
Haplin data formats

Håkon K. Gjessing

2013-03-08

Introduction

Haplin can handle data in three di�erent ways:

1. Haplin's own text �le format. This format places a nuclear family on a
single line in the data �le, with genotypes for maternal, paternal, and fetal
genes in separate columns. When running haplin, the argument filename

is used to specify the data �le. The arguments data and pedIndex are not
used. The input �le format is relatively �exible and allows multi-allelic mark-
ers. However, for larger number of markers, say, more than a thousand, this
approach is less e�cient than converting to the GenABEL format (see below).

2. Convert from ped-format to Haplin. The supplied conversion function
pedToHaplin converts a �standard ped format� �le directly to Haplin's own
data format. The speci�c ped format required by Haplin is described in de-
tail below. Analyses can then proceed as with the Haplin data format. The
pedToHaplin function is somewhat �exible in terms of what separators can
be used. It allows multi-allelic markers, and the individual id needs only be
unique within each family id (although it's always a good idea to use a unique
individual id). The help �le of pedToHaplin provides more details. While
fairly large �les can, in principle, be converted and run in the Haplin format,
or cut into separate pieces before being fed to Haplin, it is much more mem-
ory e�cient to use the GenABEL format described below. Important: The
pedToHaplin function has not been tested very extensively, so it's always rec-
ommended to check the converted �le before use.

3. Convert from ped-format to GenABEL format. Haplin can convert
from a text �le in the ped format to the internal data format used by the Gen-
ABEL package. This does not require previous knowledge of the GenABEL
package, as a few commands will su�ce to do the appropriate data conversion.
Once a GenABEL data object has been created and loaded into R, haplin is
run by using the data argument to specify the GenABEL object. The ad-
ditional pedIndex argument in haplin is used to specify the name of a �le

1

containing the family information. This information is extracted from the ped
�le during conversion. The argument filename is not used. For larger data
�les, in particular GWAS data, it is recommended to use the GenABEL data
format. A drawback, however, is that it cannot handle multi-allelic markers,
only snps, and since it is only intended for case-control data, Haplin needs
an extra step of data processing to recover the family information and place
it in the pedIndex �le. When installing Haplin, the GenABEL [1] package is
automatically installed as well, so no extra steps are needed to install it.

In the following, we �rst describe the Haplin data format in detail. If you have a
modest number of markers in your �le, the standard format is quite su�cient, and
pedToHaplin can be used to convert from the ped format, if necessary. If so, the
part about the GenABEL conversion is not needed, and the information you need
is contained in Section 1 in this document.

On the other hand, if you are dealing with a large data �le that needs the
GenABEL data setup, we suggest you skip directly to Section 2, where details of
the conversion to GenABEL data are described. In that case, a few more (simple)
steps of data conversion are needed, as explained below.

1 The Haplin data format

Haplin requires data to be in an ASCII �le in a speci�c format:

• The data can contain a number of leading columns with covariates (such as a
case/control variable), followed by columns containing the genetic data.

• Each line represents a case-parent triad (or, in the case-control design, a single
individual).

• Columns should be separated by white space.

• Within each column the two alleles for that individual in that locus are sepa-
rated by a semi-colon, such as 1;2, C;T, A;A etc.

• Missing data are coded as NA.

• There should be no row or column names in the �le.

(For the convenience of the user, other separators and missing data indicator can be
speci�ed using the arguments sep, allele.sep and na.strings, see below)

In addition, the �le structures slightly di�er from design to design:

1.1 The case-parent triad design

This design is speci�ed in haplin using the design = �triad� argument, and in-
volves the �pure� case-parent triad design.

Each line represents one triad. There are three columns for each locus, one for
the mother (M), one for the father (F) and one for the child (C). The columns are

2

placed in the following sequence (where the numbers indicate marker):

M1 F1 C1 M2 F2 C2 ...etc.

Important: Make sure the sequence is correct, this is the only way for HAPLIN
to �gure out which is which.
To illustrate, for 2 loci with 4 and 2 alleles, respectively, one would have a setup of
the following type:

marker 1 marker 2

|-------------||------------|

4;4 4;4 4;4 T;T C;T C;T <- Triad no. 1

2;4 2;4 2;4 T;T T;T T;T <- Triad no. 2

2;4 2;4 2;4 T;T T;T T;T etc.

