
MPAgenomics: An R package for Multi-Patient Analysis of Genomic

Markers.

Quentin Grimonprez, Samuel Blanck, Alain Celisse, Guillemette Marot

July, 2014

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Citing MPAgenomics . 2
2.2 Installation . 3

3 Starting example 3
3.1 Download a toy data-set . 3
3.2 Use of the main functions of the package . 5
3.3 To go further. 5

4 Data Normalization 7
4.1 Folder architecture . 7
4.2 Normalization process . 9
4.3 Accessing the copy-number, allele B fraction and genotype . 10
4.4 Usage . 12

5 Segmentation 13
5.1 From data normalized by aroma . 13
5.2 For any data provided in matrices . 15
5.3 To go further . 16

5.3.1 Choice of the number of segments for cghseg . 16
5.3.2 Choice of the number of segments for PELT . 16

6 Calling aberrations in copy-number profiles 18
6.1 From data normalized by aroma . 18
6.2 For any data provided in matrices . 19
6.3 filterSeg function . 21

7 Selection of genomic markers 22
7.1 From data normalized by aroma . 22
7.2 For any data provided in matrices . 24

1 Introduction

This package provides functions to preprocess and analyze genomic data. Markers refer to SNPs or copy num-
ber variations which are designed on the arrays. MPAgenomics is devoted to: (i) efficient segmentation and (ii)
genomic marker selection from multi-patient copy number and SNP data profiles.

For both types of analyses, a pre-processing step (section 4) is proposed as a wrapper of aroma.* packages
[Bengtsson, 2004][Bengtsson et al., 2008b][Bengtsson et al., 2010a]. This enables to keep maximum information

1

from the original profiles and improve the multi-patient analysis. In particular, this is useful to keep quanti-
tative data for SNPs rather than usual genotype calls (AA, AB or BB) when these states are not relevant (eg
in cancer studies where the number of copies differs from two copies). Note that the use of aroma.* pack-
ages [Bengtsson, 2004] implies that the pre-processing step is only available for Affymetrix DNA chips. The
other functionalities of the package MPAgenomics can however be used independently and such procedures are
explained in the sections which detail each step of the proposed analysis.

Efficient segmentation is proposed by the cghseg segmentation [Rigaill, 2010][Picard et al., 2005] combined
with the slope heuristic [Birgé and Massart, 2007] to choose automatically the number of segments. MPAge-

nomics also suggests an automatic choice of the penalty parameter for the Pelt segmentation [Killick et al., 2012]
originally implemented in the changepoint package [Killick and Eckley, 2013]. MPAgenomics offers a pipeline
to perform normalization, segmentation and calling at the same time.

Selection of genomic markers relies on the use of penalized regularization techniques implemented in glmnet

[Friedman et al., 2009] and wrappers are offered to relate this package with the normalisation packages. For
the users who would like to go further in the use of penalized regularization techniques, we also provide some
guidelines to quickly build inputs for the HDPenReg package and interpret some outputs of this latter one.

2 Preliminaries

2.1 Citing MPAgenomics

Please always cite the following paper when using MPAgenomics:

• Grimonprez, Q., Celisse, A., Cheok, M., Figeac, M., and Marot, G. (2014). MPAgenomics: An R package
for multi-patient analysis of genomic markers. Preprint http://hal.inria.fr/hal-00933614

Moreover, MPAgenomics wraps and extends functionalities of several packages. Please try to cite the appro-
priate methodological papers when you use results from the MPAgenomics software in a publication, as such
citations are the main means by which the authors receive professional credit for their work.

If you use CRMAv2 normalization in MPAgenomics, please cite:

• Bengtsson, H., Wirapati, P., and Speed, T. P. (2009). A single-array preprocessing method for estimat-
ing full-resolution raw copys from all Affymetrix genotyping arrays including GenomeWideSNP 5 & 6.
Bioinformatics, 25(17):2149–2156

If you use TumorBoost normalization in MPAgenomics, please cite:

• Bengtsson, H., Neuvial, P., and Speed, T. P. (2010b). Tumorboost: Normalization of allele-specific tumor
copy numbers from a single pair of tumor-normal genotyping microarrays. BMC Bioinformatics, 11

If you use MPAgenomics to segment copy number or allele B fraction profiles with the cghseg segmentation
method, please cite:

• Picard, F., Hoebeke, M., Lebarbier, E., Miele, V., Rigaill, G., and Robin, S. (2013). cghseg: Segmentation
methods for array CGH analysis. R package version 1.0.2

If you use MPAgenomics to segment copy number or allele B fraction profiles with the PELT segmentation
method, please cite:

• Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints with a linear
computational cost. Journal of the American Statistical Association, 107(500):1590–1598

If you use MPAgenomics for calling with CGHcall, please cite:

• van de Wiel, M. A., Kim, K. I., Vosse, S. J., van Wieringen, W. N., Wilting, S. M., and Ylstra, B. (2007).
CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics, 23(7):892–894

2

2.2 Installation

The package can be installed either from a GUI (selecting the R-forge repository) or with the command line (to
be typed in the R console)

> install.packages("MPAgenomics", repos="http://R-Forge.R-project.org")

This vignette can be produced with the command

> vignette("MPAgenomics")

Since the package provides simple wrappers of many existing packages and all users are not interested by the
same wrappers, we did not force MPAgenomics to depend on all the packages. We however recommend the user
who would like to preprocess data to install aroma packages [Bengtsson, 2004] with the following commands:

> source("http://www.braju.com/R/hbLite.R")

> hbLite("sfit")

> source("http://bioconductor.org/biocLite.R")

> biocLite("affxparser")

> biocLite("DNAcopy")

> biocLite("aroma.light")

> install.packages("aroma.affymetrix")

> install.packages("aroma.cn")

The installation of all these packages at the very beginning of the use of MPAgenomics is only for convenience,
not mandatory. Indeed, the user who would have forgotten to install some packages would be reminded to install
them when applying the corresponding wrapper.

3 Starting example

This introductory example aims at helping the user understand the main functions of the package. For more
details on each step, we invite the user to read the appropriate section.

3.1 Download a toy data-set

The example is based on a free data-set containing 8 .CEL files (251Mo) which can be downloaded from the
Broad Institute website, following this link: http://www.broadinstitute.org/mpg/birdsuite/downloads/

birdsuite_inputs_1.5.3.tgz If you are used to decompress .tgz files, extract this file and copy the following
command in the R console, replacing the path to the directory where the raw data (.CEL files) are stored with
the appropriate one. Note that we deliberately use ”/” and not ”\ ” in celPATH. If you copy paste paths from
Windows (e.g. looking at properties of the directory), you must change ”\ ” by ”/” or ”\\ ”.

> celPATH="/home/user/Documents/workdir/CELdata/cel"

In this example, the directory pointed by celPATH must contain the files shown in Figure 1.

Figure 1: CEL files in celPATH (variable containing the path to the downloaded CEL files).

