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1 Introduction

Dimension reduction is very efficient in high dimensional data processing.
It is a method of reducing redundant information of original data. In most
cases, it replace original covariate variables x with a few linear combinations
β>1 x, · · · , β>d x, in which all the information contained in x for response vari-
able y or E(y|x) is retained. In dimension reduction, we have a response
variable y ∈ R1, and p-dimensional covariate variable x ∈ Rp. Let B ∈ Rp×d,
and S(B) be the linear space spanned by the column vector of B. We call
S(B) is central subspace[3] if

y |= x|B>x.

if the intersection of all central subspace is still a central subspace, then it is
called central space(CS), which is denoted by Sy|x[3]. We assume that central
space exists with the basis of B0 ∈ Rp×d0 for some 0 < d0 < p. Then, all the
information contained in x about y is included in B>0 x.

In some cases, such as nonparametric model, conditional mean E(y|x)
is more of interest. We want to find all information x contained in E(y|x).
Following the definition in [4], we call S(A) is central mean subspace if

y |= E(y|x)|A>x.

Similarly, if the intersection of all central mean subspace is still a central
mean subspace, central mean space(CMS) can be defined and denoted by
SE(y|x). Further discussion about the uniqueness and existence of CMS can
be found in [4]. As can be seen, SE(y|x) should be subset of or equal to Sy|x.

In this paper, we will give a short description of the method used in the
package MAVE.
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2 Central mean space estimation

2.1 The Initial estimate

When estimating central mean space, we follow the model in [6], assuming
that

y = g(A>0 x) + ε

where g is an unknown smooth link function, A0 is a p × d0 orthogonal
matrix, namely A>A = Id0 for some d0 < p and E(ε|x) = 0. MAVE and
OPG methods are proposed to find A0 in[6]. In package MAVE, OPG and
MAVE method are implemented, but a little different from the original. The
difference is to make the algorithm of find CMS can be fused with that of
estimating CS, so that the code will be easier to develop. The main approach
to estimate central mean space is by estimating the derivative of conditional
expectation E(y|x), which is given by

∂E(y|x)

∂x
=
∂g(A>0 x)

∂x
= A0∇g(A>0 x).

Then if E[∇g(A>0 x)∇g>(A>0 x)] is of full rank, then SE(y|x) can be estimated

completely by d0 eigenvectors of E
[
∂E(y|x)/∂x (∂E(y|x)/∂x)>

]
.

In order to estimate the derivative of conditional expectation, local least
squared method is used[5]. Let X be the n× p design matrix with Xi be the
ith random sample, Y be n×1 response matrix and Yi is the ith response data.
The value of (E(y|x), ∂E(y|x)/∂x) at Xi can be estimated by (âi, b̂i)(âi ∈
R1, b̂i ∈ Rp), , which is obtained by minimizing the following least squared
functions,

n−1
n∑

i=1

{Yi − ai − b>i Xi}2Kh0(Xij)

where Xij = Xi − Xj and Kh0(·) is kernel function with bandwidth h0.
Further discussion on the kernel function and the selection of bandwidth can
be found in [5, 6, 7]. Then we construct the following matrix to recover A0

Σ̂ = n−1
n∑

i=1

b̂ib̂
>
i .

Then the basis of SE(y|x) can be estimated by the largest d0 eigenvectors of

Σ̂.
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2.2 The refined estimate

The estimation of Â can be further refined following the idea of MAVE[6].
The key is updating the kernel weight for every iteration. In OPG method,
using the estimate from the eigenvectors of Σ̂ as the initial estimate, for
every iteration, given A(t), the next estimate (â

(t+1)
i , b̂

(t+1)
i ) can be obtained

by minimizing

n−1
n∑

i=1

{Yi − ai − bi}2Kh(t)(A
>
(t)Xij).

The next A(t+1) can be estimated by the d0 largest eigenvectors of Σ̂(t+1),
which is given by

Σ̂t+1 =
n∑

i=1

b̂ib̂
>
i .

For MAVE method, given A(t), the next estiamte A(t+1) is obtained by min-
imizing

n−1
n∑

i=1

{Yi − ai − d>i A>Xij}2Kh(t)(A
>
(t)Xij)

where A ∈ Rp×d0 with A>A = Id0 . The difference between OPG and MAVE
is MAVE restrict bi in OPG inside S(A), which will make the result more
accurate.

2.3 Cross-validation

In most cases, d0 is unknown, so we need to find a method to evaluate the
estimated central (mean) space of different dimensions and find the best one.
In MAVE package, cross-validation is used. In each iteration, the dataset is
divided into training set and test set randomly. The size of test set is around
n−n2/3 to make the selection more consistent. Prediction error based on each
central (mean) space is calculated. Further discussion about the consistency
of the selected dimension can be found in [6]

3 Central space estimation

Since MAVE and OPG estimate the reduced dimensions by conditional expec-
tation of Y given X, some information of Y given X is lost. Therefore, MAVE
and OPG is not capable of finding central space exhaustively, but little change
can be done to make these methods work. Following the idea of SIR, we di-
vide the span of Y into some slices. Let −∞ = s0 < s1 < · · · < sH = +∞,
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yk = I(y<sk) and Yik = I(Yi<sk). By Prop. 2 in [7], if the slices are sufficiently
dense, Sy|x will coincide with the CMS of (y1, · · · , yH). We can use MAVE
or OPG to estimate the CMS of (y1, · · · , yH), then CS of y can be obtained.

4 Kernel sliced inverse regression

Sliced inverse regression is proposed by [1]. Under certain condition on
the conditional expectation about x, the centered conditional expectation
E(x|y)−E(x) ∈ S(B0), where B0 is the basis matrix of Sy|x. However, there
is no guarantee that SIR can exploit the central space exhaustively in some
cases[2]. The main step for SIR is as follows:

1. Standardize design matrix X to X̃, X̃ = Σ̂xx(X−EX), Σ̂xx = cov(X),
such that E(X̃) = 0 and cov(X̃) = Ip. Divide the range of the value of
Y into H slices, S1, · · · , SH .

2. Let p̂h be the frequency of Yi falling into Sh, namely p̂h = 1/n
∑n

i=1 I{Yi∈Sh},
and m̂h ∈ Rp be the sample mean of the data in Sh, namely m̂h =
1/(np̂h)

∑n
i=1 I{Yi∈Sh}X̃i.

3. Construct the weighted covariance matrix of conditional mean E(y|x):
V̂ =

∑H
h=1 p̂hm̂hm̂

>
h .

4. Let the d0 largest eigenvectors of V̂ be ηk(k = 1, · · · , d0). The basis of

the estimated central space is βk = η̂kΣ̂
−1/2
xx (k = 1, · · · , d0).

Kernel version of sliced inverse regression is using kernel method to es-
timate the conditional mean E(x|y), which in [1] is computed by simply
averaging the sample in each slice. This method will make the estimation
more accurate and make the division of the range of Y unnecessary.
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