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Abstract

This vignette is an updated version of Bornkamp, Pinheiro, and Bretz (2009) and
describes the MCPMod package for the R programming environment. The package im-
plements a methodology for the design and analysis of dose-response studies that combines
aspects of multiple comparison procedures and modeling approaches (Bretz, Pinheiro, and
Branson 2005). The package provides tools for the analysis of dose finding trials, as well
as a variety of tools necessary to plan an experiment to be analysed using the MCP-Mod
methodology.
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1. Introduction

In pharmaceutical drug development, dose-response studies typically have two main goals.
The first goal is to establish that changes in dose lead to desirable changes in the (efficacy
and/or safety) endpoint(s) of interest, the so-called proof-of-concept (PoC) step. Once such
a dose-response signal has been shown, the second goal is then to select one or more “good”
dose level(s) for the confirmatory Phase III studies, the so-called dose-finding step.

Traditionally these goals have been addressed either by using a multiple comparison procedure
(MCP), or by using a modeling (Mod) approach. The MCP approach regards the dose as
a qualitative factor and generally makes few, if any, assumptions about the underlying dose-
response relationship. However, inferences about the target dose are restricted to the discrete,
possibly small, set of doses used in the trial. Within the modeling approach, a parametric
(typically non-linear) functional relationship is assumed between dose and response. The dose
is taken to be a quantitative factor, allowing greater flexibility for target dose estimation. The
validity of the modeling approach, however, strongly depends on an appropriate dose-response
model being pre-specified for the analysis.

In this paper we present the MCPMod package written in the R system for statistical comput-
ing (R Development Core Team 2009) and available from the Comprehensive R Archive Net-
work at http://CRAN.R-project.org/package=MCPMod. The package implements a hybrid

http://CRAN.R-project.org/package=MCPMod
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methodology, combining multiple comparison procedures with modeling techniques (called
MCP-Mod procedure, (Bretz et al. 2005)). This approach provides the flexibility of model-
ing for dose estimation, while preserving the robustness to model misspecification associated
with MCP. Figure 1 gives an overview of the MCP-Mod procedure. It starts by defining a set
of candidate models M covering a suitable range of dose-response shapes. Each of the dose-
response shapes in the candidate set is tested using appropriate contrasts and employing MCP
techniques that preserve the family-wise error rate (FWER). PoC is established when at least
one of the model tests is significant. Once PoC is verified, either a “best”model or a weighted
average of the set of significant models M∗ ⊆M is used to estimate the dose-response profile
and the target doses of interest.

Set of candidate models M

Optimum contrast coefficients

Test for a significant dose-response signal

Model selection or averaging

Dose-response and target dose estimation

?

?

?

?

?

?

?

?

Figure 1: Schematic overview of the MCP-Mod procedure

As outlined above, the MCP-Mod procedure is performed in several steps: 1) calculation
of contrast coefficients, representing the candidate model shapes, 2) conduct of a multiple
contrast test, and, depending on the result, 3) a model selection step to fit (typically non-
linear) dose-response models and to estimate the target doses. Each individual step above
can be implemented with the R statistical language, possibly using add-on packages available
at the CRAN servers (http://CRAN.R-project.org/). However, it is desirable to have one
package, which performs these steps automatically and also allows to design a trial for the
MCP-Mod procedure. The MCPMod package provides these functionalities and the aim of
this paper is to give a detailed description of the package.

For self containment of the paper we will first review the key features and statistical methods
of the MCP-Mod procedure in Section 2, while the MCPMod package will be introduced and
illustrated with examples in Section 3.

2. MCP-Mod: Combining multiple comparisons and modeling

2.1. Notation

Assume that we observe a response Y for a given set of parallel groups of patients correspond-
ing to doses d2, d3, . . . , dk plus placebo d1, for a total of k arms. For the purpose of testing

http://CRAN.R-project.org/
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PoC and estimating target doses, we consider the one-way layout

Yij = µdi
+ εij , εij ∼ N (0, σ2), i = 1, . . . , k, j = 1, . . . , ni, (1)

where µdi
= f(di,θ) denotes the mean response at dose di for some dose-response model

f(d,θ), ni denotes the number of patients allocated to dose di, N =
∑k

i=1 ni is the total
sample size, and εij denotes the error term for patient j within dose group i. Following Bretz
et al. (2005), we note that most parametric dose-response models f(d,θ) used in practice can
be written as

f(d,θ) = θ0 + θ1f
0(d,θ∗), (2)

where f0(d,θ∗) denotes the standardized model function, parameterized by the vector θ∗. In
this parameterization, θ0 is a location and θ1 a scale parameter such that only the parameter-
vector θ∗ determines the shape of the model function. As seen later, it is sufficient to consider
the standardized model f0 instead of the full model f for the derivation of the optimal model
contrasts.

2.2. MCP-Mod methodology

In this subsection we review the core elements of the MCP-Mod methodology. We start
considering the basic MCP-Mod procedure for the analysis of a dose-response trial and then
focus on design issues. For more information on the basic methodology see Bretz et al. (2005),
for recommendations regarding the practical implementation and design aspects see Pinheiro,
Bornkamp, and Bretz (2006a).

Analysis considerations

The motivation for MCP-Mod is based on the work by Tukey, Ciminera, and Heyse (1985),
who recognized that the power of standard dose-response trend tests depends on the (un-
known) dose-response relationship. They proposed to simultaneously use several trend tests
and subsequently to adjust the resulting p−values for multiplicity. Bretz et al. (2005) formal-
ized this approach and extended it in several ways.

