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Abstract

This introduction to the R package MLDS is a modified and updated version of
Knoblauch and Maloney (2008) published in the Journal of Statistical Software.

The MLDS package in the R programming language can be used to estimate perceptual
scales based on the results of psychophysical experiments using the method of difference
scaling. In a difference scaling experiment, observers compare two supra-threshold differ-
ences (a,b) and (c,d) on each trial. The approach is based on a stochastic model of how
the observer decides which perceptual difference (or interval) (a, b) or (c, d) is greater,
and the parameters of the model are estimated using a maximum likelihood criterion. We
also propose a method to test the model by evaluating the self-consistency of the esti-
mated scale. The package includes an example in which an observer judges the differences
in correlation between scatterplots. The example may be readily adapted to estimate
perceptual scales for arbitrary physical continua.

Keywords: difference scaling, sensory magnitude, proximity, psychophysics, signal detection
theory, GLM.

1. Introduction

Difference scaling is a psychophysical procedure used to estimate supra-threshold perceptual
differences for stimuli distributed along a physical continuum. On each of a set of trials, an
observer is presented with a quadruple, (Ia, Ib, Ic, Id), drawn from an ordered set of stimuli,
{I1 < I2 < . . . < Ip}. For convenience, the two pairs (Ia, Ib) and (Ic, Id) are often ordered
so that Ia < Ib and Ic < Id on the physical scale but they need not be. On each trial, the
observer judges which pair shows the greater perceptual difference. The experimental data
consist of an n× 5 matrix with each row comprising the indices of each quadruple, (a, b; c, d),
from the larger set and the observer’s response for each of n trials. The output of the scaling
procedure are scale values {ψ1, ψ2, . . . , ψp} that best capture the subject’s judgments of the
perceptual difference between the stimuli in each pair (Ia, Ib) as we describe in detail below.

In seminal papers, Schneider and colleagues (Schneider 1980a,b; Schneider, Parker, and Stein
1974) applied this procedure to the perception of loudness and proposed a method for es-
timating the difference scale based on the proportion of times the fitted model reproduced
the observer’s judgments. This method does not explicitly model stochastic variability in the
observer’s responses. Boschman (2001) proposed a method based on numerical rating of per-
ceptual differences. Subsequently, Maloney and Yang (2003) developed a maximum likelihood
procedure, maximum likelihood difference scaling (MLDS), for estimating the parameters of
the scale. Their method is based on direct perceptual comparison of pairs of stimuli.
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MLDS has been successfully applied to characterize color differences (Maloney and Yang
2003), surface glossiness (Obein, Knoblauch, and Viénot 2004), image quality (Charrier, Mal-
oney, Cherifi, and Knoblauch 2007), adaptive processes in face distortion (Rhodes, Maloney,
Turner, and Ewing 2007) and neural encoding of sensory attributes (Yang, Szeverenyi, and
Ts’o 2008). The mathematical basis for the method, including necessary and sufficient con-
ditions for a difference scale representation in the absence of observer error, can be found in
Krantz, Luce, Suppes, and Tversky (1971, Chapter 4, Definition 1, p. 147). We summarize
the most relevant of these conditions below when we discuss diagnostic tests of the model.

In this article, we will describe the MLDS procedure using direct maximization of the like-
lihood as initially described by Maloney and Yang (2003) and an equivalent approach as a
generalized linear model (GLM McCullagh and Nelder 1989). We present an R package (R
Development Core Team 2008), MLDS, that implements both approaches as well as diagnos-
tics of the estimated scale’s validity. We first describe difference scaling experiments based
on comparison of pairs of pairs of stimuli termed quadruples. We later describe an alternative
method based on triples of stimuli, termed triads that may prove to be convenient in partic-
ular experimental applications In the last section, we will demonstrate the package with an
extended example in which we show how to use MLDS to evaluate perception of correlation in
scatterplots (Cleveland and McGill 1984b). The package is available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=MLDS.

In Figure 1 we show the kinds of stimuli used in the example: the p = 11 scatterplots each
based on samples of 100 points drawn from bivariate Gaussian distributions that differ only in
correlation r. The first ten values of r are equally spaced from 0.0 to 0.9 while the eleventh is
0.98. As explained in the next section, one goal of difference scaling is to develop a perceptual
scale that predicts perceived differences between stimuli (here scatterplots) on the physical
scale. An example of such a scale is shown as the twelfth graph in the figure. The example
code is organized so that it can be readily adapted to other applications.

2. Maximum likelihood difference scaling

In this section, we develop the model of the observer’s judgments in the psychophysical task
of difference scaling. In each experimental session, the experimenter selects a set of p stimuli,
{I1, I2, . . . , Ip} ordered along a physical continuum, such as the p = 11 correlations in Figure 1.
On each trial the experimenter presents an observer with quadruples (Ia, Ib; Ic, Id), and asks
him to judge which pair, Ia, Ib or Ic, Id, exhibits the larger perceptual difference. Figure 2
contains an example of such a quadruple. The observer’s task is to judge whether the upper
or lower pair of scatterplots exhibits the larger difference. It will prove convenient to replace
(Ia, Ib; Ic, Id) by the simpler notation (a, b; c, d).

2.1. Choosing the quadruples

Over the course of the experiment, the observer sees many different quadruples. The experi-
menter could choose to present all possible quadruples (a, b; c, d) for p stimuli to the observer
or a random sample of all possible quadruples. In past work, experiments have used the set
of all possible non-overlapping quadruples a < b < c < d for p stimuli and the resulting scales
have proven to be readily interpretable. Moreover, Maloney and Yang (2003) report exten-
sive evaluations of this subset of all possible quadruples. Consequently we will be primarily

http://CRAN.R-project.org/package=MLDS
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Figure 1: The first 11 graphs are scatterplots of 100 points each drawn from a bivariate
Gaussian distribution with the correlation given above each graph. The twelfth graph is
a perceptual scale for differences of correlation estimated from the judgments of a single
observer. Notice that, for values of correlation less than about 0.4, the scatterplots are
difficult to discriminate. The corresponding difference scale is nearly constant across this
range.
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Figure 2: An example of a trial stimulus presentation from the difference scaling experi-
ment for estimating correlation differences in the scatterplot experiment. The observer must
judge whether the difference in perceived correlation is greater in the lower or upper pair of
scatterplots.

concerned with this set of quadruples.

In the example we present, we use only the non-overlapping quadruples. The physical scale
values are correlations of bivariate Gaussian distributions, and the stimuli are scatterplots
drawn from bivariate Gaussian distributions. The changes needed to employ the methods
and diagnostic tests presented here with other subsets of possible quadruples are very slight,
should the user prefer a different set of quadruples.