2;4 2;2 2;4 T;T T;T T;T

2;3 4;4 3;4 T;T C;T T;T

4;4 2;4 4;4 T;T T;T T;T

|---||---||---||---||---||---|

M F C M F C

Assuming there could also be missing data, the �rst four lines of data might look
like

4;4 4;4 4;4 T;T C;T C;T

2;4 2;4 2;4 T;T T;T NA

2;4 NA 2;4 T;T T;T T;T

2;4 2;4 2;4 T;T T;T T;T

(Note the NAs that indicate missing genotype at the �rst marker of the father in
the third triad, and at the second marker of the child in the second triad.)

1.2 The combined case-parent triad and control-parent triad
design (hybrid design)

This design is speci�ed in haplin using the design = �cc.triad� argument, and
involves case-parent triad data combined with control-parent triad data.

The data format is identical to the triad format, but there must be an extra
column to the left of the genetic data, specifying the case/control status of the
triad.
Important: The case/control column must be numeric with two di�erent values.
The largest one will always be used to denote a case triad!
So, for example, the �rst four lines could look like

0 4;4 4;4 4;4 T;T C;T C;T

1 2;4 2;4 2;4 T;T T;T NA

1 2;4 NA 2;4 T;T T;T T;T

0 2;4 2;4 2;4 T;T T;T T;T

3

which would indicate that lines 2 and 3 are case triads, lines 1 and 4 are controls.
Note that, if for instance only the control child has been genotyped, not the parents,
one can use a �le like

0 NA NA 4;4 NA NA C;T

1 2;4 2;4 2;4 T;T T;T NA

1 2;4 NA 2;4 NA NA T;T

0 NA NA 2;4 NA NA T;T

i.e. the control parents have been set to missing (NA).

1.3 The �pure� case-control design

This design is speci�ed in haplin using the design = �cc� argument, and involves
case-control data; no parents are genotyped.

The format should be as for the cc.triad (hybrid) data above, but columns
relating to parents should be completely removed, as in

0 4;4 C;T

1 2;4 NA

1 2;4 T;T

0 2;4 T;T

1.4 �Intermediate� designs

As noted above, Haplin can use reduced versions of the above designs. Two impor-
tant special cases are:

• Case-parent triads with only control children, no control parents. Speci�ed
using design = �cc.triad� and setting the columns for control parents to
missing (NA).

• Case-parent dyads combined with control-parent dyads, no fathers. Speci�ed
using design = �cc.triad� and setting the column for the fathers to missing
(NA).

1.5 Note (for all designs)

• For all the designs, the �le can contain an arbitrary number of columns to the
left of the genetic data. The number of columns should be speci�ed using the
argument n.vars. The default, n.vars = 0, applies to the triad design, if no
covariate columns are present.

• The design should be speci�ed with the design argument, which takes the
values "triad" (default), "cc.triad" and "cc".

4

1.6 Using other separators

To improve the �exibility of Haplin for the user, there are two arguments to haplin,
sep and allele.sep, which can be used to set the separators between columns and
within columns, respectively. For instance, space can be used for both, and the �le
could then look like

marker 1 marker 2

|----------------||----------------|

4 4 4 4 4 4 T T C T C T

2 4 2 4 2 4 T T T T T T

2 4 2 4 2 4 T T T T T T

2 4 2 2 2 4 T T T T T T

2 3 4 4 3 4 T T T T T T

4 4 2 4 4 4 T T T T T T

|----||----||----||----||----||----|

M F C M F C

Or, for instance, with allele.sep = "" (empty) and sep = " " (space) it would
be

44 44 44 TT CT CT

24 24 24 TT TT TT

24 24 24 TT TT TT

24 22 24 TT TT TT

23 44 34 TT TT TT

44 24 44 TT TT TT

1.7 Marker selection

To run HAPLIN on various selections of the markers, you don't have to create a
separate �le for each selection. The markers argument in haplin can be set to, for
instance, c(2,3), which will use only the second and third markers in the data �le,
as in the command haplin("filename", markers = c(2,3)). Note that if the
argument use.missing is set to FALSE, HAPLIN will exclude all triads with any
form of missing data (all non-complete triads). However, it will only look at markers
chosen by the markers argument, so that triads with missing data on unused markers
will not be removed as long as they are complete on the selected markers.

2 Convert from ped format to GenABEL format

This approach is particularly useful for large and very large data �les with only snp
data, for instance GWAS data. We start by describing the input data, then the steps
needed to convert the data to the GenABEL format. The GenABEL [1] package is
designed to handle GWAS data in a memory-e�cient way. However, the GenABEL
data handling does not keep track of family information, so Haplin needs an extra
data conversion step to extract the necessary triad information from the ped �le.