Assume that a set M of M parameterized candidate models is given, with corresponding
model functions fm(d,θm),m = 1, . . . ,M, and parameters θ∗m of the standardized models f0

m

(determining the model shapes). For each of the dose-response models in the candidate set
we would like to test the hypothesis Hm

0 : c′mµ = 0, where cm = (cm1, . . . , cmk)′ is the optimal
contrast vector representing model m, subject to

∑k
i=1 cmi = 0. Each of the dose-response

models in the candidate set is hence tested using a single contrast test,

Tm =
∑k

i=1 cmiȲi

S
√∑k

i=1 c2
mi/ni

, m = 1, . . . ,M,

where S2 =
∑k

i=1

∑ni
j=1(Yij − Ȳi)2/(N − k) is the pooled variance estimate. Every single

contrast test thus translates into a decision procedure to determine whether the given dose-
response shape is statistically significant, based on the observed data.
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The contrast coefficients cm1, . . . , cmk for the m-th model are chosen such that they maximize
the power to detect the underlying model. It can be shown that these optimal contrast coef-
ficients do not depend on the full parameter vector θm of the model, but only the parameters
in its standardized model function θ∗m, which determine the model shape (see Bretz et al.
(2005)) and the group sample sizes. Letting (µ0

m1, . . . , µ
0
mk)

′ = (f0
m(d1,θ

∗
m), . . . , f0

m(dk,θ
∗
m))′,

the ith entry of the optimal contrast cm for detecting the shape m is proportional to

ni(µ0
mi − µ̄), i = 1, . . . , k, (3)

where µ̄ = N−1
∑k

i=1 µ0
mini (Bornkamp (2006) p. 88, Casella and Berger (1990) p. 519).

A unique representation of the optimal contrast can be obtained by imposing the regularity
condition

∑k
i=1 c2

mi = 1.

The final detection of a significant dose-response signal (i.e., demonstrating PoC), is based
on the maximum contrast test statistic

Tmax = max{T1, . . . , TM}.

Under the null hypothesis of no dose-response effect µd1 = ... = µdk
and under the distribu-

tional assumptions stated in equation (1), T1, . . . , TM jointly follow a central multivariate t
distribution with N − k degrees of freedom and correlation matrix R = (ρij), where

ρij =
∑k

l=1 cilcjl/nl√∑k
l=1 c2

il/nl
∑k

l=1 c2
jl/nl

. (4)

Multiplicity adjusted critical values and p−values can be calculated using the identity of the
sets [Tmax ≤ q] = [T1 ≤ q, . . . , TM ≤ q], where q is a real number. As the joint distribution of
(T1, . . . , TM )′ is multivariate t, numerical integration routines for evaluation of multivariate
t integrals, such as the randomized quasi-Monte Carlo methods of Genz and Bretz (2002)
implemented in the R package mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn
2009), can be used to compute the desired equicoordinate quantiles of the multivariate t
distribution. PoC is hence established if Tmax ≥ q1−α, where q1−α is the multiplicity adjusted
critical value at level 1 − α (i.e., the equicoordinate 1 − α quantile of the corresponding
central multivariate t distribution). Furthermore, all dose-response shapes with contrast test
statistics larger than q1−α can be declared statistically significant at level 1− α under strong
control of the FWER. These models then form a reference set M∗ = {M1, . . . ,ML} ⊆ M of
L significant models. If no candidate model is statistically significant, the procedure stops
indicating that a dose-response relationship can not be established from the observed data
(i.e., no PoC).

If PoC has been established, the next step is to estimate the dose-response curve and the
target doses of interest. This can be achieved either by selecting a single model out of M∗

or by applying model averaging techniques to M∗. There are different possibilities to select
a single dose-response model out of M∗ for target dose estimation. One can base the choice,
for example, on the contrast test statistics, i.e. selecting the model corresponding to the
maximum contrast test statistic. Standard information criteria like the AIC or BIC might
also be used. The estimate of the model function is then obtained by calculating the least
squares estimates for θ. For non-linear models iterative optimization techniques need to be
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used, such as those implemented in the nls function in R. As the non-linear models described
here are partially linear (see equation (2)), this can be exploited in the nls function by using
the Golub-Pereyra algorithm (see Golub and Pereyra (2003) for a review of these methods).
So we only need to derive starting values for the standardized model parameters θ∗. Although
we use automatic methods for finding good data-based starting values for θ∗, convergence
problems can occur, especially when the number of dose levels used in the trial is small
compared to the parameters in the model function. In the case of non-convergence the ‘best’
of the remaining significant, converging models can be used for dose estimation, if any. An
approach to partially overcome these convergence issues is to use box constraints on θ∗. This
will be implemented as an alternative in future versions of the package.
Once a dose-response model has been selected, one can proceed to estimate the target dose(s)
of interest. One possible choice is the minimum effective dose (MED), which is defined as
the smallest dose ensuring a clinically relevant and statistically significant improvement over
placebo (Ruberg 1995). Formally,

MED = min{d ∈ (d1, dk] : f(d) > f(d1) + ∆},

where ∆ is the clinical relevance threshold. A common estimate for the MED is

M̂ED = min{d ∈ (d1, dk] : f̂(d) > f̂(d1) + ∆, L(d) > f̂(d1)}

where f̂(d) is the predicted mean response at dose d, and L(d) is the corresponding lower
bound of the pointwise confidence intervals of level 1 − 2γ. Note that M̂ED corresponds
to the M̂ED2 estimator in Bretz et al. (2005), who found this estimator to be least biased
compared to two other alternative estimates in a simulation study. A different target dose
is the EDp which is defined as the smallest dose that gives a certain percentage p of the
maximum effect δmax observed in (d1, dk]. Formally,