By restricting ourselves to non-overlapping quadruples, we avoid a possible artifact in the
experimental design. Suppose we included quadruples such as (a, b; a, c) with a < b < c
where the same physical scale value appears twice or quadruples of the form (b, c; a, d) with
a < b < c < d, where one interval is contained in the interior of the other. Now consider
an observer who is actually not capable of comparing intervals and whose behavior cannot
therefore be captured by a difference scale. If this observer can correctly order the stimuli,
then, on a trial of the form (a, b; a, c), he can still get the right answer by noting that both
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intervals have a at one end so that b < c implies that (a, b) must be less than (a, c). A similar
heuristic applied to (b, c; a, d) with a < b < c < d would allow the observer to appear to
be ordering intervals correctly when, in fact, he cannot compare intervals. In either case,we
might conclude that the observer is to some extent ordering intervals correctly when in fact he
is simply employing a heuristic based on stimulus order. Using only non-overlapping intervals
effectively forces the observer to compare intervals. Moreover, as noted above, the use of such
intervals has proven itself in previous computational and experimental situations. However, as
we shall see, one possible diagnostic test, the three-point test, requires comparison of intervals
of the form (a, b; a, c), and the experimenter interested in applying this test would have to
include certain overlapping intervals, as we describe below in the discussion of this test.

If p = 11, as in the example, there are(
11
4

)
=

11!

4! 7!
= 330 (1)

different, non-overlapping quadruples. To control for positional effects, on half of the forced-
choice trials, chosen at random, the pairs are presented in the order (a, b; c, d) and on the
other half, (c, d; a, b). The order in which quadruples are represented is randomized. For
p = 11, the observer may judge each of the 330 non-overlapping quadruples in randomized
order or the experimenter may choose to have the observer judge each of the quadruples m
times, completing 330m trials in total. Of course, the number of trials judged by the observer
affects the accuracy of the estimated difference scale (See Maloney and Yang 2003). The time
needed to judge all 330 trials in the example is roughly 10–12 minutes.

At the end of the experiment, the data are represented as an n × 5 matrix or data frame
in which each row corresponds to a trial: four columns give the indices, (a, b, c, d) of the
stimuli from the ordered set of p, and one column indicates the response of the observer to
the quadruple as a 0 or 1, indicating choice of the first or second pair. For example,

> head(kk3)

resp S1 S2 S3 S4

1 0 4 8 2 3

2 1 2 3 6 11

3 1 2 6 7 10

4 0 4 11 1 2

5 0 9 11 7 8

6 0 7 10 1 3

gives the first 6 rows of the data frame for the observations that generated the scale shown
in the lower right of Figure 1.

From these data, the experimenter estimates the perceptual scale values ψ1, ψ2, . . . , ψp cor-
responding to the stimuli, I1, . . . , Ip, as follows. Given a quadruple, (a, b ; c, d) from a single
trial, we first assume that the observer judged Ia, Ib to be further apart than Ic, Id precisely
when,

|ψb − ψa| > |ψd − ψc| (2)

that is, the difference scale predicts judgment of perceptual difference.
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It is unlikely that human observers would be so reliable in judgment as to satisfy the criterion
just given, particularly if the perceptual differences |ψb−ψa| and |ψd−ψc| are close. Maloney
and Yang (2003) proposed a stochastic model of difference judgment that allows the observer
to exhibit some stochastic variation in judgment. Let Lab = |ψb − ψa| denote the unsigned
perceived length of the interval Ia, Ib . The proposed decision model is an equal-variance
Gaussian signal detection model (Green and Swets 1974) where the signal is the difference in
the lengths of the intervals,

δ(a, b; c, d) = Lcd − Lab = |ψd − ψc| − |ψb − ψa| (3)

If δ is positive, the observer should choose the second interval as larger; when it is negative,
the first. When δ is small, negative or positive, relative to the Gaussian standard deviation,
σ, we expect the observer, presented with the same stimuli, to give different, apparently
inconsistent judgments. The decision variable employed by the observer is assumed to be

∆(a, b; c, d) = δ(a, b; c, d) + ε = Lcd − Lab + ε (4)

where ε ∼ N (0, σ2): given the quadruple, (a, b ; c, d) the observer selects the pair Ic, Id pre-
cisely when,

∆(a, b ; c, d) > 0. (5)

2.2. Direct maximization of likelihood

In each experimental condition the observer completes n trials, each based on a quadruple
qk =

(
ak, bk; ck, dk

)
, k = 1, n. The observer’s response is coded as Rk = 0 (the difference of the

first pair is judged larger) or Rk = 1 (second pair judged larger). We denote the outcome “cd
judged larger than ab”by cd � ab for convenience. We fit the parameters Ψ = (ψ1, ψ2, . . . , ψp)
and σ by maximizing the likelihood,

L(Ψ, σ) =
n∏

k=1

Φ

(
δ
(
qk
)

σ

)1−Rk
(

1− Φ

(
δ
(
qk
)

σ

))Rk

, (6)

where Φ(x) denotes the cumulative standard normal distribution and δ
(
qk
)

= δ
(
ak, bk; ck, dk

)
as defined in Equation 4.

At first glance, it would appear that the stochastic difference scaling model just presented has
p+ 1, free parameters: ψ1, . . . , ψp together with the standard deviation of the error term, σ.
However, any linear transformation of the ψ1, . . . , ψp together with a corresponding scaling by
σ−1 results in a set of parameters that predicts exactly the same performance as the original
parameters. Without any loss of generality, we can set ψ1 = 0 and ψp = 1, leaving us with
the p− 1 free parameters, ψ2, . . . , ψp−1 and σ. When scale values are normalized in this way,
we describe them as standard scales.

Equation 6 can be recognized as the likelihood for a Bernoulli variable. Taking the negative
logarithm allows the parameters to be estimated simply with a minimization function such
as optim in R (for example Venables and Ripley 2002, p. 445).

Reparameterization

In practice, we define the minimization functions to work with the parameters on transformed
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scales: the p− 2 scale values by a logit transformation

log

(
x

1− x

)
(7)

so they are constrained to be in the interval (0, 1) and σ by the logarithm so that it re-
mains positive. These transformations have no theoretical significance; they are used to avoid
problems in numerical optimization. Maximum likelihood methods are invariant under such
reparameterization (Mood, Graybill, and Boes 1974, pp. 284–285).

2.3. GLM method

In this section, we show how the above formulation can be framed as a GLM. A generalized
linear model (GLM McCullagh and Nelder 1989) is described by

η(E[Y ]) = Xβ, (8)

where η is a (link) function transforming the expected value of the elements of the response
vector, Y , to the scale of a linear predictor given by the product of the model matrix, X,
and a vector of coefficients, β, and the elements of Y are distributed as a member of the
exponential family. In the present case, the responses of the observer can be considered as
Bernoulli variables and, thus, can be modeled with the binomial distribution which conforms
to this family. The canonical link function for the binomial case is the logistic transformation,
Equation 7. However, other links are possible, and the inverse cumulative Gaussian, or
quantile function, corresponds to Equation 6, described above and would be equivalent to a
probit analysis.

