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CHAPTER 18

Incorporating Prior Knowledge via
Bayesian Inference: Smoking and Lung

Cancer

18.1 Introduction

At the beginning of the 20th century, the death toll due to lung cancer was on
the rise and the search for possible causes began. For lung cancer in pit work-
ers, animal experiments showed that the so-called ‘Schneeberg lung disease’
was induced by radiation. But this could not explain the increasing incidence
of lung cancer in the general population. The identification of possible risk
factors was a challenge for epidemiology and statistics, both disciplines being
still in their infancy in the 1920s and 1930s.

The first modern controlled epidemiological study on the effect of smoking
on lung cancer was performed by Franz Hermann Müller as part of his dis-
sertation at the University of Cologne in 1939. The results were published a
year later (?). Müller sent out questionnaires to the relatives of people who
had recently died of lung cancer, asking about the smoking behavior and its
intensity of the deceased relative. He also sent the questionnaire to healthy
controls to obtain information about the smoking behavior in a control group,
although it is not clear how this control group was defined. The number of
lung cancer patients and healthy controls in five different groups (nonsmokers
to extreme smokers) are given in Table 18.1.

Table 18.1: Smoking_Mueller1940 data. Smoking and lung can-
cer case-control study by Müller (1940). The smok-
ing intensities were defined by the number of
cigarettes smoked daily: 1-15 (moderate), 16-25
(heavy), 26-35 (very heavy), and more than 35 (ex-
treme).

Diagnosis

Smoking Lung cancer Healthy control
Nonsmoker 3 14

Moderate smoker 27 41
Heavy smoker 13 22

Very heavy smoker 18 5
Extreme smoker 25 4
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Four years later Erich Schöninger also wrote his dissertation on the association
between smoking and lung cancer and, together with his supervisor Eberhard
Schairer at the University of Jena, published his results on a case-control study
(?) where he assessed the smoking behavior of lung cancer patients, patients
diagnosed with other forms of cancer, and also a healthy control group. The
data are given in Table 18.2.

Table 18.2: Smoking_SchairerSchoeniger1944 data. Smoking
and lung cancer case-control study by Schairer and
Schöniger (1944). Cancer other than lung cancer
omitted. The smoking intensities were defined by
the number of cigarettes smoked daily: 1-5 (moder-
ate), 6-10 (medium), 11-20 (heavy), and more than
20 (very heavy).

Diagnosis

Smoking Lung cancer Healthy control
Nonsmoker 3 43

Moderate smoker 11 98
Medium smoker 31 57
Heavy smoker 19 47

Very heavy smoker 29 25

Shortly after the war, a Dutch epidemiologist reported on a case-control study
performed in Amsterdam (?) and found similar results as the two German
studies; see Table 18.3.

Table 18.3: Smoking_Wassink1945 data. Smoking and lung can-
cer case-control study by Wassink (1945). Smok-
ing categories correspond to the categories used by
Müller (1940).

Diagnosis

Smoking Lung cancer Healthy control
Nonsmoker 6 19

Moderate smoker 18 36
Heavy smoker 36 25

Very heavy smoker 74 20

In 1950 perhaps the most important, but not the first, case-control study show-
ing an increasing risk of developing lung cancer with the amount of tobacco
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smoked, was published in Great Britain by Richard Doll and Austin Brad-
ford Hill (?). We restrict discussion here to data obtained for males and the
data shown in Table 18.4 corresponds to the most recent amount of tobacco
consumed regularly by smokers before disease onset (Table V in ?).

Table 18.4: Smoking_DollHill1950 data. Smoking and lung
cancer case-control study (only males) by Doll and
Hill (1950). The labels for the smoking categories
give the number of cigarettes smoked every day.

