storage facility, to make the files publicly available15 and storing their filenames in a
local RDS file, it was trivial to send these images to MTurk workers for categorization. To ensure
reliability of the results, each face was rated by 5 workers. Workers were given 45 seconds to rate each
face and were paid $0.01 per face. The 27,665 images were rated a team of 225 U.S.-based workers
over a period of 75 minutes. The entire operation cost $412.50. Achieving this required three steps in
MTurkR: (1) creating a QualificationRequirement to restrict the task to U.S.-based workers with 95%
approval ratings, (2) registering a HITType into which the HITs will be created, and (3) the creation of
a batch of HITs using BatchCreateFromURLs().

# Setup Qualification Requirement

## U.S.-based, 95\% approval on HITs

qual <-

GenerateQualificationRequirement(c("Locale", "Approved"),

c("==", ">"),

c("US", 95),

preview = TRUE)

# Register HITType

desc <- "Judge the competence of a person from an image of their face.

The HIT involves only one question: a rating of the competence of the

person. You have 45 seconds to complete the HIT. There are several

thousand HITs available in this batch. If you recognize the person,

please enter their name in the space provided; your work will still be

approved even if you recognize the face."

hittype <-

RegisterHITType(title = "Rate the competence of a person",

description = desc,

reward = "0.01",

duration = seconds(seconds = 45),

auto.approval.delay = seconds(days = 1),

qual.req = qual,

keywords = "categorization, photo, image, rating, fast, easy")

15Any public file host could be used, not just S3.
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# All faces were loaded into Amazon S3

s3url <- "https://s3.amazonaws.com/mturkfaces/"

# File names were saved as a character vector locally

faces <- readRDS("faces_all.RDS")

d <- data.frame(face = paste0(s3url,faces),

stringsAsFactors = FALSE)

# Create 5500 HITs

bulk <-

BulkCreateFromTemplate(template = "mturk.html",

frame.height = 550,

input = d,

hit.type = hittype$HITTypeId,

expiration = seconds(days=7),

# 5 assignments/face

assignments = 5,

annotation = "Face Categorization 2015-06-08")

Using the specified annotation value, GetAssignments() returns a large data.frame with 27670 rows
and 25 columns:

a <- GetAssignments(annotation = "Face Categorization 2015-06-08")

dim(a)

# [1] 27670 25

names(a)

# [1] "AssignmentId" "WorkerId" "HITId"

# [4] "AssignmentStatus" "AutoApprovalTime" "AcceptTime"

# [7] "SubmitTime" "ApprovalTime" "RejectionTime"

# [10] "RequesterFeedback" "ApprovalRejectionTime" "SecondsOnHIT"

# [13] "competent" "recognized" "name"

# [16] "face" "condition" "browser"

# [19] "engine" "platform" "language"

# [22] "width" "height" "resolution"

# [25] "problem"

Most of the columns contain metadata for identifying each assignment (AssignmentId, WorkerId,
HITId), metadata about the completion of the assignment (AssignmentStatus, AutoAprpovalTime,
AcceptTime, SubmitTime, ApprovalTime, RejectionTime, RequesterFeedback, ApprovalRejectionTime,
SecondsOnHIT), and then several columns displaying responses to the three HIT questions displayed
to the workers: competent, recognized, and name. The names of these variables are given by the name

attribute of the radio buttons used in the HTMLQuestion form. This HIT also additional variables that
record metadata about the worker’s browser, which were recorded automatically via Javascript.

As noted earlier, a limitation of the MTurk API is that it does not return information about
the values of variables replaced in the templating process, so it can be difficult to identify which
assignment(s) correspond to which input values. To circumvent this limitation, this HIT template was
designed to use the ${face} variable twice: once to actually display the image to the worker and once
to record its value in a hidden field called face in the HTMLQuestion form. As a result, this variable
becomes available to us in the results data.frame.

Setup in this way, it becomes trivial to analyze facial competence ratings of politicians and those
from the general population sample. To perform the analysis, we simply conduct a Mann-Whitney-
Wilcoxon test for a difference in competence ratings between politicians’ and non-politicians’ faces.
(In these data, politicians’ photos were identified by a simple pattern matching file name. This would
have more easily been done with a hidden HTML variable when creating the batch.) So, we extract
the two variables from the assignment data.frame, convert them to numeric, and perform the test:

competence <- as.numeric(a$competent)

politician <- as.numeric(grepl("[[:digit:]]{2}-[[:digit:]]{3}", a$face))

round(prop.table(table(politician, competence), 1), 2)

#

# competence

# politician 0 1 2 3 4 5 6 7 8 9 10

# 0 0.03 0.03 0.04 0.07 0.11 0.13 0.17 0.17 0.16 0.06 0.02

# 1 0.01 0.01 0.02 0.04 0.07 0.12 0.19 0.20 0.22 0.09 0.04
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wilcox.test(competence ~ politician)

#

# Wilcoxon rank sum test with continuity correction

#

# data: competence by politician

# W = 26886000, p-value < 2.2e-16

# alternative hypothesis: true location shift is not equal to 0

Politicians do appear to have higher facial competence. While this is a fairly trivial analytic
conclusion, it demonstrates the ease with which crowdsourced human intelligence can be leveraged to
preprocess a massive amount of data, translating messy sources into easily analyzed data. Because
crowdsourcing is inherently massively parallel, it dramatically reduces the amount of time needed to
parse a rough data source. In this case, the MTurk workers created the completed dataset in about 75
minutes. Were a single individual to attempt this task alone and it took (as a generous estimate) only 5
seconds to categorize each face, the task would be completed in 38.4 hours, or about 31-times as long
as with MTurk.

Conclusion

This paper has described the MTurk platform and offered an introduction to MTurkR focused on
preprocessing of messy data for immediate use in R. In short, MTurkR provides a stable, well-
developed R interface to one of the largest crowdsourcing sites presently available. The package
has been developed and refined for more than three years, has extensive in-package and online
documentation, and is incredibly easy to use. By providing a low-level wrapper to the Amazon
Mechanical Turk API, it also means that MTurkR could serve well as the basis for much more
sophisticated R applications that leverage human intelligence as an enhancement to the computational
features already available in R.
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