In this section, we assume that we have re-ordered each quadruple (a, b; c, d) so that a < b <
c < d. With this ordering, we can omit the absolute value signs in Equation 3 which then
becomes

δ = ψd − ψc − ψb + ψa

∆ = δ + ε. (9)

The observer bases his or her judgment on ∆ = δ+ ε where ε ∼ N (0, σ2). The observer there-
fore selects the second pair (c, d) with probability Φ (δ), where Φ is the Gaussian distribution
function.

The design matrix, X, can be constructed by considering the weights of the ψi as the co-
variates. On a given trial, the values in only four columns are non-zero, taking on the values
1,−1,−1, 1 in that order. This yields an n×p matrix, X, where n is the number of quadruples
tested and p is the number of physical levels evaluated over the experiment. For example,
consider a set of 7 stimuli distributed along a physical scale and numbered 1–7. The five
quadruples

2 4 5 6
1 2 3 7
1 5 6 7
1 2 4 6
3 5 6 7
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yield the design matrix

X =


0 1 0 −1 −1 1 0
1 −1 −1 0 0 0 1
1 0 0 0 −1 −1 1
1 −1 0 −1 0 1 0
0 0 1 0 −1 −1 1

 .

To render the model identifiable, however, we drop the first column, which has the effect of
fixing β1 = 0, yielding a model with p− 1 parameters to estimate as with the direct method.
This yields the model,

Φ−1(E[Y ]) = β2X2 + β3X3 + . . .+ βpXp, (10)

where Xj is the jth column of X. Unlike the direct method, ψp = βp is unconstrained.

Implicitly in the GLM model, σ = 1. In fact, β̂p from the GLM fit equals σ̂−1 from the direct

method, so that, all things being equal, normalizing the GLM coefficients by β̂p should yield
the same scale as obtained by the direct method.

We have compared solutions using direct optimization (optim in R) and GLM fits (glm func-
tion) and find good agreement. Differences arise occasionally due to the additional constraints
that we have imposed when fitting by the direct method.

2.4. Robustness

In R, there is a choice between five built-in link functions for the binomial family, including
the logit, probit and cauchit (based on the Cauchy distribution). As of R version 2.4.0, it
has become simple for the user to define additional links. In many circumstances, the choice
of link is not critical, since over the rising part of these functions, they are quite similar.
The difference scaling procedure, however, generates many responses at the tails, i.e., easily
discriminable differences and one might think that it would be more sensitive to the choice of
link.

Maloney and Yang (2003) evaluated distributional robustness of the direct optimization
method. They varied the distributions of the error term ε while continuing to fit the data with
the constant variance Gaussian error assumption. They found that MLDS was remarkably
resistant to failures of the distributional assumptions. Hence, the GLM approach using the
probit link is likely to be adequate for most applications of MLDS.

2.5. Goodness of fit

Use of the GLM approach benefits from the availability of several diagnostic tests available in
R for generalized linear models, and we report a measure “proportion of deviance accounted
for” (DAF) that has been suggested (Wood 2006, p. 84) as well as the Akaike information
criterion (AIC Akaike 1973). Some standard diagnostic measures are problematic or difficult
to interpret for binary data, however, because the distribution of the deviance cannot be
guaranteed to approximate a χ2 distribution (Venables and Ripley 2002; Wood 2006). Here,
we implement two diagnostic tests suggested by Wood (2006) based on a bootstrap analysis
of the distribution and independence of the residuals in the example below. The principle on
which these tests are based would be applicable to any GLM model.
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2.6. Diagnostic tests of the measurement model

Even if the data passed an overall goodness of fit test, there still may be patterned failures
in the data that would allow rejection of the difference scaling model. In this section, we
describe two additional diagnostic tests based on the necessary and sufficient conditions that
an observer must satisfy if we are to conclude that his judgments can be described by a
difference scaling model (Krantz et al. 1971, Chapter 4, p. 147, Definition 1) discussed above.
These tests are specific to difference scaling and they correspond to necessary conditions for
the existence of a difference scale in the non-stochastic case in Definition 1 of Krantz et al.

The six-point test

The first condition is the six-point condition, illustrated in Figure 3. It is referred to as
the “weak monotonicity” condition in Krantz et al. (1971, Chapter 4, p. 147 and Figure 1)
in Definition 1, Axiom 4, p. 147. It is also known as the “sextuple condition” (Block and
Marschak 1960). We describe the condition with an example. Suppose that there are two
groups of three stimuli whose indices are a < b < c , and a′ < b′ < c′, respectively. Suppose
that a non-stochastic observer considers the quadruple(a, b; a′, b′) and judges that ab � a′b′,
that the interval ab is larger than the interval a′, b′. On some other trial, he considers (b, c; b′c′)
and judges that bc � b′c′. Now, given the quadruple, (a, c; a′, c′) there is only one possible
response consistent with the difference scaling model: he or she must choose ac � a′c′. The
reasoning behind this constraint is illustrated in the figure and it can be demonstrated directly
from the model.

For the non-stochastic observer, even one violation of this six-point condition would allow
us to conclude that there was no consistent assignment of scale values ψ1, ψ2, . . . , ψp in a
difference scaling model that could predict his or her judgments in a difference scaling task.

● ● ● ● ● ●

a b c a' b' c'

Figure 3: Six-Point Condition: Given stimuli a < b < c and a′ < b < c′ ordered along a scale,
if ab � a′b′ and bc � b′c′, then ac � a′c′.

The six-point condition is a slightly disguised test of additivity of contiguous intervals in the
difference scale. To see how it might fail, imagine that distances in the scale correspond to
chordal distances along a circular segment as shown in the left side of Figure 4. Then the
six-point condition in equality form implies that if ab = a′b′ and bc = b′c′, then ac = a′c′

where = denotes subjective equality. If the six-point condition and other necessary conditions
hold, then the chordal distances on the left side of Figure 4 can be represented along a line as
in the previous Figure 3 (see Krantz et al. 1971, Chapter 4, for further discussion). On the
right side of Figure 4, in contrast, judgments are based on chordal distances along an ellipse.
The six-point condition fails and these judgments cannot be represented by a difference scale.
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● ●

●

a' b'
c'

ac = 0.57, a'c' = 0.63

b

Figure 4: Six-Point Condition: Left. Given stimuli a < b < c and a′ < b < c′ ordered along
a circular (constant curvature) segment, if the chordal distances ab ≈ a′b′ and bc ≈ b′c′, then
ac ≈ a′c′. Right. The six-point condition fails on a contour with non-constant curvature.