5

There is no need to know much about the GenABEL package since the conversion
steps are relatively straightforward, and once the conversion is done, the resulting
data object can be fed directly to Haplin. Still, we include a few useful GenABEL
suggestions at the end, for the bene�t of the user.

2.1 Quick summary

We start with a quick summary of the steps needed:

1. Extract family and phenotype information:

prepPed(pedfile = "data/mygwas.ped", outdir = "data",

create.map = T)

2. Convert to raw �le format:

convert.snp.ped(pedfile = "data/mygwas.ped", mapfile

= "data/mygwas.map", outfile = "data/mygwas.raw")

3. Load into R:

mygwas.data <- load.gwaa.data(phenofile = "data/

mygwas.ph", genofile = "data/mygwas.raw")

4. Run haplinSlide:

haplinSlide(data = mygwas.data , pedIndex = "data/

mygwas.pedIndex", markers = ... etc.)

Each step is explained in detail in the following sections.

2.2 The input data format

Assume the data are contained in a ped �le named mygwas.ped. The structure of
the �le should be something like this:

1104 1104-1 1104-2 1104-3 1 1 A B B B

1104 1104-2 0 0 1 1 B B A B

1104 1104-3 0 0 2 1 A B A B

1105 1105-1 1105-2 1105-3 2 2 B B A A

1105 1105-2 0 0 1 2 B B A A

1105 1105-3 0 0 2 2 0 0 A A

The column values are:

1. Family id

2. Individual id

3. Father's id

6

4. Mother's id

5. Sex (1 = male, 2 = female)
or alternatively, (1= male, 0 = female)

6. Case-control status (0 = controls, 1 = cases)
or alternatively, any two numeric values where the smallest is a control, the
largest a case, e.g. (1=controls, 2 = cases).

Column 7 and onwards contain the genotype data, with alleles in separate columns,
or joined, as AB BB, etc. A �0� is used to denote missing data. In the example
�le, alleles follow the generic A/B Illumina coding, but any of the standard coding
patterns, such as 1/2, C/T etc. could be used.

Id variables do not need to have any speci�c format, but make sure the individual
id variable labels are unique! In the columns for the father's and mother's id's, a �0
� is used when that parent is not in the �le.

For a pure case-control design, where no parents have been genotyped, the third
and fourth columns should be all �0�.

Note that Haplin always uses the 1/2 coding for male/female, whereas Gen-
ABEL uses 1/0. The prepPed function described below will thus always create a
mygwas.ph �le with the 1/0 coding to prepare for loading with load.gwaa.data, if
necessary converting from 1/2 in mygwas.ped to 1/0 in mygwas.ph. When haplin

is subsequently run on the loaded object it will automatically convert back to 1/2. If
you use the sel.sex argument in haplin to restrict the analysis to males or females,
make sure you use the 1/2 coding.

The case-control status variable can have any numeric coding, as long as (at
most) two values are used. The variable is passed unchanged to Haplin, which
always assumes the largest one represents the cases, the smallest one represents
the controls. So, for instance, the coding (1 = controls, 2 = cases) would also be
valid. For consistency, however, it might be a good idea to stick to the 0/1 coding
suggested above.

Missing values in the sex and case-control columns are not accepted.

2.3 Extract family and phenotype information

To extract family information and phenotype information, use a command like

prepPed(pedfile = "data/mygwas.ped", outdir = "data",

create.map = F)

pedfile speci�es the location and name of the ped �le, outdir speci�es the directory
where you want your data �les to be stored, in this example the same directory as the
mygwas.ped. The function predPed creates two or three �les, as described below.
All �les produced by prepPed are given the same name as the input ped �le, only
the �le extensions will be changed. Warning: Files in the data directory with the
same names as the pedIndex, phenotype, or map �le will be overwritten without
asking.

7

1. The pedIndex �le data/mygwas.pedIndex. This �le contains the family in-
formation extracted from the ped �le, in a special format. It will be used by
Haplin later on, when converting from GenABEL format to Haplin format. It
should not be modi�ed by the user.

2. A phenotype �le data/mygwas.ph. This �le is in a format suitable for loading
into GenABEL, and it contains three columns, named �id�, �sex�, and �cc�.
Do not change the id variable, as this is matched to the id variable in the
mygwas.raw data when loading into R. The �le will look something like this:

"id" "sex" "cc"

"1104 -1" "1" "1"

"1104 -2" "1" "1"

"1104 -3" "0" "1"

"1105 -1" "0" "2"

"1105 -2" "1" "2"

"1105 -3" "0" "2"

Note that the �sex� variable has been converted to 1/0, as discussed above.
If relevant, you may add extra columns directly to this �le. The extra columns
could contain, for instance, grouped exposure variables that you might want
to stratify your analysis on. Just make sure the extra columns are added to
the right of the �rst three columns, and do not change the values of the �rst
three columns.