Diagnosis

Smoking Lung cancer Other
Nonsmoker 2 27

1- 33 55
5- 250 293
15- 196 190
25- 136 71
50+ 32 13

Although the design of the studies by ? and ?, especially the selection of their
control groups, can be criticized (see ?, for a detailed discussion) and the study
by ? was larger than the older studies and more detailed information on the
smoking behavior was obtained by direct patient interviews, the information
provided by the earlier studies was not taken into account by ?. They cite
? in their introduction, but did not compare their findings with his results.
It is remarkable to see that both ? and ? extensively made use of the report
by ? and go as far as analyzing the merged data (Grafiek I, E, and F, in
?). In an informal way, these authors wanted to use the already available
information, in today’s terms called ‘prior knowledge’, to make a stronger case
with the new data. Formal statistical methods to incorporate prior knowledge
into data analysis as part of the ‘Bayesian’ way of doing statistical analyses
were developed in the second half of the last century, and we will focus on
them in the present chapter.

18.2 Bayesian Inference

18.3 Analysis Using R

18.3.1 One-by-one Analysis

For the analysis of the four different case-control studies on smoking and lung
cancer, we will (retrospectively, of course) update our knowledge with every
new study. We begin with a re-analysis of the data described by ?. Using an
approximate permutation test introduced in Chapter ?? for the hypothesis of
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independence of the amount of tobacco smoked and group membership (lung
cancer or healthy control), we get

R> library("coin")

R> set.seed(29)

R> independence_test(Smoking_Mueller1940, teststat = "quad",

+ distribution = approximate(100000))

Approximative General Independence Test

data: Diagnosis by

Smoking (Nonsmoker, Moderate smoker, Heavy smoker, Very heavy smoker, Extreme smoker)

chi-squared = 34.7, p-value < 2.2e-16

and there is clearly a strong association between the number of cigarettes
smoked and incidence of lung cancer. Because the amount of tobacco smoked
is an ordered categorical variable, it is more appropriate to take this infor-
mation into account, for example by means of a linear association test (see
Chapter ??). Nonsmokers receive a score of zero, and for the remaining groups
we choose the mid-point of the intervals of daily cigarettes smoked that were
used by ? to define his groups:

R> ssc <- c(0, 1 + 14 / 2, 16 + 9 / 2, 26 + 9 / 2, 40)

R> independence_test(Smoking_Mueller1940, teststat = "quad",

+ scores = list(Smoking = ssc),

+ distribution = approximate(100000))

Approximative General Independence Test

data: Diagnosis by

Smoking (Nonsmoker < Moderate smoker < Heavy smoker < Very heavy smoker < Extreme smoker)

chi-squared = 29.1, p-value < 2.2e-16

The result shows that the data are in favor of an ordered alternative. The
p-values obtained from approximate permutation tests are attractive because
no distributional assumptions are required, but it is hard to derive estimates
and confidence intervals for interpretable parameters from such tests. We will
therefore now switch to logistic regression models as described in Chapter ??
to model the odds of lung cancer in the different smoking groups. Before
we start, let us define a small function for computing odds (for intercept
parameters) and odds ratios (for difference parameters) and corresponding
confidence intervals from a logistic regression model:

R> eci <- function(model)

+ cbind("Odds (Ratio)" = exp(coef(model)),

+ exp(confint(model)))

We model the probability of developing lung cancer given the smoking behav-
ior. Because our data was obtained from case-control studies where the groups
(lung cancer patients and healthy controls) were defined first and only after
that we observed data on the smoking behavior (in a so-called choice-based

sampling), this may seem the wrong model to start with. However, the margi-
nal distribution of the two groups only changes the intercept in such a logistic
model and the effects of smoking can still be interpreted in the way we require
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(see ?, for example). The formula for specifying a logistic regression model
can be set up such that the response is a matrix with two columns for each
smoking group consisting of the number of lung cancer deaths and the num-
ber of healthy controls. Although smoking is an ordered factor, we first fit the
model with treatment contrasts, i.e., we can interpret the exp of the regression
coefficients as odds ratios between each smoking group and nonsmokers:

R> smoking <- ordered(rownames(Smoking_Mueller1940),

+ levels = rownames(Smoking_Mueller1940))

R> contrasts(smoking) <- "contr.treatment"

R> eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial()))

Odds (Ratio) 2.5 % 97.5 %

(Intercept) 0.214 0.0494 0.656

smokingModerate smoker 3.073 0.8986 14.242

smokingHeavy smoker 2.758 0.7272 13.608

smokingVery heavy smoker 16.800 3.8256 98.205

smokingExtreme smoker 29.167 6.4728 180.002

We see that all but one of the odds ratios increase with the amount of tobacco
smoked with a maximum of almost 30 for extreme smokers (more than 35
cigarettes per day). The likelihood confidence intervals are rather wide due to
the limited sample size, but also the lower limit increases with smoking.
An alternative model formulation can help to compare each smoking group

with the preceding group, the so-called split-coding (for this and other codings
see ?):

R> K <- diag(nlevels(smoking) - 1)

R> K[lower.tri(K)] <- 1

R> contrasts(smoking) <- rbind(0, K)

R> eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial()))

Odds (Ratio) 2.5 % 97.5 %

(Intercept) 0.214 0.0494 0.656

smoking1 3.073 0.8986 14.242

smoking2 0.897 0.3812 2.066

smoking3 6.092 1.9296 22.181

smoking4 1.736 0.4051 7.894

The two largest differences are between moderate smokers and nonsmokers
(smoking1) and between very heavy and heavy smokers (smoking3). The lat-
ter group difference seems, at least judged by the confidence interval, to be
larger than expected under a model with no effect of smoking.

For the analysis of the three remaining studies, we first perform permutation
tests for the independence of smoking and the two groups (lung cancer and
healthy controls) in males:

R> xSS44 <- as.table(Smoking_SchairerSchoeniger1944[,

+ c("Lung cancer", "Healthy control")])

R> ap <- approximate(100000)

R> pvalue(independence_test(xSS44,

+ teststat = "quad", distribution = ap))

[1] 0

99 percent confidence interval:

0.0e+00 5.3e-05
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R> pvalue(independence_test(Smoking_Wassink1945,

+ teststat = "quad", distribution = ap))

[1] 0

99 percent confidence interval:

0.0e+00 5.3e-05

R> xDH50 <- as.table(Smoking_DollHill1950[,, "Male"])

R> pvalue(independence_test(xDH50,

+ teststat = "quad", distribution = ap))

[1] 0

99 percent confidence interval:

0.0e+00 5.3e-05

All p-values indicate that the data are not well-described by the independence
model.

18.3.2 Joint Bayesian Analysis

For a Bayesian analysis, we first merge the data from all four studies into
one data frame. In doing so, we also merge the smoking groups in a way that
we only have three groups left: nonsmokers, moderate smokers, and heavy
smokers. These groups are chosen in a way that the number of daily cigarettes
is comparable. We first merge the heavy, very heavy, and extreme smokers from
?

R> (M <- rbind(Smoking_Mueller1940[1:2,],

+ colSums(Smoking_Mueller1940[3:5,])))

Lung cancer Healthy control

Nonsmoker 3 14

Moderate smoker 27 41

56 31

and proceed with the lung cancer patients and healthy controls from ? in the
same way

R> SS <- Smoking_SchairerSchoeniger1944[,

+ c("Lung cancer", "Healthy control")]

R> (SS <- rbind(SS[1,], colSums(SS[2:3,]), colSums(SS[4:5,])))

Lung cancer Healthy control

[1,] 3 43

[2,] 42 155

[3,] 48 72

and finally perform the same exercise for the ? and ? data

R> (W <- rbind(Smoking_Wassink1945[1:2,],

+ colSums(Smoking_Wassink1945[3:4,])))

Lung cancer Healthy control

Nonsmoker 6 19

Moderate smoker 18 36

110 45

R> DH <- Smoking_DollHill1950[,, "Male"]

R> (DH <- rbind(DH[1,], colSums(DH[2:3,]), colSums(DH[4:6,])))
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Lung cancer Other