Human judgments in difference scaling tasks are not deterministic: if we present the same
quadruple at two different times, the observer’s judgments need not be the same. The
MLDS model allows for this possibility. In MLDS decisions are based on a decision vari-
able ∆(a, b; c, d) and, for any given six points a, b, c and a′, b′, c′ there is a non-zero probability
that the stochastic observer will violate the six-point condition. In particular, suppose that
ψb − ψa is only slightly greater than ψb′ − ψa′ , ψc − ψb is only slightly greater than ψc′ − ψb′ ,
and ψc−ψa is only slightly greater than ψc′ −ψa′ . Then we might expect that the observer’s
probability of judging ab � a′b′ is only slightly greater that 0.5 and similarly with the other
two quadruples. Hence, he has an appreciable chance of judging that ab � a′b′ and bc � b′c′

but ac ≺ a′c′ or ab ≺ a′b′ and bc ≺ b′c′ but ac � a′c′, either a violation of the six-point
property.

Maloney and Yang (2003) proposed a method for testing the six-point property that takes
into account the stochastic nature of the observer’s judgment and uses a resampling procedure
(Efron and Tibshirani 1993) to test the hypothesis that the MLDS model is an appropriate
model of the observer’s judgments.

Given the experimental design and all of the quadruples used, we can enumerate all six-point
conditions present in the experiment, indexing them by k = 1, n6. We count the number of
times, Vk, that the observer has violated the kth six-point condition during the course of the
experiment and the number of times he has satisfied it, Sk. If we knew the probability that
the observer should violate this six-point condition pk, then we could compute the probability
of the observed outcome by the binomial formula,

Λk
6 =

(
Vk + Sk
Vk

)
pVk
k (1− pk)Sk , (11)
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and we could compute the overall likelihood probability

Λ6 =

N6∏
k=1

Λk
6. (12)

Under the hypothesis that the difference scale model is an accurate model of the observer’s
judgments, we have the fitted estimates of scale values ψ̂1, . . . , ψ̂p and σ̂. We can compute
estimates of the values Λ̂k

6 based on these scale values and compute an estimate of Λ̂6 =∏N6
k=1 Λ̂k

6. This is an estimate of the probability of the observed pattern of six-point violations
and successes. We next simulate the observer N times with the fitted parameter values
ψ̂1, . . . , ψ̂p and σ̂ of the actual observer used for the simulated observer and perform the
analysis above to get N bootstrap estimates Λ̂∗6 of Λ̂6. Under the hypothesis that MLDS
is an accurate model of the observer’s judgments, Λ̂6 should be similar in value to Λ̂∗6 and
we employ a resampling procedure to test the hypothesis at the 0.05 level by determining
whether Λ̂6 falls below the 5th percentile of the bootstrap values Λ̂∗6 ( See Maloney and Yang
(2003) for details).

The three-point test

The second empirically-testable necessary condition for a difference scale representation of
data is the three-point condition (Krantz et al. 1971, Chapter 4, p. 147, Definition 1, Axiom
3). Given three stimuli a < b < c , the non-stochastic observer must judge that av � ab and
ac � bc: an interval must be greater than a proper interval contained within it. Often, in
difference scaling applications, this three-point property is evidently satisfied and not formally
tested. In some applications, the observer can simply be shown the test stimuli and asked to
order them. If he or she can do so in agreement with the physical scale, further test of the
three-point condition can be omitted.

In the stochastic case, subjects may confuse some of the stimuli on some trials. In the example
of Figure 1 many observers will confuse the stimuli with lowest correlation values. The three-
point property can be stated in a form appropriate for the stochastic case as: if a < b < c
then the probability of judging ab as greater than ac is less than or equal to 0.5 and similarly
for bc and ac.

To test the 3-point condition, we must include quadruples of the form (a, b; a, c) with a <
b < c. As noted above, the inclusion of such quadruples could introduce an artifact in the
experimental design: the subject can correctly order the intervals based on consideration of
only the order of the stimuli. If the experimenter excludes such quadruples then he cannot
test the three-point condition, and in any application the experimenter must decide if a test
of the three-point condition is warranted.

We do not provide a three-point test in the MLDS package. If the experimenter does choose to
include quadruples of the form (a, b; a, c) with a < b < c (“3-point quadruples”), then it is very
easy to design a three-point test patterned on the six-point test above. We use the fitted scale
values and estimated σ to bootstrap an ideal observer matched to the actual. It is appropriate
to exclude the 3-point quadruples in this initial fit of the scale. We then repeatedly compute
the log likelihood Λ̂∗3 of the ideal observer’s performance for the “three-point intervals” and
then compare the actual log likelihood Λ̂3 to the distribution of bootstrap replications Λ̂∗3.
We reject if it falls below the αth percentile of the bootstrap values for appropriate choice of
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α. If the observer’s performance is consistent with the three-point condition, then the scale
can be re-fitted using all data including the three-point quadruples.

Other necessary conditions and alternative axiomatizations

Krantz et al. (1971, Chapter 4, p. 147, Definition 1) list six conditions (“axioms”) that are
jointly necessary and sufficient for a data set to be representable by a difference scale in the
non-stochastic case. The three-point and six-point diagnostic tests were based on two of these
conditions (Definition 1, Axioms 3,4, respectively). Of the remaining necessary conditions,
two effectively guarantee that the experimental design contains “enough” distinct quadruples,
and that the observer can order intervals transitively (Axioms 1,2). Axiom 5 is satisfied if the
values of the physical scale can be put into correspondence with an interval of the real numbers
(evidently true in our example for correlation −1 ≤ r ≤ 1). Axiom 6 precludes the possibility
that an interval ab with a < b contains an infinite number of non-overlapping intervals that
are all equal. In the stochastic case, these conditions are either evidently satisfied or are
replaced by consideration of the accuracy and stability of the estimated scale. Maloney and
Yang (2003) have investigated accuracy, stability and robustness in some detail.

There are alternative sets of axiomatizations of difference scaling such as Suppes (1972) and,
of course, all sets of necessary and sufficient conditions are mathematically equivalent. We
have chosen those of Krantz et al. (1971) because they lead to simple psychophysical tasks.
Observers are asked only to order intervals. Either they can do so without violating the
six-point and three point conditions or they cannot and whether they can or cannot is an
experimental question. Krantz et al. (1971, Chapter 4) contains useful discussion of the link
between the axiomatization that they propose and the task imposed on observers.