3. Optionally, if create.map = T, prepPed will also create an �dummy� map
�le data/mygwas.map. If the mygwas.ped �le already has an accompanying
mygwas.map �le, it is better to just set create.map = F and use the supplied
mygwas.map �le. Otherwise, prepPed will create the new �le having the same
structure as a map �le, but where the map information is arti�cial. Warning:

If you do have a map �le already, but still want to use create.map = T, make
sure the original map �le isn't overwritten.
The only purpose of the arti�cial map �le is to get GenABEL to load the data
even if the original map �le is unavailable. The actual map �le should look
something like this:

chr name pos

1 rs9629043 554636

1 rs12565286 711153

1 rs12138618 740098

The arti�cial map �le created by prepPed, if requested, will simply have snp
names and positions that are values running from 1 upwards, and the chro-
mosome set to 0. It will not make genetic sense; it is only a dummy map �le
to be fed to convert.snp.ped to allow conversion (see below).

8

2.4 Convert to GenABEL raw format

Having prepared the family, phenotype, and map information �les as above, the ped
�le can be converted to a raw GenABEL �le. The function convert.snp.ped from
the GenABEL package will do this, and the basic syntax is:

convert.snp.ped(pedfile = "data/mygwas.ped", mapfile = "

data/mygwas.map", outfile = "data/mygwas.raw")

The out argument speci�es the name of the raw output �le. You may specify any
name, but for consistency it might be a good idea to place it in the same directory as
the other �les, and to use the same name, except with a .raw extension. Converting
a full GWAS �le may take a little while. For other conversion options, see the help
�le on convert.snp.ped in the GenABEL package.

2.5 Loading data into R

To use the .raw data in Haplin, you must �rst load them into R. This is done by
creating a GenABEL data object (of class gwaa.data) in R, which serves as a link
to the data on disk. The function to do this is load.gwaa.data:

mygwas.data <- load.gwaa.data(phenofile = "data/mygwas.ph

", genofile = "data/mygwas.raw")

Note that the created �link� is stored in R with the name mygwas.data (or whatever
name you choose). Whenever starting a new R session, you may reload this with the
load.gwaa.data function, or you may leave the mygwas.data in the R workspace
and save it when exiting R.

2.6 Using the GenABEL data object in Haplin

To run haplin using the loaded GenABEL object instead of a standard Haplin �le,
use all the standard haplin syntax, but rather than using the filename argument,
the data and pedIndex arguments should be used:

haplin(data = mygwas.data , pedIndex = "data/mygwas.

pedIndex", markers = ... etc.)

Haplin will then extract and convert the relevant data from the mygwas.data, using
the pedIndex �le to keep track of families.

When extracting data from a GenABEL object like this, the haplin arguments
sep, allele.sep, na.strings don't have to be set; they are simply ignored. In addi-
tion, haplin extracts the arguments n.vars, ccvar, and sex from the mygwas.data
object automatically. Other arguments, like design and markers, may be set as
needed.

2.7 Additional comments

While the above is su�cient to start running Haplin, a few other suggestions and
GenABEL commands may be useful.

9

Adding extra covariates to the data

Other covariates/exposure variables can be added to the mygwas.ph �le, to the right
of the �rst three columns, as described above.

Extracting information from the data object

The snp names of the object can be extracted with snpnames(mygwas.data), the id's
with idnames(mygwas.data), the gender of each individual with male(mygwas.data),
the chromosome with chromosome(mygwas.data), the snp names of the autosomal
snps with autosomal(mygwas.data), and phenotype data with phdata(mygwas.data).
The latter extracts a data frame with a column for the id variable, and columns for
sex, case-control status, and possibly other covariates. The sex variable should be
the same as the one extracted with male.

Warning: With the exception of subsetting (see below), you should probably
not do modi�cations to the mygwas.data object, including the phenotype data,
unless you really understand what you are doing.

Checking the data conversion

You may perhaps want to check that the mygwas.data object converts correctly
before running Haplin. To check, say, the three �rst snps, use

temp <- gwaaToHaplin(mygwas.data[, 1:3], pedIndex = "data

/mygwas.pedIndex ")

The temp object should be a character matrix where each line of data corresponds
to a family, in a format similar to that described for the original Haplin data format.
Make sure you don't try to convert more than a moderate number of snps at a time.
However, the gwaaToHaplin function is mostly for internal use and should not be
needed.