EDp = min{d ∈ (d1, dk] : f(d) > f(d1) + pδmax}, (5)

where δmax = fmax − f(d1), and fmax = max
d∈(d1,dk]

f(d). An estimate ÊDp is obtained by

plugging the empirical estimates into the definition (5).
An alternative to selecting a single dose-response model is to apply model averaging techniques
and produce weighted estimates across all models in M∗ for a given quantity ψ of interest.
In the context of dose-response analysis, the parameter ψ could for example be a target dose
(MED,EDp, . . .) or the mean responses at a specific dose d ∈ [d1, dk]. Buckland, Burnham,
and Augustin (1997) proposed to use the weighted estimate

ψ̂ =
∑

`

w`ψ̂`,

where ψ̂` is the estimate of ψ under model ` for given weights w`. The idea is thus to use
estimates for the final data analysis which rely on the averaged estimates across all L models.
Buckland et al. (1997) proposed the use of the weights

w` =
p`e

− IC`
2∑L

j=1 p`e
−

ICj
2

, ` = 1, . . . , L, (6)
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which are defined in dependence of a common information criterion IC, such as AIC or BIC
applied to each of the L models, and prior model weights p`. If each model is given the same
prior model weight, the p` cancel out in equation (6).

Design considerations I: Power and sample size calculations

An important step at the planning phase of any clinical trial is to properly design the study in
order to achieve the study objectives. Because dose finding studies have two major goals, PoC
testing and dose estimation, different criteria can be used to design a study. Dette, Bretz,
Pepelyshev, and Pinheiro (2008) derived optimal designs, which minimize the (asymptotic)
variance of the MED estimate. Using their approach, asymptotic confidence intervals for
the MED can be calculated, conditional on a selected model. At the planning stage one
would then specify the maximum width of the confidence interval and calculate the sample
size necessary to ensure a certain precision of the MED estimate.

An alternative approach is to focus on calculating the sample size necessary to achieve a
pre-specified power to detect PoC (Pinheiro et al. 2006a). We thus start by introducing the
power calculation under a given specific model m from the candidate set M, generalize it
afterwards to multiple models and finally focus on sample size calculation.

The power of the MCP procedure is determined by the distribution of Tmax under the al-
ternative hypothesis that the m-th dose-response model is true. Under this assumption, the
mean responses at the doses d1, . . . , dk are µm = (fm(d1,θm), . . . , fm(dk,θm))′. The power to
detect a dose-response signal (i.e., PoC) under model m for sample sizes n = (n1, . . . , nk)′ is
then

P (max
l

Tl ≥ q1−α|µ = µm) = 1− P (T1 < q1−α, . . . , TM < q1−α|µ = µm). (7)

It follows from the properties of the multivariate t distribution and the assumptions in equa-
tion (1), that, under the m-th model, the contrast test statistics T1, . . . , TM are jointly dis-
tributed as non-central multivariate t with N − k degrees of freedom and correlation matrix
R = (ρij). The non-centrality parameter vector is δm = (δm1, . . . , δmM )′, where

δml =
∑k

i=1 cliµmi

σ
√∑k

i=1 c2
li/ni

, l = 1, . . . ,M.

Again, the mvtnorm package can be used to calculate the necessary probabilities.

So far we have only considered the power calculation under a single model m. In practice we
would rather account for the inherent model uncertainty. To this end, we would calculate the
power for each of the M models from the candidate set M and aggregate the resulting values
into a single combined measure of power, such as the (weighted) average, the minimum or a
quantile. The sample size is then calculated as the smallest sample size ensuring a minimum
combined power value, say π∗, to detect PoC under the assumed set of dose-response mean
vectors. We restrict ourselves to the case that either the allocation weights ri ≥ 0, subject
to

∑
i ri = 1 or the allocation ratios ρi relative to the dose group with the fewest patients,

i.e. ρi = ri/ min(ri) are prespecified. The group sample sizes n = (n1, . . . , nk) can then
be obtained from ni = Nri for allocation weights or from ni = ρinmin, where nmin is the
smallest group sample size. Since the combined power is a monotone increasing function of
N (or nmin, if allocation ratios are specified) a unique smallest integer giving a power larger
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than π∗ exists (see also Pinheiro et al. (2006a)). The bisection search method can be used
to obtain the sample size ensuring a pre-specified combined power π∗. In practice, rounding
techniques need to be applied to obtain integer sample sizes.

Design considerations II: Sensitivity analysis

In the derivations above we conditioned on the mean vectors µm in equation (7) and hence on
the parameters θm = (θm0, θm1,θ

∗
m)′. Since the sample size is calculated under this condition,

it is critical that the model parameters are reliably determined. For the determination of
location and scale parameters θm0 and θm1, prior knowledge about the expected placebo
response δ0 and the maximum response δmax can be used at the design stage. It is typically
straightforward to plug in these quantities into the model equations, assuming that θ∗m is
known and then solving for θm0 and θm1, see Pinheiro et al. (2006a) for a more detailed
description of this approach.

Based on prior knowledge about the shape of the model function, Pinheiro, Bretz, and Branson
(2006b) discussed strategies to obtain guesstimates for the standardized model parameters θ∗m.
The elicitation of prior information for θ∗m may impact both the design and the analysis of a
dose finding study using the MCP-Mod methodology, as the guesstimates are used to obtain
the optimal model contrasts at the MCP step, which in turn determine the effective power to
detect PoC. Therefore, it is of importance to investigate the sensitivity of the procedure to
misspecification of the parameters in the standardized models and, in particular, the impact it
has on the effective power to detect PoC. Pinheiro et al. (2006a) considered different measures
of loss in power associated with a misspecification of the standardized model parameters. One
possibility, subsequently denoted as LP1, is to calculate the difference between the nominal
power (the power obtained, when the guesstimate is correct) and the actual power (the power
obtained, when the used guesstimate does not coincide with the true parameter), i.e.

