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So far we have only fitted models to a single response variable. Multi-
response models are not that widely used, except perhaps in quantitative ge-
netics, and deserve wider use. They allow some of the assumptions of single
response models to be relaxed and can be an effective way of dealing with miss-
ing data problems.

1 Relaxing the univariate assumptions of causal-
ity

Imagine we knew how much money 200 people had spent on their holiday and
on their car in each of four years, and we want to know whether a relationship
exists between the two. A simple correlation would be one possibility, but then
how do we control for the repeated measures? An often used solution to this
problem is to choose one variable as the response (lets say the amount spent on
a car) and have the other variable as a fixed covariate (the amount spent on a
holiday). The choice is essentially arbitrary, highlighting the belief that any re-
lationship between the two types of spending maybe in part due to unmeasured
variables, rather than being completely causal.

In practice does this matter? Lets imagine there was only one unmeasured
variable: disposable income. There are repeatable differences between individu-
als in their disposable income, but also some variation within individuals across
the four years. Likewise, people vary in what proportion of their disposable
income they are willing to spend on a holiday versus a car, but this also changes
from year to year. We can simulate some toy data to get a feel for the issues:

> id<-gl(200,4) # 200 people recorded four times

> av_wealth<-rlnorm(200, 0, 1)

> ac_wealth<-av_wealth[id]+rlnorm(800, 0, 1)

> # expected disposable incomes + some year to year variation

>

> av_ratio<-rbeta(200,10,10)

> ac_ratio<-rbeta(800, 2*(av_ratio[id]), 2*(1-av_ratio[id]))

> # expected proportion spent on car + some year to year variation
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>

> y.car<-(ac_wealth*ac_ratio)^0.25 # disposable income * proportion spent on car

> y.hol<-(ac_wealth*(1-ac_ratio))^0.25 # disposable income * proportion spent on holiday

> Spending<-data.frame(y.hol=y.hol, y.car=y.car, id=id)

A simple regression suggests the two types of spending are negatively related
but the association is weak with the R2 = 0.011.

> summary(lm(y.car ~ y.hol, data = Spending))

Call:
lm(formula = y.car ~ y.hol, data = Spending)

Residuals:
Min 1Q Median 3Q Max

-0.785418 -0.201515 -0.005233 0.178040 0.993145

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.10708 0.03831 28.898 < 2e-16 ***
y.hol -0.10907 0.03663 -2.978 0.00299 **
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.2925 on 798 degrees of freedom
Multiple R-squared: 0.01099, Adjusted R-squared: 0.009752
F-statistic: 8.869 on 1 and 798 DF, p-value: 0.002989

With id added as a random term to deal with the the repeated measures, a
similar conclusion is reached although the estimate is more negative:

> m5a.1 <- MCMCglmm(y.car ~ y.hol, random = ~id, data = Spending,

+ verbose = FALSE)

> summary(m5a.1$Sol[, "y.hol"])

Iterations = 3001:12991
Thinning interval = 10
Number of chains = 1
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
-0.202507 0.038393 0.001214 0.001184

2. Quantiles for each variable:
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2.5% 25% 50% 75% 97.5%
-0.2760 -0.2277 -0.2042 -0.1754 -0.1267

We may be inclined to stop there, but lets proceed with a multi-response
model of the problem. The two responses are passed as a matrix using cbind(),
and the rows of this matrix are indexed by the reserved variable units, and the
columns by the reserved variable trait.

It is useful to think of a new data frame where the response variables have
been stacked column-wise and the other predictors duplicated accordingly. Be-
low is the original data frame on the left (Spending) and the stacked data frame
on the right:

y.hol y.car id
1 0.956558 1.421804 1
2 1.168930 0.899935 1
...

...
...

800 0.968479 0.895636 200

=⇒

y trait id units
1 0.956558 y.hol 1 1
2 1.168930 y.hol 1 2
...

...
...

...
800 0.968479 y.hol 200 800
801 1.421804 y.car 1 1
802 0.899935 y.car 1 2

...
...

...
...