The reader may wonder why the observer is asked to compare intervals and not just pairs
of stimuli. Krantz et al. (1971, Chapter 4, pps. 137–142) contains an extended discussion of
the advantages of asking observers to directly compare intervals. We note only that pairwise
comparison of the stimuli (i.e. given a, b, judge whether a < b) does not provide enough
information to determine spacing along the scale in the non-stochastic case. Any increasing
transformation of a putative difference scale would predict the same ordering of the stimuli.
In the stochastic case the observer may judge that a < b on some trials and that b < a on
others, and the degree of inconsistency in judgment could potentially be used to estimate scale
spacing using methods due to Thurstone (1927). Thurstone scales, however, have three major
drawbacks. First, the scale depends crucially on the assumed distribution of judgment errors
(it is not robust) while MLDS is remarkably robust (see Maloney and Yang 2003). Second,
stimuli must be spaced closely enough so that the observer’s judgments will frequently be
inconsistent. This typically means that many closely-spaced stimuli must be scaled, and
the number of trials needed to estimate the scale is much greater than in MLDS. The third
drawback is the most serious. It is not obvious what the Thurstonian scale measures, at least
not without further assumptions about how “just noticeable differences” add up to produce
perceptual differences. The MLDS scale based on quadruples is immediately interpretable in
terms of perceived differences in interval lengths since that is exactly what the observer is
judging.
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3. Package MLDS

The package MLDS includes the function mlds for estimating a perceptual difference scale by
MLDS, and the function simu.6pt for performing the six-point test as described above.

3.1. Fitting with mlds

The first argument of mlds is the data frame containing the results from a difference scaling
experiment. The function expects the data to be organized as n × 5 columns. Each row
represents one trial. The first column named resp, of either type logical or a vector of 0s and
1s, gives the responses of the observer. The next four, named S1, S2, S3 and S4 indicate the
indices of the four stimuli comprising the quadruple for that trial.

Frequently, the data from an experiment are ordered to indicate the positioning of the stimuli
in the experiment and not the physical ordering of the stimuli, as mlds expects. For example,
a trial

resp S1 S2 S3 S4

1 7 9 2 4

might indicate that the stimulus pair (7, 9) was presented below and pair (2, 4) above and that
the observer chose the second pair as showing the greater difference. The function SwapOrder

will check for such inversions and outputs a new data frame with the orders sorted and the
responses inverted in case of inversion. If the results of SwapOrder are stored in the original
variable, the original ordering is lost to subsequent applications.

An object of class“mlds.df”is defined to be a data frame from a difference scaling experiment,
as described above but with attributes, “invord” and “stimulus”. Attribute “invord” is a
logical vector indicating whether the order was reversed in the original experiment. SwapOrder
checks whether its input is of class “mlds.df” and if so, uses the “invord” attribute to re-order
the data. In this case, successive applications flip the ordering back and forth between that
of the experimental and sorted state. The results from several experiments can be combined
into a single object of class “mlds.df” using the mlds.df method rbind, which concatenates
the “invord” attributes as well as the rows of the data frame.

The second argument of mlds indicates the physical stimulus levels to which the indices in the
data refer. If NULL, (the default), then it is set to either a sequence from 1 to the maximum
index level in the data or a numeric vector stored as the attribute “stimulus”, if present.

mlds uses glm by default, but optim may be chosen with the argument method. If the default
is chosen, then the data are transformed to the design matrix within mlds using the function
make.ix.mat. ix.mat2df performs the inverse transformation. If optim is chosen, its method
defaults to BFGS but may be modified with the argument opt.meth. Using optim requires
initial estimates passed through the argument opt.init. The default link is probit but this
may be modified to alternative links from the binomial family or a user-defined link (R 2.4.0
or greater) with the argument lnk. Additional named arguments will be passed along to glm

or optim through the ... argument.

mlds produces an object of class “mlds” which is a list of components: pscale, a numeric
vector containing the estimated perceptual scale, stimulus, a numeric vector of the physical
scale, sigma, the value of σ (always 1 for method = "glm"), link, a character string indicating
the link used and method, a character string specifying the method used. For method =
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"optim", there are also, the log likelihood, Hessian, data frame and convergence condition
returned in components logLik, hess, data and conv, respectively. For method = "glm",
the component obj contains the “glm” object from the fit which is used by the“mlds” methods
to extract the information provided in the additional components when optim is specified.

There are seven methods currently defined for objects of class “mlds”: print, summary, plot,
fitted, predict, logLik and AIC. The plot method generates a graph of the estimated
perceptual scale as a function of the physical stimulus. The function boot.mlds is provided
to estimate standard errors for each scale value using a resampling procedure (Efron and
Tibshirani 1993). In short, the fitted probabilities are used to generate new responses to the
trials with the function rbinom. The estimated scale values for the new responses provide a
bootstrap sample. In a similar manner, the function binom.diagnostics allows running two
diagnostics based on bootstrap replications of the residuals in order to evaluate the suitability
of the model.

For method = "glm", the model formula used is

resp ~ . - 1

There is no update method defined currently for mlds. However, for the default method, the
glm object is stored in the returned object as an element named obj. This object may be
updated if care is taken also to include the data in the call, since ordinarily the data frame
passed to the glm call is only visible within mlds. For example, if x.mlds is an object of class
“mlds” obtained with the default method, one can try

with(x.mlds, update(obj, . ~ . + 1, data = obj$data))

to obtain a model with an intercept term.

3.2. Running a six-point test with simu.6pt

The initial step in performing a six-point test requires identifying all of the six-point conditions
in the experimental data. The function Get6pts takes an object of class “mlds” and returns
a list of three data frames, with an attribute “indices” which is a fourth data frame. The
three data frames are named A, B and E (the last to avoid the R function names C and D).
All of these data frames have the same number of rows, and corresponding rows of A, B and
E provide six-point cases for evaluation. The data frame attribute provides indices from the
original data set, that from which the “mlds” object was generated, to the rows at which each
trial occurred. For example, for the difference scale fit to the data set AutumnLab included in
the package, row 4 of the three data frames generated by Get6pts is

resp S1 S2 S3 S4

A 0 1 2 4 5

B 1 2 3 5 9

E 1 1 3 4 9

A gives the comparisons (a, b; a′b′), B (b, c; b′, c′) and E (a, c; a′c′). Note that whether or not
this example corresponds to a violation of the six-point condition depends on the differences
between the perceptual scale values to which these indices correspond. Row 4 of the attribute
is
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A B E

116 23 25

which are the rows of AutumnLab from which the three trials of the six point condition were
extracted.

4. Example: Perception of correlation in scatterplots

The study of graphical perception for enhancing data presentation has been of interest to
statisticians, at least, since the pioneering work of Cleveland and colleagues (Cleveland and
McGill 1984a). Scatterplots have often been the subject of investigation, for example, to de-
termine the characteristics that best reveal the underlying association in the data (Cleveland,
Diaconis, and McGill 1982) or the visual parameters that create the most salient differences
between overlaid data sets (Cleveland and McGill 1984b). Only a few studies have examined
the sensitivity of human observers to statistical differences in scatterplots (see, for exam-
ple, Legge, Gu, and Luebker 1989). MLDS offers a promising method for approaching such
questions.

