
Real Time Market Data and Trade

Execution with R

Jeffrey A. Ryan

April 5, 2009

Contents

1 Introduction to Real Time Processing in R 2
1.1 Socket Connections in R . 2

1.1.1 Overview . 2
1.1.2 Usage . 2

1.2 Technical Challenges in R . 3
1.2.1 Asynchronous Requests 3
1.2.2 Socket Connection Limits 3
1.2.3 Event Loops . 3
1.2.4 Data Persistence and Sharing 4

2 IBrokers: Using the Interactive Brokers API 4
2.1 Package Overview . 4
2.2 Design Criteria . 4
2.3 Message Structure . 5
2.4 Implementation . 5

2.4.1 Requests . 5
2.4.2 Callback . 6
2.4.3 Event Loop . 7
2.4.4 Closure . 7

2.5 Example: A Software Implemented Stop Order with IBrokers . . 7

Abstract

While many trading systems in production make use of different lan-
guages for different tasks, the ideal environment involves a single language
that can handle incoming data, make trade decisions, and execute all from
one environment. This paper explores the issues relating to managing this
entire process in the R programming langauge.

1

1 Introduction to Real Time Processing in R

R [1] is a statistical programming language based on the S [?] dialect created by
Chambers et al at Bell Laboratories.

As a scripting language with a well-developed interpreter it is ideally suited
for data exploration as well as rapid programming. More information as to the
merits of R for modeling and development can be found in countless papers and
books. It is assumed that the reader has already been exposed to the virtues
of R, and this paper will focus on extending the prototypical use to managing
real-time processing.

While the R language has traditionally been used for data analysis and
exploration, as well as pre-trade and post-trade modeling, it can also be used
successfully as a platform to manage the entire trade process. This paper will
explore the rationale, design, implementation, and limitations of using R for
managing algorithmic trading with R. It will conclude with an overview of the
open source IBrokers package that interfaces the Interactive Brokers brokerage
platform from R.

1.1 Socket Connections in R

R provides a small collection of tools to manage socket based connections from
within the interactive environment. While most cases involve the opening of a
connection, some read or write operation, and a subsequent close, it is necessary
to extend this logic to persistent connections to accommodate market data and
asynchonous incoming and outgoing messages.

1.1.1 Overview

The basic tools in R to manage socket-based connections involve five primary
functions, with a susbset of interest including three functions. These are sock-
etConnection, writeBin, and readBin.

The establish a connection the socketConnection function is called. This
call returns an R connection object. This connection can be used to send and
receive data from sockets. Connection types can be specified using the open=
argument. Additional details can be found in the respective help pages.

Connections can be either text-based, or binary based, depending on the
open argument. The functions used with text connection objects returned by
socketConnect are readChar and writeChar. For network connections readBin
and writeBin are often more appropriate. Byte-ordering is handled by these
functions as well.

1.1.2 Usage

Cover connecting with socketConnection, the read/write semantics, as well as
cross-platform differences. Provide general insight into the process as well as
practical consideration with respect to incoming message construction/headers.

2

1.2 Technical Challenges in R

While the idea of using R to process incoming data, apply trade logic, and place
orders makes inuitive sense, it is not without technical challenges. These range
from the single-threaded nature of R, to the fact that R is interpreted and thus
relatively slower than a compiled solution. These challenges will be discussed in
the following sections.

1.2.1 Asynchronous Requests

As R is currently single-threaded, and for the foreseable future will remain so,
this becomes a major hurdle to implementing an algorithmic solution within R.

The conventional wisdom is that managing asynchronous events within a
single thread is difficult at best, or impossible at worst. As with most things,
the true answer lies somewhere in the middle.

Most trade decisions are single-threaded by design: e.g. a price target is met
and an order is placed. Even trade logic that is not so simple can usually be
factored out to something that fits within this action|reaction paradigm.

The key challenge in managing this process within a single process is to be
able to manage incoming data external to the trade decision, and have ready
access to it when needed.

The limitation of a single-threaded model is that all incoming messages must
be able to be handled within the processing constraints of a single R thread.
The primary constraint in this process is the need to loop through each distinct
message, as each message involves a seperate call or calls to the underlying
readBin.