[1,] 2 27

[2,] 283 348

[3,] 364 274

The three new groups are now called nonsmokers, moderate smokers, and
heavy smokers, and we set up a data frame that contains the number of people
in each of the possible groups for all studies:

R> smk <- c("Nonsmoker", "Moderate smoker", "Heavy smoker")

R> x <- expand.grid(Smoking = ordered(smk, levels = smk),

+ Diagnosis = factor(c("Lung cancer", "Control")),

+ Study = c("Mueller1940", "SchairerSchoeniger1944",

+ "Wassink1945", "DollHill1950"))

R> x$weights <- c(as.vector(M), as.vector(SS),

+ as.vector(W), as.vector(DH))

Before we fit logistic regression models using the data organized in such a way,
we define the contrasts for the smoking ordered factor and expand the data
in a way that each row corresponds to one person. This is necessary because
the weights argument to the glm function must not be used to define case
weights:

R> contrasts(x$Smoking) <- "contr.treatment"

R> x <- x[rep(1:nrow(x), x$weights),]

We now compute one logistic regression model for each study for later com-
parisons:

R> models <- lapply(levels(x$Study), function(s)

+ glm(Diagnosis ~ Smoking, data = x, family = binomial(),

+ subset = Study == s))

R> names(models) <- levels(x$Study)

In 1939, Müller was hardly in the position to come up with a reasonable prior
for the odds ratios between moderate or heavy smokers and nonsmokers. So
we also use a noninformative prior and just perform the maximum likelihood
analysis:

R> eci(models[["Mueller1940"]])

Odds (Ratio) 2.5 % 97.5 %

(Intercept) 0.214 0.0494 0.656

SmokingModerate smoker 3.073 0.8986 14.242

SmokingHeavy smoker 8.430 2.5199 38.641

Four years later, the maximum likelihood results obtained for the ? data

R> eci(models[["SchairerSchoeniger1944"]])

Odds (Ratio) 2.5 % 97.5 %

(Intercept) 0.0698 0.0169 0.191

SmokingModerate smoker 3.8839 1.3284 16.569

SmokingHeavy smoker 9.5556 3.2417 40.975

could have been improved by using a normal prior for the difference in log
odds whose distribution is the distribution of the maximum likelihood esti-
mator obtained for Müller’s data. At least approximately, we can compute
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posterior 90% credibility intervals and the posterior mode from the Schairer
and Schöniger data by analyzing both data sets simultaneously. We should,
however, keep in mind that the odds of developing lung cancer for nonsmokers
is not really interesting for our analysis and that the four studies may very well
differ with respect to this intercept parameter. Consequently, we don’t want
to specify a prior for the intercept. One way to implement such a strategy is
to exclude the intercept term from the joint model while allowing a separate
intercept for each of the studies:

R> mM40_SS44 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x,

+ family = binomial(),

+ subset = Study %in% c("Mueller1940",

+ "SchairerSchoeniger1944"))

R> eci(mM40_SS44)
Odds (Ratio) 2.5 % 97.5 %

StudyMueller1940 0.1955 0.0732 0.438

StudySchairerSchoeniger1944 0.0753 0.0284 0.166

SmokingModerate smoker 3.5212 1.5441 9.538

SmokingHeavy smoker 9.0121 3.9572 24.398

We observe two important differences between the maximum likelihood and
Bayesian results for the Schairer and Schöniger data: In the Bayesian analysis,
the estimated odds ratio for moderate smokers is closer to the smaller value
obtained from Müller’s data and, more important, the credibility intervals are
much narrower and, one has to say, more realistic now. An odds ratio as large
as 40 is hardly something one would expect to see in practice.
If Wassink had been aware of Bayesian statistics, he could have used the

posterior distribution of the parameters from our model mM40_SS44 as a prior
distribution for analyzing his data. The maximum likelihood results for his
data