1600 0.895636 y.car 200 800

From this we can see that fitting a multi-response model is a direct extension
to how we fitted models with categorical random interactions ??:

> m5a.2 <- MCMCglmm(cbind(y.hol, y.car) ~ trait - 1, random = ~us(trait):id,

+ rcov = ~us(trait):units, data = Spending, family = c("gaussian",

+ "gaussian"), verbose = FALSE)

We have fitted the fixed effect trait so that the two types of spending can
have different intercepts. I usually suppress the intercept (-1) for these types
of models so the second coefficient is not the difference between the intercept
for the first level of trait (y.hol) and the second level (y.car) but the actual
trait specific intercepts. In other words the design matrix for the fixed effects
has the form:

trait[1]=="y.hol" trait[1]=="y.car"
trait[2]=="y.hol" trait[2]=="y.car"

...
...

trait[800]=="y.hol" trait[800]=="y.car"
trait[801]=="y.hol" trait[801]=="y.car"
trait[802]=="y.hol" trait[802]=="y.car"

...
...

trait[1600]=="y.hol" trait[1600]=="y.car"


=



1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1
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A 2 × 2 covariance matrix is estimated for the random term where the di-
agonal elements are the variance in consistent individual effects for each type
of spending. The off-diagonal is the covariance between these effects which if
positive suggests that people that consistently spend more on their holidays
consistently spend more on their cars. A 2×2 residual covariance matrix is also
fitted. In Section ?? we fitted heterogeneous error models using idh():units
which made sense in this case because each level of unit was specific to a par-
ticular datum and so any covariances could not be estimated. In multi-response
models this is not the case because both traits have often been measured on the
same observational unit and so the covariance can be measured. In the context
of this example a positive covariance would indicate that in those years an in-
dividual spent a lot on their car they also spent a lot on their holiday.

A univariate regression is defined as the covariance between the response
and the predictor divided by the variance in the predictor. We can therefore
estimate a regression coefficient for these two levels of random variation, and
compare them with the regression coefficient we obtained in the simpler model:

> id.regression <- m5a.2$VCV[, 2]/m5a.2$VCV[, 1]

> units.regression <- m5a.2$VCV[, 6]/m5a.2$VCV[, 5]

> plot(mcmc.list(m5a.1$Sol[, "y.hol"], id.regression, units.regression),

+ density = FALSE)

The regression coefficients (see Figure 1)differ substantially at the within
individual (green) and between individual (red) levels, and neither is entirely
consistent with the regression coefficient from the univariate model (black). The
process by which we generated the data gives rise to this phenomenon - large
variation between individuals in their disposable income means that people who
are able to spend a lot on their holiday can also afford to spend a lot on their
holidays (hence a positive covariation between id effects). However, a person
that spent a large proportion of their disposable income in a particular year on
a holiday, must have less to spend that year on a car (hence a negative residual
(within year) covariation).

When fitting the simpler univariate model we make the assumption that the
effect of spending money on a car directly effects how much you spend on a
holiday. If this relationship was purely causal then all regression coefficients
would have the same expectation, and the simpler model would be justified.

For example, we could set up a simpler model where two thirds of the varia-
tion in holiday expenditure is due to between individual differences, and holiday
expenditure directly affects how much an individual will spend on their car (us-
ing a regression coefficient of -0.3). The variation in car expenditure not caused
by holiday expenditure is also due to individual differences, but in this case they
only explain a third of the variance.

> Spending$y.hol2 <- rnorm(200, 0, sqrt(2))[Spending$id] + rnorm(800,

4



4000 6000 8000 10000 12000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

univariate regression

id regression

units regression

Figure 1: MCMC summary plot of the coefficient from a regression of car spend-
ing on holiday spending in black. The red and green traces are from a model
where the regression coefficient is estimated at two levels: within an individual
(green) and across individuals (red). The relationship between the two types
of spending is in part mediating by a third unmeasured variable, disposable
income.

+ 0, sqrt(1))

> Spending$y.car2 <- Spending$y.hol2 * -0.3 + rnorm(200, 0, sqrt(1))[Spending$id] +

+ rnorm(800, 0, sqrt(2))

We can fit the univariate and multivariate models to these data, and compare
the regression coefficients as we did before. Figure 2 shows that the regression
coefficients are all very similar and a value of -0.3 has a reasonably high posterior
probability. However, it should be noted that the posterior standard deviation is
smaller in the simpler model because the more strict assumptions have allowed
us to pool information across the two levels to get a more precise answer.
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Figure 2: MCMC summary plot of the coefficient from a regression of car spend-
ing on holiday spending in black. The red and green traces are from a model
where the regression coefficient is estimated at two levels: within an individual
(green) and across individuals (red). In this model the relationship between the
two types of spending is causal and the regression coefficients have the same ex-
pectation. However, the posterior standard deviation from the simple regression
is smaller because information from the two different levels is pooled.

2 Multinomial

Multinomial models are difficult - both to fit and interpret. This is particu-
larly true when each unit of observation only has a single realisation from the
multinomial. In these instances the data can be expressed as a single vector of
factors, and the family argument can be specified as categorical. To illustrate,
using a very simple example, we’ll use data collected on 666 Soay sheep from
the island of Hirta in the St. Kilda archipelago (?, Table A2.5).