4.1. A psychophysical experiment

Executing

runQuadExperiment(DisplayTrial = "DisplayOneTrial",

DefineStimuli = "DefineMyScale")

runs 330 trials of the difference scaling experiment and records the observer’s responses inter-
actively on each trial for the scatterplot example of Figure 1. The stimulus from an example
trial is shown in Figure 2. The observer’s task is to decide whether the difference in r is
greater between the lower pair or the upper and to enter a 1 or 2, respectively, from the
keyboard. This function can be readily modified to any difference scaling application by
defining the functions DefineStimuli and DisplayTrial that define the stimuli and display
the quadruples, respectively, of non-overlapping intervals on each trial. After the observer
has completed the experiment, an object of class “mlds.df” is returned which can be used for
further analysis. To preserve its attributes, it should be saved with save or dput.

One of the authors ran the experiment on himself three times, with the results stored in
objects kk1, kk2 and kk3. Each of the runs of 330 trials required less than 12 minutes to
complete. After loading the three data sets in memory, we merge them into one object of 990
trials with rbind and apply SwapOrder to put the stimulus in physical order.

> data(kk1)

> data(kk2)

> data(kk3)

> kk <- SwapOrder(rbind(kk1, kk2, kk3))

4.2. Estimating a perceptual scale

For comparison, we fit the data by mlds using both glm and optim methods. Using method

= "optim" is usually slower.
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> kk.mlds <- mlds(kk)

> summary(kk.mlds)

Method: glm Link: probit

Perceptual Scale:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0000 -0.0454 0.0439 -0.0863 0.5682 1.4234 2.0695 2.6661 3.5527 4.4297

0.98

5.5739

sigma: 1

logLik: -306

> kkopt.mlds <- mlds(kk, method = "optim", opt.init = c(seq(0, 1, len = 11), 0.2))

> summary(kkopt.mlds)

Method: optim Link: probit

Perceptual Scale:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.00e+00 4.70e-05 1.54e-02 1.19e-07 1.10e-01 2.61e-01 3.76e-01 4.83e-01

0.8 0.9 0.98

6.40e-01 7.96e-01 1.00e+00

sigma: 0.175

logLik: -307

Note the differences in the summaries. The glm method fixes σ = 1 and does not constrain
the upper range of scale values. The optim method fixes the extreme values of the scale
to 0 and 1. Differences in the log likelihood can result because with the optim method, we
have constrained the estimated scale values to be in (0, 1). These are usually quite small, as
here, unless optim has found a local minimum. This also accounts for the slight discrepancy
between the optim value of σ = 0.175 and the reciprocal of the maximum scale value using
method = "glm", 0.179.

We compare the two estimated scales in Figure 5 by first normalizing the scale estimated
by glm by its maximum scale value. This is easily accomplished by setting the argument
standard.scale = TRUE in the plot method. The glm and optim scales are shown as points
and lines, respectively, and it is clear that any differences between the two are unimportant.
Note that the resulting perceptual scale is almost flat for correlations up to 0.3. If we plot
the estimated scale instead as a function of squared correlation r2 we see that for correlations
above 0.4, the observer’s judgment effectively matches r2, the variance accounted for. Below
this value, the observer seems unable to discriminate scatterplots.

We have noticed that using glm can frequently generate a warning message

Warning message:

fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y,

weights = weights, start = start, etastart = etastart,
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Figure 5: Left. Estimated difference scale for observer KK, from 990 judgments, distributed
over 3 sessions for judging differences of correlation between scatterplots. The error bars
correspond to twice the standard deviation of the bootstrap samples. Right. The same scale
values plotted as a function of the squared correlation or variance accounted for. The diagonal
line through the origin has unity slope.

There are several possible sources of this warning. The obvious possibility that the fit has
perfectly separated the responses of the observer to scale differences can be discounted by
examining the fitted probabilities as a function of the observer’s responses. For example,
Figure 6 demonstrates the overlap of responses for the kk2 and AutumnLab data sets, both of
which generate this warning. The warning can be generated as well if just some of the fitted
probabilities are effectively a 0 or 1. We can imagine this occurring if some of the intervals
that the observer must differentiate are so large that errors are never made. This indeed
may occur when comparing large and small suprathreshold differences, as here, and, in fact,
can be taken as an indication that the observer does exploit an internal scale when making
judgments. It is pertinent to note that this warning disappears for the fit to both of these
data sets if the link is changed to either logit or cauchit, suggesting that the shape of the
psychometric function could be at issue, here. These link functions differ primarily in the
tails of the corresponding distributions.

A third possibility could arise from unpatterned response errors (the observer pressed the
wrong key in recording his judgment on some trials). This can produce the Hauck-Donner
phenomenon (Hauck and Donner 1977; Venables and Ripley 2002). In that case, the Wald
approximation to the log-likelihood may be quite poor. The profile plots for the coefficients
are curved in the above two data sets, and especially so for the larger coefficients. Under these
circumstances, It may be preferable to use optim to estimate the scale by direct maximization
of the likelihood (Venables and Ripley 2002), and a bootstrap approach to estimate standard
errors. Collecting more data is recommended to address this warning, and we find that the
warning disappears for kk2 if we combine it with either of the other two replications. Despite
the warning, the estimated scales using glm or optim are nearly the same.
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Figure 6: Fitted probabilities as a function of observer’s response for the kk2 and AutumnLab

data sets.

4.3. Bootstrapping standard errors

Bootstrap standard errors of the scale values are obtained with the function boot.mlds.
Running 10000 trials on the dataset kk required about 14 minutes on a 2.16 GHz Mac Intel
Pro with 2 Gb of memory. A list is returned with 4 components, as indicated by applying
str, below. The first, boot.samp, is a matrix of the bootstrapped scale values. The means
and standard deviations are indicated in vectors bt.mean and bt.sd, respectively.

kk.bt <- boot.mlds(kk.mlds, 10000)

str(kk.bt)

List of 4

$ boot.samp: num [1:11, 1:10000] 0.00000 -0.02075 0.00361 -0.01485 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:11] "" "stim.2" "stim.3" "stim.4" ...

.. ..$ : NULL

$ bt.mean : Named num [1:11] 0.00000 -0.00876 0.00710 -0.01630 ...

..- attr(*, "names")= chr [1:11] "" "stim.2" "stim.3" "stim.4" ...

$ bt.sd : Named num [1:11] 0.0000 0.0245 0.0252 0.0278 0.0246 ...

..- attr(*, "names")= chr [1:11] "" "stim.2" "stim.3" "stim.4" ...

$ N : num 10000

Twice the bootstrap errors are indicated as error bars in the left graph of Figure 5.

4.4. Goodness of fit

A first qualitative test of the validity of the estimated scale is to compare it with the actual
stimuli to determine if it does, in fact, capture the perceptual variation displayed. For exam-
ple, examination of the stimuli and the estimated scale in Figure 1 confirms that the initial
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flat part of the scale corresponds to a range of stimuli that are difficult to distinguish and that
subsequent stimuli do appear to increase in correlation, as the scale indicates. The quadratic
dependence of the increasing part of the scale probably cannot be detected in this fashion.
Estimated scales that do not display such face validity should certainly be re-examined.