If it is not the case, e.g. if you do not know how to download and extract .tgz files (e.g. via a right click) ,
you can use the following commands in the R console:

3

http://www.broadinstitute.org/mpg/birdsuite/downloads/birdsuite_inputs_1.5.3.tgz
http://www.broadinstitute.org/mpg/birdsuite/downloads/birdsuite_inputs_1.5.3.tgz

> #set your working directory (replace with the appropriate path)
> workdir="/home/user/Documents/workdir"
> setwd(workdir)
> #download file
> download.file("http://www.broadinstitute.org/mpg/birdsuite/downloads/birdsuite_inputs_1.5.3.tgz",
+ destfile="./CELdata.tgz")
> #untar the file
> untar("./CELdata.tgz",files="cel",exdir=".")
> #indicate the path containing .cel files
> celPATH="./cel"

Once .CEL files are extracted, you must download all the GenomeWideSNP 6 annotation files which are
needed to pre-process the data. These files have extensions .cdf, .ufl, .ugp, .acs. You can download the cdf files
(258Mo) from the Affymetrix website (an user account is required), following this link http://www.affymetrix.

com/Auth/support/downloads/library_files/genomewidesnp6_libraryfile.zip

Extract these files and replace the following path with the appropriate one pointing to the folder containing
the extracted .cdf files (only GenomeWideSNP 6.Full.cdf is needed but you can leave the other files in the same
folder):

> chipPATH="/home/user/Documents/workdir/CD_GenomeWideSNP_6_rev3/Full/GenomeWideSNP_6/LibFiles/"

If you do not know how to decompress .zip files, you can use the following commands in the R console for
convenience:

> #unzip required files
> unzip("./genomewidesnp6_libraryfile.zip",
+ files=c("CD_GenomeWideSNP_6_rev3/Full/GenomeWideSNP_6/LibFiles/GenomeWideSNP_6.Full.cdf"),exdir=".")
> #indicate the path containing .cdf files
> chipPATH="./home/user/Documents/workdir/CD_GenomeWideSNP_6_rev3/Full/GenomeWideSNP_6/LibFiles/"

The other annotation files can be downloaded from http://www.aroma-project.org/data/annotationData/

chipTypes/GenomeWideSNP_6/. For this example, we download GenomeWideSNP 6,Full,na31,hg19,HB20110328.ufl.gz
(6Mo), GenomeWideSNP 6,Full,na31,hg19,HB20110328.ugp.gz (7Mo), GenomeWideSNP 6,HB20080710.acs.gz
(37Mo). Extract these files in the folder where your cdf files are in order to have all the annotation files in the
same folder (see Figure 2).

Figure 2: Chip GenomeWideSNP 6 files in chipPATH (variable containing the path to the downloaded chip
files).

If you do not know how to download or decompress .gz files, you can use the following commands in the R
console for convenience:

> #set the directory where the .cdf files are as your working directory
> setwd(chipPATH)
> ##download the 3 files .ufl, .ugp, .acs
> download.file("http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/GenomeWideSNP_6,Full,na31,hg19,HB20110328.ufl.gz",
+ destfile="GenomeWideSNP_6,Full,na31,hg19,HB20110328.ufl.gz")
> download.file("http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/GenomeWideSNP_6,Full,na31,hg19,HB20110328.ugp.gz",
+ destfile="GenomeWideSNP_6,Full,na31,hg19,HB20110328.ugp.gz")
> download.file("http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/GenomeWideSNP_6,HB20080710.acs.gz",
+ destfile="GenomeWideSNP_6,HB20080710.acs.gz")
> #unzip the gz files
> #install R.utils package containing the gunzip function
> install.packages("R.utils")
> library("R.utils")
> gunzip("GenomeWideSNP_6,Full,na31,hg19,HB20110328.ufl.gz",
+ destname="GenomeWideSNP_6,Full,na31,hg19,HB20110328.ufl")
> gunzip("GenomeWideSNP_6,Full,na31,hg19,HB20110328.ugp.gz",
+ destname="GenomeWideSNP_6,Full,na31,hg19,HB20110328.ugp")
> gunzip("GenomeWideSNP_6,HB20080710.acs.gz",destname="GenomeWideSNP_6,HB20080710.acs")

4

http://www.affymetrix.com/Auth/support/downloads/library_files/genomewidesnp6_libraryfile.zip
http://www.affymetrix.com/Auth/support/downloads/library_files/genomewidesnp6_libraryfile.zip
http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/
http://www.aroma-project.org/data/annotationData/chipTypes/GenomeWideSNP_6/

3.2 Use of the main functions of the package

In the following example, we suggest to perform segmentation and calling before selection of markers even if
only the pre-processing step, which estimates the copy-number and the allele B fraction profile, is required for
the last one.

We assume that all the required chip files are in the chipPATH folder and that the .CEL files are in the
celPATH folder.

First, we normalize .CEL files using the CRMAv2 method [Bengtsson et al., 2009] from aroma packages.
These packages require a specific architecture containing .CEL and annotation files. This normalization step is
required before any statistical analysis. The following command performs the creation of architecture and the
normalization at the same time:

> #list files to check that your path to annotation files (.cdf, .ugp, .ufl, .acs) is correctly set

> dir(chipPATH)

> # list files to check that your path to cel files (.cel) is correctly set

> dir(celPATH)

> #set your working directory (where you have rights to write)

> setwd(workdir)

> #normalize data (might take several hours)

> signalPreProcess(dataSetName="datatest1", chipType="GenomeWideSNP_6",

+ dataSetPath=celPATH,chipFilesPath=chipPATH, path=".",

+ createArchitecture=TRUE, savePlot=TRUE, tags="Full")

The first pipeline offered in MPAgenomics consists in the segmentation of every copy-number profile of the
data. Then, a calling method can be applied on all the segments to label them (e.g. ”loss”, ”normal”, ”gain”).
To perform segmentation and calling at the same time, type the following lines in your R console:

> segcall=cnSegCallingProcess("datatest1",chromosome=c(1,5),method="PELT")

> #summary of segmentation and calling process

> segcall

In this example, chromosomes 1 and 5 for all patients are studied. Figures can be found at ./fig-

ures/datatest1/segmentation/. To better understand the way the results have been produced, we refer
to sections 4, 5 and 6.

Results of the calling can be filtered to keep only segments of a minimal size or with a specific label. For
example, if you want to only keep segments which represent losses or gains with a minimal size of 10pb and
containing at least 2 probes, run the following command:

> callfiltered=filterSeg(segcall,minLength=10,minProbes=2,keptLabel=c("gain","loss"))

> head(callfiltered)

To perform selection of markers, a response is associated with each profile and the goal is to find the most
relevant markers in the profile according to the response. You can run the following commands:

> dataResponse=data.frame(files=getListOfFiles("datatest1"),

+ response=c(2.105092,1.442868,1.952103,1.857819,2.047897,1.654766,2.385327,2.113406))

> res=markerSelection("datatest1",dataResponse,chromosome=21:22,signal="CN",

+ onlySNP=TRUE,loss="linear")

For interpretation of all the results, we refer to section 7.