The structure of the incoming message feed, as well as the computational
requirements to parse the feed are integral to the upper limit that this solution
can provide.

1.2.2 Socket Connection Limits

As alluded to above, the primary limitation of managing an event stream in R
is that without threads to absord additional messages, all incoming data must
be manageable within one process and one main event loop.

This limitation is most severe with high frequency data, specifically stream-
ing market data or limit-order book data. Depending on the structure of the
incoming data, each distinct message must be dealt with during one pass through
the event loop described below. If messages are grouped into aggregate struc-
tures containing many distinct messages internally only one call to readBin will
be required, and throughput can be improved dramatically. This is dependent
on the incoming feed, either from the provider, or an intermediary process.

1.2.3 Event Loops

The typical way to manage real-time event streams in any language would be
to take each message as a distinct unit, process any header information that

3

is contained, and read the remaining data into memory. From this point the
individual logic would be application dependent.

Event streams in R follow this same format, where an infinite loop is con-
structed using a while loop, and at each iteration a new message is read from the
connection. This message is then passed to a processing function that branches
based on the message type. Further handling is application specific.

1.2.4 Data Persistence and Sharing

The final piece to the puzzle for managing live data in R is the ability to maintain
state information. Within the constraints of a single R process and event loop it
is imperative to maintain a list of data representing current and possibly recently
historical market prices and sizes, as well as a position type information.

One relatively elegant solution in R is to use environments and closures
to be able to manage arbitrary data structures from any part of a process.
Data managed in this way is accessible quickly and efficiently from within event
handlers.

2 IBrokers: Using the Interactive Brokers API

To illustrate the process of using R as an algorithmic trading environment we
will examine how the IBrokers package manages the process.

2.1 Package Overview

Interactive Brokers is an electronic brokerage platform that is popular among
active and algorithmic traders. They provide a platform for individual and
institutional clients, as well as a full API to execute orders from a variety of
platforms.

The API is of particular interest for algorithmic trading. A supported client
toolkit to access this API is provided in Java, C++, and Excel, using sockets and
Microsoft DDE infrastructure. Numerous additional interfaces have been built
by the community for programming languages ranging from Python and Perl,
to Matlab and C. A previously unsupported platform had been R. The IBrokers
package by this author is available for no charge from CRAN. This package pro-
vides a direct interface to the API via socket connections implemented entirely
in R.

In this section we will explore the design objectives of the IBrokers package.
We will also examine the API implementation details within the context of using
R for managing real-time data.

2.2 Design Criteria

The primary design requirement of IBrokers was to allow for rapid prototyping
of trading ideas from within R, as well as implementation of R-based trade logic,
using Interactive Brokers as both a data feed and execution platform. This has

4

subsequently evolved to include the possibility of incorporating a separate data
feed external to Interactive Brokers for the purposes of flexibility and robustness.
This last point is currently experimental and only supported on non-Windows
platforms, where R’s underlying readBin function is well behaved.

2.3 Message Structure

The basic structure of the formal API allows for asynchronous outgoing and
incoming messages. The internal design of incoming messages from the Trader-
Workstation (TWS) is nul terminated byte (char) arrays. These are easily
managed natively in R by readBin using arguments what=character() or
what=raw() to handle the incoming data types. The IBrokers implementation
makes use of processing events as 8-bit char arrays as handled by what=character(),
which automatically reads to the first nul-byte and assigns to a character vector.

Each incoming message consists of a single two or three byte char array as
a header, representing a numeric value in the range of 1 to 50, followed by an
ASCII nul-byte The remainder of the message is comprised of a variable number
of nul-terminated messages, with the length dependent on the incoming message
type. The full set of incoming message types can be seen in the internal IBrokers
variable .twsIncomingMSG.

Outgoing messages follow the same general logic, with a header code, fol-
lowed by the required fields of the request. These codes can be seen in the
internal variable .twsOutgoingMSG.

2.4 Implementation

The basic logic of the IBrokers implementation is comprised of four main com-
ponents:

1. a request message or messages [e.g. embedded in reqMktData]

2. a primary callback function [twsCALLBACK]

3. a message/event loop within the callback [processMsg]

4. a data/method closure [eWrapper] to process individual messages and fa-
cilitate trade logic.