Several approaches have been suggested to analyze the appropriateness of the model for binary
data. For comparison, we will consider analyses of the kk data set with the probit (default,
already calculated above), logit and cauchit links.

> kk.mlds.logit <- mlds(kk, lnk = "logit")

> kk.mlds.cauchit <- mlds(kk, lnk = "cauchit")

When method = "glm" is used, it is easy to extract the residual and null deviances from the
model object component to calculate a deviance accounted for (DAF), analogous to an R2

calculated for linear models (Wood 2006, p. 84). For example,

(kk.mlds$obj$null.deviance - deviance(kk.mlds$obj))/kk.mlds$obj$null.deviance

for the probit link. The results for the three link functions, given in Table 1 in the first
column, indicate a negligible superiority of the other two links over the default.

link DAF AIC Pr(Runs)

probit 0.55 633 0.02
logit 0.57 610 0.22
cauchit 0.57 611 0.07

Table 1: Goodness of fit.

The second column of Table 1 displays the AIC values for each link function, obtained with
the AIC method applied to each model object. The logit link shows a more decided advantage
over the probit, in this case.

Wood (2006) proposed two diagnostics for evaluating the suitability of the model fit to the
data, each one based on the distribution of the deviance residuals of the fit. The first involves a
comparison of the empirical distribution of the residuals to an envelope of the 1−α proportion
of the bootstrap-generated residuals. The second tests the dependence of the residuals by
comparing the number of runs of positive and negative values in the sorted deviance residuals
with the distribution of runs from the bootstrapped residuals.

We provide a function binom.diagnostics to implement both of these for objects of class
“mlds”. The function takes two arguments: obj, an “mlds” model object and nsim, the
number of bootstrap simulations to run. For example,

kk.diag.prob <- binom.diagnostics(kk.mlds, 10000)

performs 10000 simulations. An object of class “mlds.diag” is returned that is a list of 5
components, illustrated below for the probit link.

R> str(kk.diag.prob)
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Figure 7: Diagnostic graphs produced by plot.mlds.diag for the models fit with the three
link functions. The left graphs show the empirical cdf of the deviance residuals (black points)
compared to the 95% bootstrapped envelope (blue lines). The right graphs display a his-
togram of the number of runs in the sign of the sorted deviance residuals from the bootstrap
simulations. The observed value is indicated by a vertical line.
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List of 5

$ NumRuns : int [1:10000] 195 193 205 199 177 177 201 211 187 209 ...

$ resid : num [1:10000, 1:990] -5.25 -4.79 -4.77 -4.56 -4.52 ...

$ Obs.resid: Named num [1:990] 0.458 0.164 0.413 1.155 -1.610 ...

..- attr(*, "names")= chr [1:990] "1" "2" "3" "4" ...

$ ObsRuns : int 173

$ p : num 0.0159

- attr(*, "class")= chr [1:2] "mlds.diag" "list"

NumRuns is a vector of integer giving the number of runs in the sorted deviance residuals for
each simulation. resid is a matrix of numeric, each row of which contains the sorted deviance
residuals from a simulation. Obs.resid is a vector of numeric providing the residuals from
the obtained fit. ObsRuns is the number of observed runs in the sorted deviance residuals,
and finally p gives the proportion of runs from the simulations less than the observed number.
A plot method is supplied to visualize the results of the two analyses which are shown in
Figure 7 for each of the link functions.

The distributions of the residuals for the probit and logit links seem reasonable, based on 10000
simulations. Tendencies toward deviation from the envelopes are small, in any case. These
contrast with the cauchit link, that displays systematic deviations from the bootstrapped
envelope.

The histograms indicate that there are too few runs in the residuals using the probit link.
For the logit, the observed number falls well within the distribution of bootstrapped values,
while the cauchit value, given its performance with the previous diagnostic, is debatable. The
proportion of simulated runs less than the observed value for each link is given in the third
column of Table 1.

Two points on the far left of the cdf’s of Figure 7 stand out as having unusually large residual
deviances. These points, as well as a third one, are flagged, also, by the diagnostics generated
by the glm plot method. The three trials are simply extracted from the data set.

> kk[residuals(kk.mlds$obj) < -2.5, ]

resp S1 S2 S3 S4

295 0 1 2 3 10

857 0 1 2 4 10

939 0 1 2 9 11

Interestingly, if these points are removed from the data set, the value of p for the probit
link increases to the value of 0.24, more in line with that obtained using the logit link. The
number of runs does not change in the observed data, but the bootstrapped distribution of
the number of runs shifts to a mean near 171.

Judging from the estimated scale as well as the stimuli, it seems surprising that the observer
would have judged the correlation difference between 0 and 0.1 to be greater than that of
0.3 (or 0.4) and 0.9. We suspect that these correspond to non-perceptual errors on the part
of the observer, such as fingerslips, lack of concentration or momentary confusion about the
instructions. A few such errors nearly always occur in psychophysical experiments, even
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with practiced and experienced observers. In modeling data from detection experiments,
it has proven useful to include a nuisance parameter to account for these occasional errors
(Wichmann and Hill 2001).

The error rates are modeled by modifying the lower and upper asymptotes of the inverse link
function. We can get a sense of the impact of adding these two nuisance parameters by using
links mafc.probit and probit.lambda from the psyphy package, which permit specifying
these asymptotes differently from 0 and 1 (Knoblauch 2007). Preliminary experimentation
on the full data set indicates that the AIC is reduced by 48 if the lower estimate is set to about
0.06 and the upper to 0.007. These values also lower the number of runs in the distributions
of bootstrapped residuals, so that the observed value yields a p = 0.7.

Bias-reduced MLDS

When using the default argument method = glm with mlds a method argument can be passed
to glm with the argument glm.meth. Its default value is “glm.fit” but other methods are
possible. For example, the brglm (Kosmidis 2007) package contains the function brglm.fit

that peforms a bias-reduced fit based on Firth (1993). For example,

> library(brglm)

> mlds(kk2, glm.meth = brglm.fit)

4.5. The six-point test

Performing a six-point test on these data with 10000 simulations requires about 15 minutes
on the same machine indicated above.

kk.6pt <- simu.6pt(kk.mlds, 10000)

str(kk.6pt}

List of 4

$ boot.samp: num [1:10000] -488 -539 -531 -502 -447 ...

$ lik6pt : num -425

$ p : num 0.848

$ N :num 10000

Examination of the structure of the returned list with str shows the p-value and log-likelihood
for the number of violations of the six-point test from the data and indicates that the observer
did not make a significantly greater number of six-point violations than an ideal observer.
Figure 8 shows a histogram of the log-likelihoods from such a simulation with the observed
log-likehood indicated by a thick vertical line. These results support the appropriateness of
the scale as a description of the observer’s judgments.