3.3 To go further. . .

Use of control samples In the previous example, there was no control sample. By default, the median of all
the samples is used as a reference to estimate the copy-number profile. It is generally better to provide control
samples. When this is the case, it is necessary to provide a file or a data.frame giving the correspondence
between each control and each sample. For this example, we assume that the control is arbitrarily the first file:

5

> #get the file names of our data-set

> files=getListOfFiles("datatest1")

> #create the data.frame linking normal and tumor files

> normalTumorArray=data.frame(normal=rep(files[1],7),tumor=files[2:8])

Figure 3: CSV file linking normal sample with tumoral sample.

Note that the extension .CEL is not provided in the normalTumorArray dataframe. In the following of the
vignette, a study which provides both control and tumoral samples will be refered as a normal-tumor study.

A new normalization can be run by taking into account information from the control sample. To sepa-
rate analyses with or without control samples, we will store results from this normal-tumor study under the
name ”datatest2”. As the architecture has already been created for ”datatest1”, it is not necessary to run
signalPreProcess with createArchitecture=TRUE. It is faster to add the CEL files in ”datatest2” while
leaving the chip definition files as they are by using the function addData and then signalPreProcess with
createArchitecture=FALSE.

> addData(dataSetName="datatest2",dataPath=celPATH,chipType="GenomeWideSNP_6")

> signalPreProcess(dataSetName="datatest2", chipType="GenomeWideSNP_6",

+ normalTumorArray=normalTumorArray, createArchitecture=FALSE, savePlot=TRUE, tags="Full")

Single-Patient Analysis of allele B fraction The segmentation example (3.2) was run on the copy-number
profile, the allele B fraction can also be segmented after some transformation but only heterozygous SNPs are
kept. First, a naive genotype call [Bengtsson et al., 2010b] is performed on each normal sample in order to
separate heterozygous SNPs from homozygous SNPs. Naive genotyping method assumes SNPs are bi-allelic
and therefore is not recommended for tumor samples. Thus allele B fraction segmentation in MPAgenomics

requires matched normal-tumor pairs. Then, the resulting signal is symmetrized around 0.5 (a point x become
2 ∗ |x− 0.5|) [Staaf et al., 2008](see Figure 4), which makes it similar to the usual copy number.

Figure 4: Top: Allele B fraction profile on a chromosome (in red: homozygous SNPs). Bottom: symmetrized
profile without homozygous SNPs.

To perform the segmentation on the allele B fraction, run the following command

> #run the segmentation

> segfracB=segFracBSignal("datatest1",chromosome=c(1,5))

6

> #print summary of segmentation

> segfracB

Selecting steps to be executed to avoid a complete procedure Each step can be performed with or
without the aroma packages if arguments of functions are given in the right format (excepted the normalization
procedure described in section 4). Almost each wrapper can be used from matrices independently from the
other steps and more details are given in the following of this vignette. The paper is organized as follows: the
section 4 presents the preprocessing step and how to access normalized copy-number and allele B fraction. If
you already have these data, you can skip this section. Then, an efficient single patient analysis is introduced in
the next two sections. The segmentation process is described in section 5. In section 6, we present the calling
process of segmented data. The selection of markers is described in section 7.

4 Data Normalization

This preprocessing step consists in a correction of biological and technical biases due to the experiment.
MPAgenomics supports Affymetrix® arrays (5.0, 6.0 and CytoScanHD). Raw data from Affymetrix DNA

chip are provided in different .CEL files. These data need to have some corrections and normalizations before be-
ing usable. This normalization process can be performed via functions from aroma.* packages [Bengtsson, 2004]
[Bengtsson et al., 2008b]. Here, we provide some user-friendly wrappers to these functions. We assume that all
the required chip files are in the chipPATH folder and the CEL files are in the celPATH folder.

4.1 Folder architecture

All the functions from aroma packages have to be used with a particular architecture in the working directory.
In MPAgenomics, we use the same architecture and provide some functions to create it.

A function is provided to create the architecture and copy the specified files in the right directory :
createArchitecture. It also checks that the names of the chip files begin by the specified chipType argument.

createArchitecture(dataSetName,chipType,dataSetPath,chipFilesPath,path,verbose,tags)

Parameters Description
dataSetName The name of the data-set folder to create.
chipType The name of the used chip.
dataSetPath Path to the folder containing the data CEL files.
chipFilesPath Path to the folder containing the chip files.
path Path where the architecture should be created (default=”.”).
verbose Print information during the process (default=FALSE).
tags Common tag which appears in the different file names (cdf, ugp, ufl) of the chip.

For no tag, use tags=NULL (default = NULL).

For example, assume that we have the downloaded files of the download section (Fig 5 & 6).

Figure 5: Chip GenomeWideSNP 6 files in chipPATH (variable containing the path to the downloaded chip
files).

The celPATH and chipPATH variables contain the different paths to the downloaded files. The following
command enables to both create the architecture and add the previous dataset under the name ”datatest1”.

> createArchitecture("datatest1","GenomeWideSNP_6",celPATH,chipPATH,".",TRUE,"Full")

In your working directory, you must find the following architecture :

7

Figure 6: CEL files in celPATH (variable containing the path to the downloaded CEL files).

<current working directory>

+- annotationData/

| +- chipTypes/

| +- GenomeWideSNP_6/

| +- CDF file(s) and other annotation

|

+- rawData/

+- datatest1/

+- GenomeWideSNP_6/

+- CEL files

You can see that files are only copied and not moved.
This architecture can also be created with the normalization function (see section 4.2).

The minimal architecture contains 2 folders: annotationData and rawData. Some supplementary folders
will be created during the execution of some functions.

In the annotationData folder, each type of chip used for the experiment has to have his own folder containing
its definition files (.cdf) and other files (.ugp1, .acs2, .ufl3). In this folder, every file name must comply with the
following format <chipType>,<tags>.<extension>(see Fig. 5).

The rawData folder contains the different data-sets with the CEL files. Each data-set folder contains one or
more folders (one per different chip type used) containing the CEL files, these files will not be modified during
the process. Note that the chipType folder in the data-set folder must match exactly a chip type folder under
annotationData.

In case of new data-sets or new chip types, it is not useful to create a new architecture but just add new
folders in the existing architecture as follows:

<current working directory>

+- annotationData/

| +- chipTypes/

| +- <chipTypeA>/ <-- must match exactly the name of the CDF file (fullname minus tags)

| | +- CDF file(s) and other annotation (possibly subdirectories)

| |

| +- <chipTypeB>/ <-- must match exactly the name of the CDF file (fullname minus tags)

| +- CDF file(s) and other annotation (possibly subdirectories)

| ...

|

+- rawData/

| +- <dataSet1>/

| | +- <chipTypeA>/ <-- must match exactly a chip type folder under annotationData/

| | +- CEL files

| |

| +- <dataSet2>/

| | +- <chipTypeB>/ <-- must match exactly a chip type folder under annotationData/

| | +- CEL files

| |

| +- <dataSet3>/

1See http://www.aroma-project.org/node/43 for more details.
2See http://www.aroma-project.org/node/100 for more details.
3See http://www.aroma-project.org/node/47 for more details.

8

http://www.aroma-project.org/node/43
http://www.aroma-project.org/node/100
http://www.aroma-project.org/node/47

| | +- <chipTypeA>/ <-- must match exactly a chip type folder under annotationData/

| | +- CEL files

| | +- <chipTypeB>/ <-- must match exactly a chip type folder under annotationData/

| | +- CEL files

| ...