Run haplin on subsets of snps

To run an analysis on a subset of the snps you can, as before, use the markers

argument in haplin and haplinSlide. For instance,

haplin(data = mygwas.data , pedIndex = "data/mygwas.

pedIndex", markers = 20:22, ... etc.)

will run haplin only on snp 20 to 22 (and reconstruct length 3 haplotypes for these
snps). Using

haplinSlide(data = mygwas.data , pedIndex = "data/mygwas.

pedIndex", markers = 100:1000 , winlength = 2, ...etc.)

will slide windows of length 2 from snp 100 up to snp 1000, reconstructing length 2
haplotypes along the way. To select snps by name, one can for instance use

snpuse <- c(" rs9629043", "rs12565286", "rs12138618 ")

snpselect <- which(snpnames(mygwas.data) %in% snpuse)

10

haplin(data = mygwas.data , pedIndex = "data/mygwas.

pedIndex", markers = snpselect , ...etc.)

Note that we use which to make sure the snpselect variable is integer, not logical,
since the markers argument only accepts numbers. The snpuse list of snps in this
example can of course be made as long as you like when running haplinSlide,
but it should be kept in mind that when running haplinSlide with winlength

larger than 1, the snps should be kept in correct physical ordering for the haplotype
reconstruction to make sense. To keep track of snpnames, it might be useful to add
the names to the output from haplinSlide after running:

result <- haplinSlide(data = mygwas.data , pedIndex = "

data/mygwas.pedIndex", markers = 100:1000 , winlength =

2, ... etc.)

names(result) <- snpnames(mygwas.data)[100:1000]

As an alternative to using the markers argument, the data object can be sub-
setted directly. Create a new data object with, for instance,

mygwas.data1 <- mygwas.data[, 100:1000]

and run haplin or haplinSlide on mygwas.data1. Note: If you use the markers

argument when running haplin or haplinSlide on the new mygwas.data1 object,
the markers now refer to the snps in the reduced mygwas.data1 data, not the
original.

A useful selection could be to run haplinSlide on a selection of chromosomes.
To select chromosomes 1 and 2, say,

snpselect <- which(chromosome(mygwas.data) %in% c(1,2))

and then use the markers argument or subsetting, as above.
Using

mygwas.data1 <- mygwas.data[, autosomal(mygwas.data)]

can similarly select all autosomal snps/chromosomes for analysis. Since Haplin (the
current version) does not detect the X-chromosome automatically, this is useful in
order to split analyses over the autosomal snps and the X-chromosome snps.

Run haplin on subsets of families

Using subsetting of the mygwas.data object is also useful when restricting the anal-
ysis to selected individuals/families in the data �le. For instance, if the phenotype
data contains a variable named group (that you added to the mygwas.ph �le), with
values 1 and 2, you can subset the data with

indselect <- (phdata(gwas.data)$group == 1)

mygwas.data1 <- mygwas.data[, indselect]

Alternatively, if you have, for instance, an R vector tobeselected containing the
ids of the individuals to be selected, you can subset with

11

indselect <- (idnames(gwas.data) %in% tobeselected)

mygwas.data1 <- mygwas.data[, indselect]

Important: Both subsetting approaches select on an individual basis, not on a
family basis. It is a good idea to make sure that the group variable is correctly
de�ned so that complete nuclear families always belong to the same group.

Run haplin on only case-parent triads or control-parent triads

If you have hybrid data, with both case triads and control triads, you can still run
an analysis on cases alone by selecting on the cc variable. Do this as with the group
variable in the example above. Since the cc variable refers to the status of the child,
you should make sure the parents are given the same cc code as the child so that
entire families are selected.

Obviously, if your original data consist of only case-parent triads you only use a
single code for the cc variable, and use the design = �triad� argument.

Run haplin on the X-chromosome

Always make sure the haplin option chrom = T is used, since Haplin does not
(currently) detect the X-chromosome automatically. So any analysis on the X-
chromosome should be run separately from the rest. Also make sure all males are
coded as homozygotes on the X-chromosome, i.e. use, for example, CC instead of
C, etc.

Important

Do not change the id's of mygwas.data, and do not make changes to the pedIndex
�le, or the .ph �le (except perhaps adding columns). The id's stored in the pedIndex
�le used by Haplin must correspond to those in mygwas.data. However, subsetting
mygwas.data, i.e. removing individuals or snps can be done without changing the
pedIndex �le.

References

[1] GenABEL developers (2011). GenABEL: genome-wide SNP as-
sociation analysis. R package version 1.6-7. http://CRAN.R-
project.org/package=GenABEL

12