> data(SShorns)

> head(SShorns)
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id horn sex
1 1 scurred female
2 2 scurred female
3 3 scurred female
4 4 scurred female
5 5 polled female
6 6 polled female

The sex and horn morph were recorded for each individual, giving the con-
tingency table:

> Ctable <- table(SShorns$horn, SShorns$sex)

> Ctable

female male
normal 83 352
polled 65 0
scurred 96 70

and we’ll see if the frequencies of the three horn types differ, and if the trait
is sex dependent. The usual way to do this would be to use a Chi square test,
and to address the first question we could add the counts of the two sexes:

> chisq.test(rowSums(Ctable))

Chi-squared test for given probabilities

data: rowSums(Ctable)
X-squared = 329.5225, df = 2, p-value < 2.2e-16

which strongly suggests the three morphs differ in frequency. We could then
ask whether the frequencies differ by sex:

> chisq.test(Ctable)

Pearson's Chi-squared test

data: Ctable
X-squared = 202.2962, df = 2, p-value < 2.2e-16

which again they do, which is not that surprising since the trait is partly sex
limited, with males not expressing the polled phenotype.

If there were only two horn types, polled and normal for example, then we
could have considered transforming the data into the binary variable polled or
not? and analysing using a glm with sex as a predictor. In doing this we have
reduced the dimension of the data from k = 2 categories to a single (k− 1 = 1)
contrast. The motivation for the dimension reduction is obvious; if being a
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male increased the probability of expressing normal horns by 10%, it must by
necessity reduce the probability of expressing polled horn type by 10%, because
an individual cannot express both horn types simultaneously. The dimension
reduction essentially constrains the probability of expressing either horn type
to unity:

Pr(horn[i] = normal) + Pr(horn[i] = polled) = 1 (1)

These concepts can be directly translated into situations with more than two
categories where the unit sum constraint has the general form:

k∑
j=1

Pr(yi = j) = 1 (2)

For binary data we designated one category to be the success (polled) and
one category to be the failure (normal) which we will call the baseline category.
The latent variable in this case was the log-odds ratio of succeeding versus
failing:

li = log
(

Pr(horn[i] = polled)
Pr(horn[i] = normal)

)
= logit (Pr(horn[i] = polled)) (3)

With more than two categories we need to have k−1 latent variables, which
in the original horn type example are:

li,polled = log
(

Pr(horn[i] = polled)
Pr(horn[i] = normal)

)
(4)

and

li,scurred = log
(

Pr(horn[i] = scurred)
Pr(horn[i] = normal)

)
(5)

The two latent variables are indexed as trait, and the unit of observation
(i) as unit, as in multi-response models. As with binary models the residual
variance is not identified, and can be set to any arbitrary value. For reasons that
will become clearer later I like to work with the residual covariance matrix 1

k (I+
J) where I and J are k− 1 dimensional identity and unit matrices, respectively.

To start we will try a simple model with an intercept:

> IJ <- solve((1/3) * (diag(2) + matrix(1, 2, 2)))

> prior = list(R = list(V = IJ, fix = 1))

> m5c.1 <- MCMCglmm(horn ~ trait - 1, rcov = ~us(trait):units,

+ prior = prior, data = SShorns, family = "categorical", verbose = FALSE)

> plot(m5c.1$Sol)
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Figure 3: Phylogeny

The problem can be represented using the contrast matrix ∆ (?):

∆ =

 −1 −1
1 0
0 1

 (6)

where the rows correspond to the factor levels (normal, polled and scurred)
and the columns to the two latent variables. For example column one corre-
sponds to li,polled which on the log scale is Pr(horn[i] = polled)−Pr(horn[i] =
normal).

exp
(

(∆∆
′
)−∆li

)
∝ E

 Pr(horn[i] = normal)
Pr(horn[i] = normal)
Pr(horn[i] = scurred)

 (7)

The residual (E) and any random effect (e.g. A) covariance matrices are
for estimability purposes estimated on the J − 1 space: CA = ∆

′
A∆ and

CE = ∆
′
E∆. Moreover, because there is only a single realization from the

multinomial then all elements of CE are non-estimable and must be fixed. As
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with the binary model we fix E = 1
J I to give CE = 1

J (J + I), where J is the
unit matrix. We can visualize this unit sum constraint for three categories as a
model parametrized on the simplex (Figure ??).

3 Zero-inflated Poisson

Zero-inflation parameter is the probability that a zero comes from the extra-zero
process as opposed to the Poisson process.
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