In order to easily update your existing architecture you can use the following addData function.
It enables to add to your existing architecture a new data-set in the rawData folder.

addData(dataSetName,dataPath,chipType)

Parameters Description
dataSetName The name of the data-set folder to create.
dataPath Path of the folder containing the data CEL files.
chipType The name of the used chip.

The addChipType function enables to add to your existing architecture a new chip type in the annotationData
folder.

addChipType(chipType,chipPath)

Parameters Description
chipType Name of the new chip type to add.
chipPath Path to the files to add.

With the function getListOfFiles, you can obtain the list of the files contained in the specified data-set.

getListOfFiles(dataSetName,chipType)

Parameters Description
dataSetName The name of a data-set folder.
chipType The name of the used chip.

If you do not specify a chipType, it returns the files for the first chip in the alphabetic order in the
dataSetName folder.

4.2 Normalization process

The main function for the normalization of CEL files is signalPreProcess. This function executes 3 different
methods on your data:

• CRMAv2 [Bengtsson et al., 2009]: Normalize profiles to obtain the copy-number and the allele B frac-
tion. This step consists in the correction of biological and technical biases due to the experiment.

• Genotype calls: Assign label AA, AB or BB to each SNP.

• TumorBoost [Bengtsson et al., 2010b]: Only in a case of normal-tumor study, normalization of the allele
B fraction tumor profile using the control profile.

The function signalPreProcess executes all these steps and saves the results in different folders in the aroma
architecture (totalAndFracBData,. . .), you can also obtain some graphics in the figures/signal folder.

The signalPreProcess is defined as follows:

signalPreProcess(dataSetName, chipType, normalTumorArray, dataSetPath, chipFilesPath, path,

createArchitecture, savePlot)

9

Parameters Description
dataSetName The name of the data-set.
chipType The type of the used chip (e.g. ”GenomeWideSNP 6”).
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 7).
dataSetPath Only if createArchitecture=TRUE.

Path to the folder containing the CEL files of the data-set.
chipFilesPath Only if createArchitecture=TRUE.

Path to the folder containing all the annotations files for the specified chip type.
path Only if createArchitecture=TRUE.

Path where the architecture should be created (default=”.”).
createArchitecture if TRUE, the aroma architecture will be automatically created (default=TRUE).
savePlot if TRUE, graphics of the CN signal and allele B fraction signal will be

saved in the figures/signal folder. (default=TRUE).
tags Common tag which appears in the different filenames (cdf, ugp, ufl) of the chip.

For no tag, use tags=NULL (default = NULL).

Figure 7: Example of the content of a csv file for normalTumorArray parameter. The first column contains the
name of the different normal files (without the .cel extension) in the data-set folder in rawData. The second
column contains the name of the tumor files. The name of the two columns are respectively normal and tumor.
The extensions of the files (.CEL for example) should be removed.

If you have specified createArchitecture=TRUE and have given the required parameters, the function will
create the architecture and copy your files in the right folder. After the creation of the aroma architecture, it
runs the normalization process and saves in the aroma architecture all the files necessary to obtain the allele B
fraction and the copy-number signal.

In the case of a study without reference, only parameters dataSetName, chipType, createArchitecture
and savePlot have to be specified. In the case of a normal-tumor study, TumorBoost process is executed.
If you want a CEL file to be used as reference for all the tumor data, then fill the normal column of the
normalTumorArray with the filename of your reference for all files.

4.3 Accessing the copy-number, allele B fraction and genotype

After running the signalPreProcess function, you can not directly access the copy-number and the allele B
fraction signals with the files in the architecture, a treatment is required to read them. Note that the copy-
number signal saved is the raw signal, it needs a reference to normalize it. With the getCopyNumberSignal and
getFracBSignal functions, you can access the copy-number and the allele B fraction profiles.

The getCopyNumberSignal allows you to extract the copy-number signal a chromosome at a time. In the
case of a study without reference, the median of all the signals of the data-set is used to normalize every profile.
In the normal-tumor study, the normal signal is used to normalize the tumor signal.

The getter for the copy-number profile is defined as follows:

getCopyNumberSignal(dataSetName,chromosome,normalTumorArray,onlySNP,listOfFiles,verbose)

10

Parameters Description
dataSetName The name of the data-set folder.
chromosome A vector containing the chromosomes for which the signal will be extracted.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 7).
onlySNP If TRUE, only the copy-number for SNPs positions will be returned (default=FALSE).
listOfFiles A vector containing the names of the files in dataSetName folder for which

the copy-number profiles will be extracted (default is all the files).
verbose If TRUE print some information (default=TRUE).

This function returns a list of size length(chromosome) (each element is named chrX with X the number of
the chromosome) containing a data.frame with columns:

• chromosome Chromosome of the signal.

• position Positions associated with the copy-number.

• copynumber Copy number profiles of selected files; the name of each column is the name of the associated
data file name.

• featureNames Names of the probes.

If you want the allele B fraction, you can use the getFracBSignal function. In a normal-tumor study, allele
B fraction for both normal and tumoral samples is returned. For the tumoral sample, it is the allele B fraction
after the TumorBoost normalization.

getFracBSignal(dataSetName,chromosome,normalTumorArray,listOfFiles,verbose)

Parameters Description
dataSetName The name of the data-set folder.
chromosome A vector containing the chromosomes for which the allele B fraction signal must be extract.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 7).
listOfFiles A vector containing the names of the files in dataSetName folder for which

the allele B fraction profiles will be extracted (default is all the files).
verbose If TRUE print some information (default=TRUE).

This function returns a list of size length(chromosome) (each element is named chrX with X the number of
the chromosome) containing a data.frame with columns:

• chromosome Chromosome of the signal.

• position Positions associated with the allele B fraction.

• fracB Allele B fraction profiles of selected files; the name of each column is the name of the associated
data file name.

• featureNames Names of the probes.

If you want the genotype call, you can use the getGenotypeCalls function.

getGenotypeCalls(dataSetName,chromosome,listOfFiles=NULL,verbose=TRUE)

Parameters Description
dataSetName The name of the data-set folder.
chromosome A vector containing the chromosomes for which the genotype call will be extracted.
listOfFiles A vector containing the names of the files in dataSetName folder for which

the genotype signal will be extracted (default is all the files).
verbose If TRUE print some information (default=TRUE).

11

This function returns a list of size length(chromosome) (each element is named chrX with X the number of
the chromosome) containing a data.frame with columns:

• chromosome Chromosome of the signal.

• position Positions associated with the genotype.

• genotype Genotype calls corresponding to selected files; the name of each column is the name of the
associated data file name.

• featureNames Names of the probes.

The next getter, getSymFracBSignal, returns the symmetrized allele B fraction only for heterozygous positions.
To symmetrize the allele B fraction the transformation x 7→ 2∗ |x−0.5| is applied. It centers the data in 0.5 cor-
responding to heterozygous allele B fraction then symmetrize and multiply by 2 to have a signal between 0 and 1.