LP1 = nominal power− actual power. (8)

Thus, LP1 can be interpreted as the difference between the power that was intended for
the study and the power one actually obtains. Alternatively, one could also calculate the
difference between the power that could be achieved if the true parameter values were known
at the design stage (potential power) and the actual power. This is denoted by LP2 and hence

LP2 = potential power− actual power.

Graphical methods can be used to display the loss in power for a range of true standardized
model parameters. From our experience the loss in power associated with misspecification of
the parameters in the standardized model function is often negligible for reasonable candidate
sets, because dose-response models with parameter vectors θm deviating from the guesstimate
θ∗m are often detected from some other model in the candidate set. In cases where the loss
in power is not acceptable, the inclusion of an additional model in the candidate set could be
considered.
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MCPMod-Package

Planning Code Analysis Code

guesst - derivation of guesstimates
fullMod - full models specification

plotModels - model plots
planMM - calculation of contrasts

and critical value
powerMM - power calculations

sampSize - sample size calcualtion
LP- sensitivity analysis

MCPMod
multiple contrast test

model selection/model averaging
dose-response estimation
target dose estimation
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Figure 2: Overview of main functions in the MCPMod package.

3. The MCPMod package

In this section we describe the R package MCPMod for implementing the MCP-Mod method-
ology. The package consists of two main parts (see also Figure 2). The first part contains
several functions that are useful for planning a trial: calculation of the optimal contrasts and
the critical value (planMM), the sample size (sampSize) or functions that support the selection
of a ‘good’ candidate set and sensitivity analysis (guesst, plotModels, powerMM, LP). The
second part consists of one main function named MCPMod that implements the full MCP-Mod
approach for analysis of a given dose-response data set.

3.1. Preliminaries

Before illustrating the different functions in more detail we first describe how to specify
the candidate set of models M for these functions. Table 1 gives an overview of the dose-
response models that are implemented (note that user-defined non-linear models can also be
specified, see the package documentation for details). The candidate set of models needs to
be specified as a list, where the list elements should be named according to the underlying
dose-response model function (see Table 1) and the individual list entries should correspond
to the required guesstimates or NULL if no guesstimates are needed. Suppose, for example, we
want to include in our candidate set a linear model, an Emax model and a logistic model. From
the standardized model functions in Table 1 we see that we need to specify one guesstimate
for the Emax model (ED50 parameter), two guesstimates for the logistic model (ED50 and δ)
and none for the linear model (since its standardized model function does not contain any
unknown parameters). Suppose our guesstimate for the ED50 parameter of the Emax model
is 0.2, while the guesstimate for (ED50, δ)′ for the logistic model is (0.25, 0.09)′. We then
specify the list

> mods1 <- list(linear = NULL, emax = 0.2, logistic = c(0.25, 0.09))

In some cases one might want to include several model shapes per model class. For example,
if the candidate model set includes two Emax model shapes, two logistic model shapes, a beta
model shape and a linear model shape the model list would look like
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Name f(d, θ) f0(d, θ∗) (*) (])

linear E0 + δd d
linlog E0 + δ log(d + c) log(d + c) c
quadratic E0 + β1d + β2d

2 d + δd2 if β2 < 0 δ
emax E0 + Emaxd/(ED50 + d) d/(ED50 + d) ED50

logistic E0 + Emax/ {1 + exp [(ED50 − d) /δ]} 1/ {1 + exp [(ED50 − d) /δ]} (ED50, δ)
′

exponential E0 + E1(exp(d/δ)− 1) exp(d/δ)− 1 δ

sigEmax E0 + Emaxd
h/(EDh

50 + dh) dh/(EDh
50 + dh) (ED50, h)′

betaMod E0 + EmaxB(δ1, δ2)(d/D)δ1(1− d/D)δ2 B(δ1, δ2)(d/D)δ1(1− d/D)δ2 (δ1, δ2)
′ D

Table 1: Dose-response models implemented in the MCPMod package. Column (*) lists for
each model the parameters for which guesstimates are required and the order in which they
need to be specified in the models list, while column (]) lists the parameters, which fixed and
not estimated. For the beta model B(δ1, δ2) = (δ1 + δ2)δ1+δ2/(δ1

δ1δ2
δ2) and for the quadratic

model δ = β2

|β1| . For the quadratic model the standardized model function is given for the
concave-shaped form.

> mods2 <- list(linear = NULL, emax = c(0.05, 0.2), betaMod = c(0.5, 1),

+ logistic = matrix(c(0.25, 0.7, 0.09, 0.06), byrow = FALSE,

+ nrow = 2))

Thus, if multiple model shapes from the same model class are to be used, the parameters
are handed over as a matrix, for models having two parameters in the standardized model
function, and as a vector for one-parameter standardized models. This general structure
applies to all built-in models. Note that the linear-in-log and the beta models also contain a
parameter (c and D, respectively, see Table 1) that is not estimated from the data but needs
to be pre-specified. These parameters are not handed over via the candidate model list but
via seperate arguments scal (corresponding to D) and off (corresponding to c) respectively
to the top-level functions.

3.2. Planning Code

In this section we provide a brief overview of the functions guesst, plotModels, fullMod,
planMM, powerMM, sampSize and LP. These functions are useful for designing a trial using
MCP-Mod. For a detailed description of the arguments to the functions we refer to the
documentation of the package.