2.4.1 Requests

The basic TWS request is for a single return reply or, as is the case for data re-
quests, a subscription that will remain active until an appropriate cancel request
is made. Using IBrokers built-in requests, most all subscription requests will be
automatically cancelled upon function error or exit. User generated requests
that utilize the raw API (bypassing IBrokers wrapper functions) will need to
request cancels where appropriate.

The basic request as outlined above consists of a headed code sent as a
character array (a length one character vector in R). The precise structure of

5

the message is defined by the API and any deviation will result in an error at
some point in the subsequent process.

For example, to request the current time from the TWS, one needs to send
the code for ”Current Time”(.twsOutgoingMSG$REQ CURRENT TIME): ”49”
and the current version number of the specific request. In the case of current
time, the version is simply the character ”1”.

> writeBin(c("49", "1"), con)

2.4.2 Callback

The callback within IBrokers is in fact the first level of callbacks that are used
to manage the events sent and returned from the TWS.

After a request has been sent to the TWS, the function passed via the CALL-
BACK argument is called. By default this is the main twsCALLBACK wrapper. The
basic control structure is that within this callback an event handler object is
created, and subsequently passed into an infinite event loop. Within this loop
new messages are read and in turn passed into the processMsg function for
individual handling. A common object that is used at each level of the process
is the event handler. This is where customized data management logic can be
added, as well as data stored and read from.

In addition to the event handler being available to user level customization,
the main event loop itself (the one calling processMsg on each new message)
should contain code that implements the trading logic to be employed in a
given strategy or strategies.

Examining the relevant section of twsCALLBACK we can see exactly where
this logic can be inserted:

> require(IBrokers)

IBrokers version 0.2-6: (alpha)
Implementing API Version 9.62

This software comes with NO WARRANTY. Not intended for production use!
See ?IBrokers for details

> deparse(twsCALLBACK)[30:47]

[1] " Sys.sleep(5 * playback)"
[2] " }"
[3] " }"
[4] " }"
[5] " else {"
[6] " while (TRUE) {"
[7] " socketSelect(list(con), FALSE, NULL)"
[8] " curMsg <- .Internal(readBin(con, \"character\", 1L, "
[9] " NA_integer_, TRUE, FALSE))"

6

[10] " if (!is.null(timestamp)) {"
[11] " processMsg(curMsg, con, eWrapper, format(Sys.time(), "
[12] " timestamp), file, ...)"
[13] " }"
[14] " else {"
[15] " processMsg(curMsg, con, eWrapper, timestamp, "
[16] " file, ...)"
[17] " }"
[18] " }"

At line #2 the call to readBin returns the current message from the TWS,
here stored as curMsg. This will be any of the fifty or so incoming message types
as defined by the API.

A check to make sure that the message isn’t empty is then made. As we
may be employing non-blocking connections (true by default), we choose to add
a system delay up to 1/100th of a second to ease the computational overhead
of the request loop. This isn’t necessary and will be irrelevant for blocking
connections, but is good practice to maintain.

Assuming the second if-else branch is taken, the code now dispatches to the
processMsg call, which itself is simply a large if-else construct with a single call
to the apporpriate functional method set by the eWrapper object (closure).

The processMsg event handler returns nothing and is only used to create
side-effects. Most useful of these are to update the environment that is attached
to the eWrapper object with new data.

Following this processing of the current message, it would be possible to
add trade logic based on the data contained in the eWrapper environment. An
implementation of this will be clear in the example that follows this section.

(a closure created in R, containing an environment for data, as well as a list
of functions to handle all possible incoming messages from the TWS)

2.4.3 Event Loop

2.4.4 Closure

2.5 Example: A Software Implemented Stop Order with
IBrokers

<SHOW SCHEMATIC HERE>

References

[1] R Development Core Team: R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0, URL http://www.R-project.org

7

	Introduction to Real Time Processing in R
	Socket Connections in R
	Overview
	Usage

	Technical Challenges in R
	Asynchronous Requests
	Socket Connection Limits
	Event Loops
	Data Persistence and Sharing

	IBrokers: Using the Interactive Brokers API
	Package Overview
	Design Criteria
	Message Structure
	Implementation
	Requests
	Callback
	Event Loop
	Closure

	Example: A Software Implemented Stop Order with IBrokers