This method can be run only in a normal-tumor case, and each tumor file must match with a unique normal
file.

getSymFracBSignal(dataSetName,chromosome,normalTumorArray,file,verbose=TRUE)

Parameters Description
dataSetName The name of the data-set folder.
chromosome A vector with the chromosomes for which the symetrized signal will be extracted .
normalTumorArray A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 7).
file The name of the file in dataSetName folder for which

the symetrized signal will be extracted .
verbose If TRUE print some information (default=TRUE).

This function returns a list of size length(chromosome) (each element is named chrX with X the number of
the chromosome) containing a data.frame with columns:

• chromosome Chromosome of the signal.

• position Positions associated with the genotype.

• fracB One column named by the data file name. It contains the symmetrized allele B fraction signal for
the specified profile.

• featureNames Names of the probes.

4.4 Usage

We refer to sections 3.2 and 3.3 to normalize input data without or with control samples in the study, respectively.

Get a signal
The following commands enable to extract the copy-number or the allele B fraction profiles of all the files for
the chromosome 5:

> #normal-tumor study

> CNdata2=getCopyNumberSignal("datatest2",5,normalTumorArray=normalTumorArray,TRUE)

> fracBdata2=getFracBSignal("datatest2",5,normalTumorArray=normalTumorArray)

> #study without reference

> CNdata1=getCopyNumberSignal("datatest1",5,onlySNP=TRUE)

> fracBdata1=getFracBSignal("datatest1",5)

To access the copy-number or allele B fraction profiles, run:

> CNdata2$chr5

> fracBdata2$chr5$tumor

> fracBdata2$chr5$normal

> fracBdata1$chr5$tumor

12

5 Segmentation

In the package MPAgenomics, we provide two segmentation methods. The first one wraps the cghseg pack-
age which fits a Gaussian maximum-likelihood piecewise constant smoothing model [Picard et al., 2005] using
pruned dynamic programming [Rigaill, 2010]. When the user chooses this method, MPAgenomics selects the
number of segments with the slope heuristic [Birgé and Massart, 2007].

The second segmentation approach uses the PELT method of the cpt.mean function from the changepoint

package [Killick and Eckley, 2013]. In the initial PELT method, the penalty is Kρ log(P) with a profile of
length P , K the number of segments and a ρ > 0 a constant to optimize. When the user chooses this method,
MPAgenomics suggests another calibration for the penalty parameter. For more details, see Section 5.3.

5.1 From data normalized by aroma

The procedure described above can be run by the segmentationAroma function if the working directory respects
the aroma architecture.

segmentationAroma(dataSetName,normalTumorArray,chromosome,Rho=NULL,Kmax=10,listOfFiles=NULL,onlySNP=TRUE,

savePlot=TRUE,method="cghseg")

Parameters Description
dataSetName The name of the data-set folder.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 7).
chromosome A vector with the chromosomes to be segmented.
Rho Only for method=”PELT”, a vector containing all the penalization values to test

for the segmentation. If no values are provided, default values will be used.
Kmax Only for method=”cghseg”, maximal number of segments.
onlySNP If TRUE, only the copy-number for SNPs positions will be returned (default=TRUE).
listOfFiles A vector containing the names of the files in dataSetName folder for which

the copy number profiles will be segmented (default is all the files).
savePlot if TRUE, graphics of the segmented CN signal will be

saved in the figures/dataSetName/segmentation/CN folder. (default=TRUE).
method ”PELT” or ”cghseg”. (default=”cghseg”).

If savePlot=TRUE, some graphics will be plotted (see Fig 8).

The graphics of the segmented profiles are saved in the figures/dataSetName/segmentation folder. A
summary of the segmented profile is saved in a text file (Fig. 9) in the segmentation/dataSetName/ folder,
it contains 5 columns: chrom, chromStart, chromEnd, probes and means containing the number of the chro-
mosome, the starting position of the segment, the ending position of the segment, the number of probes in the
segment and the mean of the segment.

The output of the function is a list where every element of the list contains the segmentation results for a
different profile formatted in a list containing:

• copynumber A vector containing the copy-number signal.

• segmented A vector of the same size as copynumber containing the segmented values.

• startPos The position of every probe.

• chromosome A vector of the same size as copynumber containing the chromosome number.

• featureNames Names of the probes.

• sampleNames The name of the signal.

• segment A data.frame that sums up the results of the segmentation. Each row is a different segment
with the chromosome, start position, end position, number of probes in the segment and the value of the
segment.

13

Figure 8: Top left: variation of the number of segments with regards to ρ. Top right: the frequency of occurrence
of breakpoints in all segmentation. Bottom: Segmentation with the optimal ρ found.

Figure 9: Summary of a segmentation for a profile.

The output for a profile is formatted in order to be usable in input of the callingProcess function (see
section 6.2) but if you use the aroma architecture and want to label your segments, you can directly use
the cnSegCallingProcess function (see section 6.1). This function runs the segmentation and the calling
processing.

In the following example, the segmentation processing is run on one file of the downloaded data:

> file="GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A02_31234"

> seg1=segmentationAroma("datatest1",chromosome=21:22,onlySNP=TRUE,plot=TRUE,

+ listOfFiles=file,method="PELT")

The results obtained for one profile are shown in figures 8 & 9.

14

For a normal-tumor study where each tumor file matches with a unique normal file (and only in this case),
it is possible to segment the symmetrized allele B fraction with the function segFracBSignal:

segFracBSignal(dataSetName,normalTumorArray,chromosome=1:22,Rho=NULL,Kmax=10,listOfFiles=NULL,

savePlot=TRUE,verbose=TRUE,method="cghseg")

Parameters Description
dataSetName The name of the data-set folder.
normalTumorArray A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 7).
chromosome A vector with the chromosomes to be segmented.
Rho Only for method=”PELT”, a vector containing all the penalization values to test

for the segmentation. If no values are provided, default values will be used.
Kmax Only for method=”cghseg”, maximal number of segments.
listOfFiles A vector containing the names of the files in dataSetName folder for which

the allele B profile is segmented (default is all the files).
savePlot if TRUE, graphics of the segmented allele B profile will be

saved in the figures/dataSetName/segmentation/fracB folder. (default=TRUE).
verbose If TRUE, print some information (default=TRUE).

The output of the function is a data.frame containing the segmentation results, each row corresponding to
a different segment and with columns:

• sampleName Name of the file the segment belongs to.

• chromosome Chromosome the segment belongs to.

• chromStart Starting position of the segment.

• chromEnd Ending position of the segment.

• probes Number of probes in the segment.

• means Mean of the segment.

5.2 For any data provided in matrices

Assuming that normalized data are stored in a matrix, you can use the segmentation function to perform
segmentations with parameter choices suggested in MPAgenomics.

segmentation(signal,Rho=NULL,Kmax=10,position=NULL,plot=TRUE,verbose=TRUE,method="cghseg")

Parameters Description
signal A vector containing the signal.
Rho Only for method=”PELT”, a vector containing all the penalization values to test

for the segmentation. If no values are provided, default values will be used.
Kmax Only for method=”cghseg”, maximal number of segments.
position A vector containing the position of all elements of the signal (not necessary).
plot If TRUE, plot some graphics (default=TRUE).
verbose If TRUE, print some information (default=TRUE).
method ”PELT” or ”cghseg”. (default=”cghseg”).