Function guesst

The selection of suitable guesstimates and model shapes is a major aspect of the MCP-Mod
methodology. Incorporating contrasts/models that are likely to be true (and excluding those
that are very unlikely) can greatly improve the power of the methodology. The guesst
function supports the translation of clinical knowledge available prior to the start of a study
into the required guesstimates. The function calculates the guesstimates according to the
percentage p∗ of the maximum effect that is achieved at a certain dose d∗. Suppose, for
example, we want to calculate a guesstimate for the ED50 parameter from the Emax model.
If we expect a response of 90% at dose 0.2, the ED50 guesstimate can be calculated by calling

> guesst(d = 0.2, p = 0.9, model = "emax")
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ed50
0.02222222

With this guesstimate, the standardized model for the Emax model is given by f0(d, ED50) =
d/(0.022222 + d), and the optimal contrast can be calculated from equation (3). For models
with two standardized model parameter one (d∗, p∗) pair is not sufficient to obtain guessti-
mates for the standardized model parameters. For example, for the logistic model we need to
specify two pairs to obtain a guesstimate

> guesst(d = c(0.05, 0.2), p = c(0.2, 0.9), model = "logistic")

ed50 delta
0.1080279 0.0418583

In this example the standardized model function for the logistic model is given by f0(d,ED50, δ) =
1/{1 + exp[(0.1080279− d)/0.0418583]}, from which the corresponding optimal contrast can
be obtained. In a similar way one can obtain guesstimates with the guesst function for all
built-in models.

Function plotModels

Before deciding for any particular candidate set of model shapes it is useful to display them
graphically. This can be done with the plotModels function. Since the model shapes, specified
in the models list, do not depend on the location (defined through the baseline effect) and
scale (defined through the maximum effect) of the model, one additionally needs to specify
those via the base and maxEff arguments. Using the candidate set mods2 defined above (and
setting the scal parameter of the beta model equal to 1.2), a graphical representation can be
obtained as follows (see Figure 3 for the output)

> doses <- c(0, 0.05, 0.2, 0.6, 1)

> plotModels(mods2, doses, base = 0, maxEff = 0.4, scal = 1.2)

Function fullMod

Similar to the plotModels function above, also other functions (powerMM, sampSize, LP) re-
quire information about the doses, the full model functions, i.e. the candidate model shapes,
the baseline effect, the maximum effect and possible other additional parameters like off or
scal. The fullMod function derives the full model functions (i.e. the location and scale pa-
rameters) for each model from the stated information (see Section 2.2) and packages this with
the used dose levels into a fullMod object, which can then be used as an input parameter for
the four above mentioned functions. When assuming the baseline effect 0 and the maximum
effect 0.4 and using the candidate set mods2 (and setting the scal parameter of the beta
model equal to 1.2) one can package this information via

> doses <- c(0, 0.05, 0.2, 0.6, 1)

> fmods2 <- fullMod(mods2, doses, base = 0, maxEff = 0.4, scal = 1.2)
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Figure 3: Model shapes for the selected candidate model set, produced with plotModels
function.

Function planMM

The planMM function calculates the quantities necessary to conduct the multiple contrast
test: The optimal model contrasts and their correlations (see equations (3) and (4)) and the
critical value using the mvtnorm package. This information is returned in a planMM object.
The arguments alpha and twoSide determine the significance level and sidedness of the test.
By default one-sided testing at level α = 0.025 is performed. The sample size allocations
are handed over as a vector via the n argument (for balanced allocations a single number is
sufficient). Assuming a balanced allocation of 20 patients per dose group, the candidate set
mods2 and the doses from above, the planMM function can be called as follows

> pM <- planMM(mods2, doses, n = 20, alpha = 0.05, twoSide = FALSE, scal = 1.2)

> pM

MCPMod planMM

Optimal Contrasts:
linear emax1 emax2 betaMod logistic1 logistic2

0 -0.437 -0.799 -0.643 -0.714 -0.478 -0.267
0.05 -0.378 -0.170 -0.361 -0.043 -0.435 -0.267
0.2 -0.201 0.207 0.061 0.452 -0.147 -0.267
0.6 0.271 0.362 0.413 0.498 0.519 -0.083
1 0.743 0.399 0.530 -0.192 0.540 0.883

Critical Value (alpha = 0.05, one-sided): 2.139
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Contrast Correlation Matrix:
linear emax1 emax2 betaMod logistic1 logistic2

linear 1.000 0.766 0.912 0.229 0.945 0.905
emax1 0.766 1.000 0.949 0.774 0.828 0.525
emax2 0.912 0.949 1.000 0.606 0.956 0.686
betaMod 0.229 0.774 0.606 1.000 0.448 -0.130
logistic1 0.945 0.828 0.956 0.448 1.000 0.717
logistic2 0.905 0.525 0.686 -0.130 0.717 1.000

The first part of the output shows the optimal contrast coefficients for the different models.
The representation of the optimal contrast is unique as we imposed the condition of unit
Euclidean length. In the output we then obtain the multiplicity adjusted critical value for the
maximum contrast and finally the correlations of the contrasts. In this example some contrasts
are quite highly correlated. For example, the correlation between emax2 and logistic1 is
0.956, indicating that both describe similar dose-response shapes, as can also be seen in
Figure 3. The beta model contrast however, seems to be relatively different from the others.
This is due to the fact that the beta model shape is, contrary to the other model shapes, not
monotone. The contrasts can also be graphically displayed using the plot method for planMM
objects (see Figure 4).