4.6. Fitting a parametric difference scale

The results of the difference scaling experiment with scatterplots suggest that the percep-
tion of correlation increases quadratically with correlation (Fig. 5). We can refit the data
but constraining the estimated difference scaling curve to be a parametric curve, such as a
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Figure 8: Histogram of log-likelihood values from the six-point test to data set kk. The thick
vertical line indicates the observed six-point likelihood on the data set.

power function, using the formula method for mlds. Under the hypothesis that perception of
correlation depends on r2, we would expect the exponent to be approximately 2.

> kk.frm <- mlds(~ (sx/0.98)^p[1], p = c(2, 0.2), data = kk)

We specify the parametric form for the difference scale with a one-sided formula. The opera-
tions take on their mathematical meaning here, as with formulae for nls but not as for lm and
glm without isolation. The stimulus scale is indicated by a variable sx and the parameters
to estimate by a vector, p. The fitting procedure adjusts the parameters to best predict the
judgments of the observer on the standard scale. The equation is normalized by the highest
value tested along the stimulus dimension, r = 0.98 so that the fitted curve passes through
1.0 at this value. The optimization is performed by optim and initial values of the parameters
are provided by a vector given as an argument in the second position. The last element of
this vector is always the initial value for sigma. Finally, a data frame with the experimental
results is, also, required.

The estimated parameters are returned in a component par of the model object and the
judgment variability, as usual, in the component sigma. Standard errors for each of these
estimates can be obtained from the Hessian matrix in the hess component.

> c(p = kk.frm$par, sigma = kk.frm$sigma)

p sigma

2.0217329 0.1702934
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> sqrt(diag(solve(kk.frm$hess)))

[1] 0.06005756 0.01038325

The standard error for the exponent provides no evidence to reject an exponent of 2.

The parametric fit with 2 parameters is nested within the 10 parameter nonparametric fit.
This permits us to test the parametric fit with a likelihood ratio test. We extract the log
likelihoods from each model object with the logLik method. The degrees of freedom of each
fit are obtained from the “df” attribute of the “logLik” object.

> ddf <- diff(c(attr(logLik(kk.frm), "df"),

+ attr(logLik(kk.mlds), "df")))

> pchisq(-2 * c(logLik(kk.frm) - logLik(kk.mlds)),

+ ddf, lower.tail = FALSE)

[1] 3.084556e-06

The results reject the power function description of the data. A predicted curve under the
parametric model fit to the data is obtained from the func component of the model object,
which takes two arguments: the estimated parameters, obtained from the par component
of the model object and a vector of stimulus values for which to calculate predicted values.
The plot of the predicted values against the values obtained by glm indicates that the power
function fit provides a reasonable description of the data for correlations greater than 0.4 and
a lack of fit for lower correlations, for which this observer shows no evidence of discrimination
(Fig. 9).

5. The Method of Triads

In the Method of Quadruples, observers compare interval (a, b) and (c, d) and it is not difficult
to see how the resulting difference scale would lend itself to predicting such judgments. We
can also use a slightly restricted method for presenting stimuli that we refer to as the Method
of Triads. On each trial, the observer sees three stimuli (a, b, c) with a < b < c and judges
whether or not (a, b) � (b, c). The observer is still judging the perceived size of intervals
but now the intervals judged share a common end point b. Despite this apparent limitation,
difference scales estimated using the Method of Triads exhibit about the same variability and
lack of bias as difference scales estimated using the Method of Quadruples if the total number
of judgments is the same.

The change in method entails a change in the design matrix given that stimulus b participates
in the comparison of both intervals. The decision variable for a triad experiment is modeled
as

(ψb − ψa)− (ψc − ψb) = 2ψb − ψa − ψc, (13)

so that the design matrix has non-zero entries of (−1, 2,−1). The data frame from an ex-
periment has only 4 instead of 5 columns, indicating the response and the indices for the
three stimuli on each trial. The MLDS package includes a function RunTriadExperiment

that works similarly to RunQuadExperiment, but presents triads on each trial and returns an
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> plot(kk.mlds, standard.scale = TRUE,

+ xlab = expression(r^2),

+ ylab = "Difference Scale Value")

> xx <- seq(0, 0.98, len = 100)

> lines(xx, kk.frm$func(kk.frm$par, xx))
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Figure 9: Difference scales estimated for the perception of correlation obtained using the
default (points) and formula (line) methods to fit the data. The formula used was a power
function.

object of class “mlbs.df”. The mlds function is generic and methods are supplied for both
classes of object. The user need only supply the results of either type of experiment and the
function dispatches to the correct method to return the results.

The experimenter is free to choose whichever method proves to be more convenient if, for
example, it is easier to fit three stimuli simultaneously on an experimental display than four.
For p > 3 stimuli, there are (

p
3

)
=

p!

3! (p− 3)!
(14)

possible non-overlapping triads. If p = 11, as in the example, there are(
11
3

)
=

11!

3! 8!
= 165 (15)

different, non-overlapping triads. Of course, the number of trials judged by the observer
affects the accuracy of the estimated difference scale (See Maloney and Yang Maloney and
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Yang (2003)) as we illustrate below.The time needed to judge two repetitions of all 165 trials
with triads (330 trials total) is the number of trials for one repetition of all trials with non-
overlapping quadruples.

6. Future directions

There are several directions in which MLDS might be developed, four of which will be men-
tioned here.

First, we do not know what would be the most efficient choice of stimuli along a continuum
or of quadruples for a particular application of MLDS. These depend on the observer’s actual
scale and judgment uncertainty σ, but given pilot data for the observer or previous results
for other observers, it would be interesting to work out methods for selecting stimuli and
quadruples. For example, having seen the results for one observer in the scatterplot example,
we might consider stimuli that are equally spaced along the scale r2 and not the scale r in
future experiments.

Second, we plan on developing a more systematic method of assessing the asymptotic proba-
bilities of the inverse link function to take into account unsystematic errors by the observers.
The difficulty is that these parameters are not part of the linear predictor. One possibility
is to profile the nuisance parameters (as we did here) or, alternatively, to develop a method
that switches back and forth between adjusting the nuisance parameters and the coefficients
of the linear predictor.

Third, it would be useful to incorporate random effects that influence the scale when an
observer repeats the experiment or to account for variations between individuals. Such het-
erogeneity is, indeed, apparent if we compare the three scales obtained on different days in the
data set kk. For these data, there is only one random factor, the Run. It might be possible to
treat this as an effect due to a randomized block (Venables and Ripley 2002, p. 295) The ratio
of the scale values between any of the two repetitions is approximately constant across the
physical scale, however, which suggests that the estimate of σ across runs, or equivalently the
maximum scale value, would be a more likely candidate to explain such a source of variability,
but as a multiplicative rather than as an additive effect. We develop some approaches to this
problem using the lme4, elsewhere (Knoblauch and Maloney, Modeling Psychophysical Data
in R, Springer, in preparation).
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