If plot=TRUE, some graphics will be plotted (see Fig 8).
The output of the function is a list containing:

• signal A vector containing the signal.

• segmented A vector of the same size as the signal containing the segmented values.

• startPos The position of each probe.

15

• segment A data.frame that sums up the results of the segmentation. Each row is a different segment
with the start position, end position, number of points in the segment and the value of the segment.

For the following example, a matrix is built from the preprocessed files obtained in section 4.2. A copy
number profile from one patient chromosome is then isolated:

> file="GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A07_31314"

> CNdata1=getCopyNumberSignal("datatest1",20,onlySNP=TRUE,listOfFiles=file)

> copyNumber=CNdata1$chr20$GIGAS_g_GAINmixHapMapAffy2_GenomeWideEx_6_A07_31314

> position=CNdata$chr20$position

Then, the segmentation process can be run using:

> seg=segmentation(copyNumber,position=position,plot=TRUE,verbose=TRUE,method="PELT")

This leads to the same plots as in Fig 8 and the results are saved in the right format for the calling function
(see section 6.2).

The list of found segments can be accessed with:

> seg$segment

5.3 To go further

In this part, we describe the different calibration methods associated with cghseg and PELT in MPAgenomics.
We also illustrate that calibrating the parameter according to a variance criterium can be misleading.

5.3.1 Choice of the number of segments for cghseg

cghseg method runs with a predetermined number of segments. In general, users fix a maximal number of seg-
ments Kmax and then must choose the best segmentation according to some criteria. MPAgenomics implements
the slope heuristic [Birgé and Massart, 2007] to choose automatically the number of segments.

Let k the number of segments, the criterium [Lebarbier, 2005] to minimize is

g(k,C) =
1

P

(
R(k) + C × k ×

(
2.5 + log(

P

k
)

))
where R(k) is the quadratic loss between the observed and the segmented signal, and C a constant to

optimize.
The first step is to find the optimal constant Ĉ to use. Given a list C of potential constant, for each element

C ∈ C, we find the optimal k̂ minimizing g(k,C). Then, the optimal constant Ĉ is 2×C0, whith C0 the constant
associated with the largest drop of the number of segments in Fig. 10.

Once the optimal constant Ĉ found, the optimal number of segments k̂ is the one minimizing g(k, Ĉ).

5.3.2 Choice of the number of segments for PELT

The penalty of PELT looks like ρ × K × log(P) with K the number of segments and P the length of the
profile. Only the parameter ρ can be chosen by the user. As the default value in PELT (ρ = 1) did not provide
satisfying segments compared to manually annotated segments, which we observed on 70 profiles, we suggest
another method to calibrate the ρ parameter. To make the choice of the optimal ρ in MPAgenomics, the PELT
method is run for a range of ρ provided by default or given by the user. Then, the evolution of the number of
segments is plotted with regards to the ρ parameter (Fig 11).

16

Figure 10: Optimal number of segments minimizing g(C, k) with regards to C. C0 is the constant associated
with the largest drop of the number of segments.

Figure 11: Variation of the number of segment with regards to rho.

We want to adjust the ρ parameter to have a reasonable number of segments. So, we look for the widest
range of ρ for which the number of segments remains unchanged (and larger than 1). Indeed, our intuition is
that we can be confident in the found breakpoints because the penalty has to increase significantly to remove
some breakpoints. The optimal data-driven ρ is the left-most value of the widest range such that the number
of segments is larger than 1. Otherwise we consider there is only one segment in the profile.

Sample-specific versus common parameter The sample-specific choice of ρ described above was empir-
ically compared with a common choice of ρ depending on the signal-to-noise ratio within each group of given
profiles. Seventy profiles from a real dataset [Renneville et al., 2013] were clustered into groups with homoge-
neous signal-to-noise ratio (SNR) by using a Gaussian mixture model. Three groups were provided by the BIC
criterion.

Figure 12 displays results (chromosome 1) for each profile (patient). Following Section 5.3.2 the widest range
of ρ values was plotted for each profile. Colors (light grey, grey, and black) indicate the SNR level in each group
(respectively low, middle, and high).

Whereas the lowest SNR group only contains ranges of ρ with small values, other groups correspond to ranges
of both small and large values of ρ. A common choice of ρ within each of these two groups would have led to
erroneous segmentations. The same conclusion applied to other chromosomes and criteria such as variance.

17

Figure 12: Widest ranges of ρ (x-axis) for 70 copy number profiles (chromosome 1) (y-axis). Colors indicate
clusters of signal-to-noise ratios (light grey < grey < black).

6 Calling aberrations in copy-number profiles

When performing segmentations with cghseg or PELT, labels of segments (loss, normal or gain) are not
known. It is possible to assign these labels with the CGHcall method [van de Wiel et al., 2007]. A wrapper of
the CGHcall calling process is available in MPAgenomics.

Starting with a signal and an associated segmented profile, the method assumes that the segmented values
follow a mixture of Gaussians. The parameters of the model are estimated with an EM algorithm with a specific
initialization. Then, every segment is called by the most likely label according to the modeL.

6.1 From data normalized by aroma

The cnSegCallingProcess function executes the segmentation (see section 5) and the calling process. The
specified data will be automatically imported by the function.

cnSegCallingProcess(dataSetName,normalTumorArray,chromosome,Rho,Kmax,listOfFile,onlySNP,savePlot,

nclass,cellularity,method,...)

18

Parameters Details
dataSetName name of the data-set folder in the rawData folder containing the signals to use.
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 7).
chromosome A vector containing the chromosome to segment.
Rho Only for method=”PELT”, a vector containing all the penalization values to test

for the segmentation. If no values are provided, default values will be used.
Kmax Only for method=”cghseg”, maximal number of segments.
listOfFiles A vector containing the file names from the dataSetName to use.
onlySNP If TRUE, only the SNP probes will be used.
savePlot If TRUE, print some graphics (default=TRUE).
nclass The number of levels to be used for calling. Either 3 (loss, normal, gain),

4 (including amplifications), 5 (including double deletions) (default=3).
cellularity Percentage of tumor cells in the sample (default=1).
... Other parameters for the CGHcall function [van de Wiel and Vosse, 2012].
method ”PELT” or ”cghseg”. (default=”cghseg”).

This function will save every segment in a text file in the segmentation folder in the working directory and
return a data.frame with columns:

• sampleNames Name of the file.

• chrom The chromosome of the segment.

• chromStart The starting position (in bp) of the segment. This position is not included in the segment.

• chromEnd The ending position (in bp) of the segment. This position is included in the segment.

• probes Number of probes in the segment.

• means Mean of the segment.

• calls The calling of the segment (”double loss”, ”loss”, ”normal”, ”gain” or ”amplification”).

The graphic of the segmented profile is saved in the figures folder of the architecture.

> seg2=cnSegCallingProcess("datatest1",chromosome=21:22,method="PELT")

The output of the function is shown in the figure 13.