> plot(pM)
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Figure 4: Graphical display of optimal contrasts.
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Function powerMM

The powerMM function is designed to calculate the power to detect the model shapes in the
candidate set for different sample sizes. We need to hand over either an object of class
fullMod or the doses, the baseline and the maximum effect via doses, base and maxEff and
the standard deviation of the response via sigma. One can calculate the power for sample
sizes ranging from lower to upper in stepsizes step. Summary functions can be used to
combine the different power values for the different model shapes into one value, as described
in Section 2.2. By default the minimum, the mean and the maximum power are calculated.
The resulting power values are returned as an object of class powerMM in a matrix. There
exists also a plot method to display the results graphically. Using the information packaged
in the fmods2 object from above one obtains the following result

> pM <- powerMM(fmods2, sigma = 1, alpha = 0.05, lower = 10, upper = 110,

+ step = 10)

> plot(pM, line.at = 0.9, models = "none")
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Figure 5: Power to detect PoC under the assumed candidate set for different summary func-
tions.

In Figure 5 it can be seen that a mean power of 90 % is achieved with approximately 90 patients
per dose. Note that the power can also be calculated for unbalanced but fixed allocations.
The allocation ratios (or allocation weights, depending on the value of the typeN argument)
then need to be supplied via the alRatio argument. In the plot above only the summary
power values are displayed, although the plot method for powerMM allows the display of the
power values for the individual candidate models as well.



14 MCPMod: An R Package for Dose-Finding Studies

Function sampSize

The sampSize function calculates the necessary sample size to achieve a pre-specified combined
power value. As input parameters we need a fullMod object (or manually doses, base,
maxEff) and sigma. Together with the candidate set, these parameters form the ‘alternatives’
for which the power is calculated. A summary function (via sumFct) to combine the individual
power values into one value and the power level we want to achieve (via power) need to be
provided as well. For the bisection search algorithm an upper bound for the target sample
size (via upperN) needs to be provided as a starting value. The starting value for the lower
bound needed for the bisection is derived internally as upperN/2, but can also be handed
over manually via lowerN. When the starting values for the upper and lower bound do not
bracket a solution the bounds are extended automatically. For the information packaged in
the fmods2 object the result is as follows

> sampSize(fmods2, sigma = 1, sumFct = mean, power = 0.9, alpha = 0.05,

+ twoSide = FALSE, upperN = 100)

MCPMod sampSize

Input parameters:
Summary Function: mean
Desired combined power value: 0.9
Level of significance: 0.05 (one-sided)
Allocations: balanced

Sample size per group: 92

Associated mean power: 0.9009
Power under models:

linear emax1 emax2 betaMod logistic1 logistic2
0.9097 0.8989 0.9159 0.8105 0.9645 0.9055

As seen from the output, the sampSize function returns the desired group sample size and
the associated combined power. In our example we thus need 92 patients per group to
guarantee a mean power of 90%. The sampSize function also returns the individual power
values under the different models in the candidate set. Note that in the example above we
assumed a balanced sample size allocation. Fixed allocation proportions can be specified via
the alRatio argument. If typeN = "arm", the code assumes that allocation ratios are passed
to alRatio, which means that the bisection search algorithm varies the sample size nmin in
the dose group with the fewest number of patients, and returns the smallest nmin such that
the combined power is larger than power. If typeN = "total" allocation weights are assumed
and the overall sample size N is iterated.
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Function LP

The LP function is designed to calculate the loss in power associated with misspecification
of the guesstimates for one model in the candidate set. To illustrate the function we use
a very simple candidate set consisting of only a linear and an Emax shape and illustrate
the calculation of LP1 (see equation (8)). We select 0.15 as the guesstimate for the ED50

parameter, and want to investigate the loss in power in the interval [0.03, 0.8] (specified via
paramRange). Hence we calculate how much power we loose, if an alternative ED50 value is
true, but we selected 0.15 as our guesstimate. As before doses, base, maxEff (or an object
of class fullMod) and sigma need to be specified together with the sample size. After calling
the LP function we display the results using the associated plot method. The optional spldf
argument determines the degrees of freedom for the spline that is used to smooth the power
values in the plot.

> mods3 <- list(linear = NULL, emax = 0.15)

> Lfit <- LP(mods3, model = "emax", type = "LP1", paramRange = c(0.03, 0.8),

+ len = 30, doses = doses, n = 92, base = 0, maxEff = 0.4,

+ sigma = 1, alpha = 0.05, twoSide = FALSE)

> plot(Lfit, spldf = 25)

Model: emax , Used value: 0.15
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Figure 6: Difference of actual and nominal power for Emax model.

As seen from Figure 6 the loss in power is relatively large if a small ED50 value is true. If the
true ED50 is equal to the guesstimate then the actual power and nominal power coincide. For
ED50 larger than the specified guesstimate we actually gain power, because the Emax model
becomes almost linear and is captured by the linear model included in the candidate set.
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3.3. Analysis Code

The analysis functionalities are incorporated in one main function MCPMod, which implements
the full MCP-Mod approach. According to the methodology described in Section 2, it consists
of two main steps: (i) MCP-step (calculation of optimal contrasts, critical value, contrast test
statistics and possibly p−values and selection of the set of significant models) and (ii) modeling
step (model fitting, model selection/model averaging and dose estimation).
We now describe some of the more important arguments for the MCPMod function. For a
complete description of the MCPMod function we refer to the online documentation. The dose-
response data set is handed over to the MCPMod function via the data argument. It should
be handed over as a data frame containing two columns corresponding to the dose levels
and the response values. The selModel argument determines how to select a dose estimation
model out of the set of significant models (if there are any significant models). One can choose
between the maximum contrast test statistic (the default option), the AIC, the BIC or model
averaging based on either the AIC or the BIC (see Section 2.2). Another important argument
is doseEst, which determines the dose estimator to be used. Three slightly different estimators
for the MED are currently implemented (see Bretz et al. (2005) for a detailed description
of those three estimators, option "MED2" is the default value, corresponding to the estimator
described in Section 2.2) as well as an estimator of the EDp. Additional parameters for
the dose estimators (such as γ for MED estimators (default: γ = 0.1) and p for the ED
estimator (default: p = 0.5)) are handed over via the dePar argument. The clinical relevance
threshold ∆ is handed over via the clinRel argument. The pVal argument determines,
whether multiplicity adjusted p−values for the multiple contrast test should be calculated or
not (per default p-values are not calculated).
To illustrate the MCPMod function we use the dose-response data set biom used by Bretz et al.
(2005) to illustrate the MCP-Mod methodology. The data result from a randomized double-
blind parallel group trial with a total of 100 patients being allocated to either placebo or one
of four active doses coded as 0.05, 0.20, 0.60, and 1, with 20 patients per group. Here, we use
the MED2 estimator with γ = 0.05 to estimate the MED, the clinical threshold ∆ is set to 0.4
and the dose estimation model is selected according to the maximum contrast test statistic.
Employing the candidate model set mods2 the results can be obtained by calling

> data(biom)

> dfe <- MCPMod(biom, mods2, alpha = 0.05, dePar = 0.05, pVal = TRUE,

+ selModel = "maxT", doseEst = "MED2", clinRel = 0.4, scal = 1.2)

A brief summary of the results is available via the print method for MCPMod objects

> dfe

MCPMod

PoC (alpha = 0.05, one-sided): yes
Model with highest t-statistic: emax2
Model used for dose estimation: emax
Dose estimate:
MED2,90%

0.17
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From the output we conclude that the maximum contrast is significant at one-sided level
0.05. Thus a significant dose-response relationship can be established, i.e., positive PoC.
Furthermore we conclude that emax2 has the largest test statistic among all contrasts and
consequently the Emax model was used for the dose-estimation step. The MED estimate
is 0.17. The 90% in the MED estimate refers to the confidence level of L(d) used in the
dose estimator (see Section 2.2). A more detailed summary of the results is available via the
summary method.

> summary(dfe)

MCPMod

Input parameters:
alpha = 0.05 (one-sided)
model selection: maxT
clinical relevance = 0.4
dose estimator: MED2 (gamma = 0.05)

Optimal Contrasts:
linear emax1 emax2 betaMod logistic1 logistic2

0 -0.437 -0.799 -0.643 -0.714 -0.478 -0.267
0.05 -0.378 -0.170 -0.361 -0.043 -0.435 -0.267
0.2 -0.201 0.207 0.061 0.452 -0.147 -0.267
0.6 0.271 0.362 0.413 0.498 0.519 -0.083
1 0.743 0.399 0.530 -0.192 0.540 0.883

Contrast Correlation:
linear emax1 emax2 betaMod logistic1 logistic2

linear 1.000 0.766 0.912 0.229 0.945 0.905
emax1 0.766 1.000 0.949 0.774 0.828 0.525
emax2 0.912 0.949 1.000 0.606 0.956 0.686
betaMod 0.229 0.774 0.606 1.000 0.448 -0.130
logistic1 0.945 0.828 0.956 0.448 1.000 0.717
logistic2 0.905 0.525 0.686 -0.130 0.717 1.000

Multiple Contrast Test:
Tvalue pValue

emax2 3.464 0.001
emax1 3.339 0.001
logistic1 3.235 0.002
linear 2.972 0.006
betaMod 2.402 0.028
logistic2 2.074 0.058

Critical value: 2.139

Selected for dose estimation:



18 MCPMod: An R Package for Dose-Finding Studies

emax

Parameter estimates:
emax model:

e0 eMax ed50
0.322 0.746 0.142

Dose estimate
MED2,90%

0.17

The summary output includes some information about important input parameters that were
used when calling MCPMod. Then the output includes also the optimal contrasts and the con-
trast correlations together with the contrast test statistics, the multiplicity adjusted p−values
and the critical value. Finally, information about the fitted dose-response model, its param-
eter estimates and the target dose estimate are displayed.

A graphical display of the dose-response model used for dose estimation can be obtained via
the plot method for MCPMod objects. When complData = TRUE, the full dose-response data
set is plotted instead of only the group means. The clinRel option determines whether the
clinical relevance threshold should be displayed.

> plot(dfe, complData = TRUE, clinRel = TRUE)
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Figure 7: Fitted model with data set.

To illustrate the different options available for the MCPMod function we will now re-analyze
the biom data set with different input parameters. Specifically, we will now apply model
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averaging techniques. The target dose is hence estimated as the weighted average of the dose
estimates under the different significant models. The weights are determined via the AIC
criterion (see equation (6)) with uniform prior weights (which is the default). The target dose
we are now interested in is the ED95, which is the dose that achieves 95 % percent of the
maximum effect.

> dfe2 <- MCPMod(biom, mods2, alpha = 0.05, dePar = 0.95,

+ selModel = "aveAIC", doseEst = "ED", scal = 1.2)

> dfe2

MCPMod

PoC (alpha = 0.05, one-sided): yes
Model with highest t-statistic: emax2
Models used for dose estimation: emax logistic linear betaMod
Dose estimate:
ED95%
0.669

The output of the print method now contains the four models selected for dose-response
estimation as well as the model averaged ED95 estimate. We edited the output of the
summary method here as there is some overlap with the previous call to the summary function.