6.2 For any data provided in matrices

The function callingProcess executes all the calling process and can be used without the aroma architecture.
You can use this function with the segmentation method provided in the package or any other methods as long
as you give the results of the segmentation in the right format (see segmentData argument).

callingProcess(segmentData,nclass=5,cellularity=1,...)

Parameters Description
segmentData A list (see details below).
nclass Number of labels. 3 corresponds to ”loss”, ”normal” and ”gain”,

4 adds ”amplification” and 5 adds ”double loss”.
cellularity Percentage of tumor cells in the sample (default=1).
verbose If TRUE, print some information.
... Others parameters for CGHcall function [van de Wiel and Vosse, 2012].

segmentData is a list containing:

• copynumber A matrix. Every column represents a copy-number signal for a different sample.

19

Figure 13: Top: graphics saved in the figures folder. Bottom: output of the function (saved in a text file too).

• segmented A matrix of the same size as copynumber containing the segmented values of the copy-number
signal.

• chromosome A vector, of length the number of rows of copynumber matrix, containing the number of
the chromosome for each position.

• startPos A vector, of length the number of rows of copynumber matrix, containing the genomic position
of each probe.

• featureNames A vector, of length the number of rows of copynumber matrix, containing the name of
each probe.

• sampleNames A vector, of length the number of columns of copynumber matrix, containing the name
of each file.

Figure 14: Left: example of copynumber matrix for 2 samples. Right: example of the associated segmented

matrix.

This function returns a list with the same elements as segmentData and some supplementary elements:

20

• calls A matrix, of the same size as copynumber matrix, containing the label of each point.

• segment A data.frame that sums up all the segments found.

• probdloss (if you ran callingProcess with nclass=5) A matrix of the same size as copynumber matrix.
It contains the probability for each segmented copy-number to be a double loss.

• probloss A matrix of the same size as copynumber matrix. It contains the probability for each segmented
copy-number to be a loss.

• probdnorm A matrix of the same size as copynumber matrix. It contains the probability for each
segmented copy-number to be normal.

• probdgain A matrix of the same size as copynumber matrix. It contains the probability for each seg-
mented copy-number to be a gain.

• probdamp (if you have run callingProcess with nclass=4 or 5) A matrix of the same size as copynumber
matrix. It contains the probability for each segmented copy-number to be an amplification.

A wrapper is provided for creating the segmentData argument:

callingObject(copynumber, segmented, chromosome, position, featureNames, sampleNames)

The parameters featureNames and sampleNames can be omitted.
The following lines continue the example of the section 5. They create the segmentData list and run the

calling process:

> #create the segmentData object

> callobj= callingObject(copynumber=seg$signal, segmented=seg$segmented,

+ chromosome=rep(20,length(seg$signal)), position=seg$startPos,

+ sampleNames="sample1")

> #run the calling

> call=callingProcess(callobj,nclass=3,cellularity=1,verbose=TRUE)

> call$segment

The result of the calling can be seen in figure 15.

Figure 15: The summation of all the segments after running the function callingProcess.

A wrapper CNAobjectToCGHcallObject to convert CNA object from DNAcopy package [Seshan and Olshen,]
(CBS segmentation) to the desired format (see segmentData) is also provided.

CNAobjectToCGHcallObject(CNAobject)

Parameters Description
CNAobject Output of the segment function from DNAcopy package.

6.3 filterSeg function

At the end of the calling process, if you have a lot of segments, you might want to filter some uninteresting
segments. The filterSeg function allows to filter segments from 3 criteria: the length in bp, the size in probes
and the calling.

filterSeg(segmentList,minLength=1,minProbes=1,normalFilter=TRUE)

21

Arguments Description
segmentList A data.frame containing a description of segments, it must have at least columns:

”chromStart”, ”chromEnd”, ”probes” and ”calls” (see the output of
cnSegLabelProcess and callingProcess functions).

minLength The minimum length (in bp) for a segment. All the shorter segments are removed.
minProbes The minimum number of probes for a segment.

All the segments with less probes are removed.
keptLabel Vector of label to keep.

Only segment with one of the specified label will be kept.

It returns a data.frame of the same format as segmentList without the filtered segments.

We assume to have a data.frame called call$segment containing the columns plot in Fig. 16

Figure 16: call$segment before filtering.

The following command executes the code to keep only segments presenting a gain.

> segmentfilter=filterSeg(call$segment,keptLabel="gain")

> segmentfilter

Obtained results are shown in Fig. 17

Figure 17: Result of the filtering.

7 Selection of genomic markers

In this section, the goal is to select some relevant markers according to a response.

It consists in minimizing gλ : β ∈ RP 7→ g(β), where

gλ(β) =

I∑
i=1

(yi − (Xβ)i)
2 + λ

P∑
p=1

|βp| ,

with (Xβ)i =
∑
p xi,pβp and λ > 0 controlling the number of non-zero coordinates of β. After minimization,

non-zero coefficients βp correspond to influential positions to predict the response.

To solve this problem, we use the LARS algorithm [Efron et al., 2004] that solves the lasso problem for all
the values of λ. In order to choose the best solution, we use a cross validation to select the best values of λ and
return the associated solution.

7.1 From data normalized by aroma

The function markerSelection will extract the data from the aroma architecture and run the LARS algorithm
and the cross-validation for each chromosome separately.

22

markerSelection(dataSetName,dataResponse,chromosome,signal,normalTumorArray,onlySNP,nbFolds,

loss,plot,...)

Parameters Description
dataSetName The name of the data-set folder.
dataResponse A csv files or a data.frame with 2 columns: ”files” and ”response”.

The column ”files” contains the filename to extract and
the second column the response associated with the file.

chromosome A vector containing the number of the chromosomes for the SNPs selection.
signal ”CN” or ”fracB”, corresponding to which signal will be analyzed (default=”CN”).
normalTumorArray Only in the case of normal-tumor study. A csv file or a data.frame

containing the mapping between normal and tumor files(Fig. 7).
onlySNP Only if signal="CN". If TRUE, only the SNPs probes are used (default=FALSE).
nbFolds Number of folds for the cross-validation (default=10).
loss either ”logistic” (binary response) or ”linear” (quantitative response), default is ”logistic”.
plot If TRUE, cross-validation mean squared error is plotted (default=TRUE).
... supplementary arguments for cv.glmnet function [Friedman et al., 2009] in case of

logistic loss or for HDlars function for linear loss.

For signal="fracB", the selection of markers is done for the tumor allele B fraction.
The function returns a list containing as many elements as the number of chromosomes specified in param-

eters. The name chrX, where X is the number of a chromosome. Each element of this list is a list containing:

• chr The chromosome corresponding to the signal.

• markers.index A vector containing the index of all selected markers.

• markers.position A vector containing the position of all selected markers.

• markers.names A vector containing the name of all selected markers.

• coefficient A vector containing the coefficients (β̂) of all selected markers.

• intercept Intercept of the model.

For the following example, we assume that the architecture is already created and the data-set is prepro-
cessed as in the previous examples (see section 4.1 and 4.2). The response is stored in a data.frame named
dataResponse (see Fig. 18).

Figure 18: Example of dataResponse parameters for the markerSelection function.

The relevant markers can be selected by executing the following code:

> dataResponse=data.frame(files=getListOfFiles("datatest1"),

+ response=c(2.105092,1.442868,1.952103,1.857819,2.047897,1.654766,2.385327,2.113406))

> res=markerSelection(dataSetName="datatest1",dataResponse,chromosome=21:22,signal="CN",

+ onlySNP=TRUE,loss="linear")

23

Figure 19: Left: cross-validation mean squared error. Right: results for chromosome 22.

Figure 19 shows the output of the function.
In this example, two markers are selected: the 1065th and 10046th markers of the profile (markers.index) at

positions 20192586 pb and 47227321 pb on the chromosome 22. The coefficient associated with each selected
marker are given in the coefficient vector.

7.2 For any data provided in matrices

A version of the selection of markers without the aroma architecture is available:

variableSelection(dataMatrix,dataResponse,nbFolds,plot)

Parameters Description
dataMatrix A matrix containing the data, each row is a different signal.
dataResponse A vector containing the response associated with each signal.
nbFolds Number of folds for the cross-validation (default=10).
loss either ”logistic” (binary response) or ”linear” (quantitative response), default is ”logistic”.
plot If TRUE plot cross-validation mean squared error (default=TRUE).
... supplementary arguments for cv.glmnet function [Friedman et al., 2009] in case of

logistic loss or for HDlars function for linear loss.

The output of the functions is:

• variable A vector containing the index of all selected markers.

• coefficient A vector containing the coefficients (β̂) of all selected variables.

• intercept Intercept of the model.

For example, simulate a data-set and the associated response

> dataMatrix=matrix(rnorm(5000,0,0.5),nrow=50)

> dataResponse=drop(dataMatrix%*%sample(c(rep(0,90),rep(1,10))))

> res=variableSelection(dataMatrix,dataResponse,nbFolds=5,loss="linear",plot=TRUE)

24

References

[Bengtsson, 2004] Bengtsson, H. (2004). aroma - An R Object-oriented Microarray Analysis environment.
Preprint in Mathematical Sciences 2004:18, Mathematical Statistics, Centre for Mathematical Sciences, Lund
University, Sweden.

[Bengtsson et al., 2010a] Bengtsson, H., Bullard, J., Hansen, K., Neuvial, P., Purdomand, E., Robinson, M.,
and Simpson, K. (2010a). http://www.aroma-project.org/.

[Bengtsson et al., 2008a] Bengtsson, H., Irizarry, R., Carvalho, B., and Speed, T. (2008a). Estimation and
assessment of raw copy numbers at the single locus level. Bioinformatics, 24:759–767.

[Bengtsson et al., 2010b] Bengtsson, H., Neuvial, P., and Speed, T. P. (2010b). Tumorboost: Normalization
of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays. BMC
Bioinformatics, 11.

[Bengtsson et al., 2008b] Bengtsson, H., Simpson, K., Bullard, J., and Hansen, K. (2008b). aroma.affymetrix:
A generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory. Technical
Report 745, Department of Statistics, University of California, Berkeley.

[Bengtsson et al., 2009] Bengtsson, H., Wirapati, P., and Speed, T. P. (2009). A single-array prepro-
cessing method for estimating full-resolution raw copys from all Affymetrix genotyping arrays including
GenomeWideSNP 5 & 6. Bioinformatics, 25(17):2149–2156.

[Birgé and Massart, 2007] Birgé, L. and Massart, P. (2007). Minimal penalties for gaussian model selection.
Probability Theory and Related Fields, 138(1-2):33–73.

[Efron et al., 2004] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.
Annals of Statistics, 32:407–499.

[Friedman et al., 2009] Friedman, J., Hastie, T., and Tibshirani, R. (2009). Regularization paths for generalized
linear models via coordinate descent.

[Grimonprez et al., 2014] Grimonprez, Q., Celisse, A., Cheok, M., Figeac, M., and Marot, G. (2014). MPAge-
nomics: An R package for multi-patient analysis of genomic markers. Preprint http://hal.inria.fr/hal-
00933614.

[Killick and Eckley, 2013] Killick, R. and Eckley, I. (2013). changepoint: An R package for changepoint analysis.
R package version 1.3.

[Killick et al., 2012] Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints
with a linear computational cost. Journal of the American Statistical Association, 107(500):1590–1598.

[Lebarbier, 2005] Lebarbier, E. (2005). Detecting multiple change-points in the mean of gaussian process by
model selection. Signal Processing, 85(4):717 – 736.

[Picard et al., 2013] Picard, F., Hoebeke, M., Lebarbier, E., Miele, V., Rigaill, G., and Robin, S. (2013). cghseg:
Segmentation methods for array CGH analysis. R package version 1.0.2.

[Picard et al., 2005] Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005). A statistical
approach for array CGH data analysis. BMC Bioinformatics, 6(1):27.

[Renneville et al., 2013] Renneville, A., Abdelali, R. B., Chevret, S., Nibourel, O., Cheok, M., Pautas, C.,
Dulery, R., Boyer, T., Cayuela, J.-M., Hayette, S., Raffoux, E., Farhat, H., Boissel, N., Terre, C., Dombret,
H., Castaigne, S., and Preudhomme, C. (2013). Clinical impact of gene mutations and lesions detected
by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin
treatment: Results of the ALFA-0701 trial. Oncotarget, 4(9).

[Rigaill, 2010] Rigaill, G. (2010). Pruned dynamic programming for optimal multiple change-point detection.

[Seshan and Olshen,] Seshan, V. E. and Olshen, A. DNAcopy: DNA copy number data analysis. R package
version 1.38.1.

25

[Staaf et al., 2008] Staaf, J., Lindgren, D., Vallon-Christersson, J., Isaksson, A., Göransson, H., Juliusson, G.,

Rosenquist, R., Höglund, M., Borg, Åke., and Ringnér, M. (2008). Segmentation-based detection of allelic
imbalance and loss-of-heterozygosity in cancer cells using whole genome SNP arrays. Genome Biology, 9(9).

[Tibshirani, 1994] Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288.

[van de Wiel and Vosse, 2012] van de Wiel, M. and Vosse, S. (2012). CGHcall: Calling aberrations for array
CGH tumor profiles. R package version 2.26.0.

[van de Wiel et al., 2007] van de Wiel, M. A., Kim, K. I., Vosse, S. J., van Wieringen, W. N., Wilting, S. M., and
Ylstra, B. (2007). CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics, 23(7):892–894.

26

	Introduction
	Preliminaries
	Citing MPAgenomics
	Installation

	Starting example
	Download a toy data-set
	Use of the main functions of the package
	To go further…

	Data Normalization
	Folder architecture
	Normalization process
	Accessing the copy-number, allele B fraction and genotype
	Usage

	Segmentation
	From data normalized by aroma
	For any data provided in matrices
	To go further
	Choice of the number of segments for cghseg
	Choice of the number of segments for PELT

	Calling aberrations in copy-number profiles
	From data normalized by aroma
	For any data provided in matrices
	filterSeg function

	Selection of genomic markers
	From data normalized by aroma
	For any data provided in matrices