> summary(dfe2)

MCPMod

Input parameters:
alpha = 0.05 (one-sided)
model selection: aveAIC
prior model weights:

emax logistic linear betaMod
0.25 0.25 0.25 0.25

dose estimator: ED (p = 0.95)

Optimal Contrasts:
linear emax1 emax2 betaMod logistic1 logistic2

0 -0.437 -0.799 -0.643 -0.714 -0.478 -0.267
0.05 -0.378 -0.170 -0.361 -0.043 -0.435 -0.267
0.2 -0.201 0.207 0.061 0.452 -0.147 -0.267
0.6 0.271 0.362 0.413 0.498 0.519 -0.083
1 0.743 0.399 0.530 -0.192 0.540 0.883

Contrast Correlation:
linear emax1 emax2 betaMod logistic1 logistic2

linear 1.000 0.766 0.912 0.229 0.945 0.905
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emax1 0.766 1.000 0.949 0.774 0.828 0.525
emax2 0.912 0.949 1.000 0.606 0.956 0.686
betaMod 0.229 0.774 0.606 1.000 0.448 -0.130
logistic1 0.945 0.828 0.956 0.448 1.000 0.717
logistic2 0.905 0.525 0.686 -0.130 0.717 1.000

Multiple Contrast Test:
Tvalue

emax2 3.464
emax1 3.339
logistic1 3.235
linear 2.972
betaMod 2.402
logistic2 2.074

Critical value: 2.135

AIC criterion:
emax logistic linear betaMod

219.14 220.83 220.50 221.32

Selected for dose estimation:
emax logistic linear betaMod

Model weights:
emax logistic linear betaMod
0.440 0.189 0.223 0.148

Parameter estimates:
emax model:

e0 eMax ed50
0.322 0.746 0.142
logistic model:

e0 eMax ed50 delta
0.169 0.773 0.087 0.071
linear model:
(Intercept) dose

0.492 0.559
betaMod model:

e0 eMax delta1 delta2
0.329 0.669 0.573 0.321

Dose estimate
Estimates for models

emax logistic linear betaMod
ED95% 0.71 0.32 0.95 0.57
Model averaged dose estimate
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ED95%
0.669

In addition to the results already described in the summary(dfe) call, the output now also
contains information about the AIC of the different models and the model weights. All model
fits are given and the ED95 estimate obtained for all models, as well as the model weighted
average of the dose estimates.

A graphical display of the fitted model functions can be obtained via the plot method, here
we just plot the model means but also include the estimated ED95 in the plot.

> plot(dfe2, doseEst = TRUE)
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Figure 8: Fitted models with data set.

4. Summary and Outlook

In this vignette we have reviewed the MCP-Mod methodology including its most recent de-
velopments and described the MCPMod package. Future versions will, among other features,
include bootstrap methods for calculating confidence intervals on target dose estimates and
the fitted model function, inclusions of covariates as well as a version of the Golub-Pereyra
algorithm, which allows for box constraints.



22 MCPMod: An R Package for Dose-Finding Studies

References

Bornkamp B (2006). Comparison of Model-Based and Model-Free Approaches for the Analysis
of Dose-Response Studies. Master’s thesis, Fachbereich Statistik, Universität Dortmund.
URL http://www.statistik.tu-dortmund.de/~bornkamp/diplom.pdf.

Bornkamp B, Pinheiro J, Bretz F (2009). “MCPMod: An R Package for the Design and
Analysis of Dose-Finding Studies.” Journal of Statistical Software, 29(7), 1–23. URL
http://www.jstatsoft.org/v29/i07/.

Bretz F, Pinheiro JC, Branson M (2005). “Combining Multiple Comparisons and Modeling
Techniques in Dose-Response Studies.” Biometrics, 61, 738–748.

Buckland ST, Burnham KP, Augustin NH (1997). “Model Selection an Integral Part of
Inference.” Biometrics, 53, 603–618.

Casella G, Berger RL (1990). Statistical Inference. Duxbury Press, Belmont, Calif.

Dette H, Bretz F, Pepelyshev A, Pinheiro JC (2008). “Optimal Designs for Dose Finding
Studies.” Journal of the American Statisical Association, 103, 1225–1237.

Genz A, Bretz F (2002). “Methods for the Computation of Multivariate t-probabilities.”
Journal of Computational and Graphical Statistics, 11, 950–971.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2009). mvtnorm: Multivari-
ate Normal and t Distributions. R package version 0.9-4, URL http://CRAN.R-project.
org/package=mvtnorm.

Golub G, Pereyra V (2003). “Separable nonlinear least squares: The variable projection
method and its applications.” Inverse Problems, 19, R1–R26.

Pinheiro JC, Bornkamp B, Bretz F (2006a). “Design and Analysis of Dose Finding Studies
Combining Multiple Comparisons and Modeling Procedures.” Journal of Biopharmaceutical
Statistics, 16, 639–656.

Pinheiro JC, Bretz F, Branson M (2006b). “Analysis of Dose-Response Studies – Modeling
Approaches.” In N Ting (ed.), “Dose Finding in Drug Development,” pp. 146–171. Springer,
New York.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Ruberg SJ (1995). “Dose Response Studies. I. Some Design Considerations.” Journal of
Biopharmaceutical Statistics, 5(1), 1–14.

Tukey JW, Ciminera JL, Heyse JF (1985). “Testing the Statistical Certainty of a Response
to Increasing Doses of a Drug.” Biometrics, 41, 295–301.

http://www.statistik.tu-dortmund.de/~bornkamp/diplom.pdf
http://www.jstatsoft.org/v29/i07/
http://CRAN.R-project.org/package=mvtnorm
http://CRAN.R-project.org/package=mvtnorm
http://www.R-project.org/
http://www.R-project.org/
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