R> eci(models[["Wassink1945"]])
Odds (Ratio) 2.5 % 97.5 %

(Intercept) 0.316 0.115 0.747

SmokingModerate smoker 1.583 0.558 4.965

SmokingHeavy smoker 7.741 3.054 22.421

would have changed to

R> mM40_SS44_W45 <- glm(Diagnosis ~ 0 + Study + Smoking,

+ data = x, family = binomial(),

+ subset = Study %in% c("Mueller1940",

+ "SchairerSchoeniger1944",

+ "Wassink1945"))

R> eci(mM40_SS44_W45)
Odds (Ratio) 2.5 % 97.5 %

StudyMueller1940 0.2250 0.1096 0.428

StudySchairerSchoeniger1944 0.0878 0.0436 0.163

StudyWassink1945 0.2603 0.1298 0.482

SmokingModerate smoker 2.7570 1.4554 5.629

SmokingHeavy smoker 8.3795 4.5061 16.862

The rather small odds ratios obtained from the model fitted to the Wassink
data only are now closer to the estimates obtained from the two previous
studies and the variability, as given by the credibility intervals, is much smaller.
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Now, finally, the model for the Doll and Hill data reports rather large odds
ratios with wide confidence intervals:

R> eci(models[["DollHill1950"]])

Odds (Ratio) 2.5 % 97.5 %

(Intercept) 0.0741 0.0119 0.247

SmokingModerate smoker 10.9784 3.2545 68.434

SmokingHeavy smoker 17.9343 5.3168 111.793

With a (now rather strong) prior defined by the three earlier studies, we get
from the joint model for all four studies

R> m_all <- glm(Diagnosis ~ 0 + Study + Smoking, data = x,

+ family = binomial())

R> eci(m_all)

Odds (Ratio) 2.5 % 97.5 %

StudyMueller1940 0.1772 0.0911 0.323

StudySchairerSchoeniger1944 0.0665 0.0349 0.118

StudyWassink1945 0.2200 0.1160 0.390

StudyDollHill1950 0.1629 0.0874 0.282

SmokingModerate smoker 4.5131 2.5918 8.451

SmokingHeavy smoker 8.8971 5.1298 16.605

In 1950, the joint evidence based on such an analysis with an odds ratio
between 2.6 and 8.5 for moderate smokers and between 5.1 and 16.6 for heavy
smokers compared to nonsmokers, would have made a much stronger case than
any of the single studies alone. It is interesting to see that with this strong
prior for the Doll and Hill study, we also get relatively large odds ratios when
comparing heavy to moderate smokers (see row labeled Smoking2):

R> K <- diag(nlevels(x$Smoking) - 1)

R> K[lower.tri(K)] <- 1

R> contrasts(x$Smoking) <- rbind(0, K)

R> eci(glm(Diagnosis ~ 0 + Study + Smoking, data = x,

+ family = binomial()))

Odds (Ratio) 2.5 % 97.5 %

StudyMueller1940 0.1772 0.0911 0.323

StudySchairerSchoeniger1944 0.0665 0.0349 0.118

StudyWassink1945 0.2200 0.1160 0.390

StudyDollHill1950 0.1629 0.0874 0.282

Smoking1 4.5131 2.5918 8.451

Smoking2 1.9714 1.6384 2.374

18.3.3 A Comparison with Meta Analysis

One may ask how the Bayesian approach of progressively updating the es-
timates considered here differs from a classical meta analysis described in
Chapter ??. We first reshape the data into a form suitable for such an analy-
sis

R> y <- xtabs(~ Study + Smoking + Diagnosis, data = x)

R> ntrtM <- margin.table(y, 1:2)[,"Moderate smoker"]

R> nctrl <- margin.table(y, 1:2)[,"Nonsmoker"]

R> ptrtM <- y[,"Moderate smoker","Lung cancer"]
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R> pctrl <- y[,"Nonsmoker","Lung cancer"]

R> ntrtH <- margin.table(y, 1:2)[,"Heavy smoker"]

R> ptrtH <- y[,"Heavy smoker","Lung cancer"]

and then compute joint odds ratios and confidence intervals for moderate and
heavy smokers compared to nonsmokers:

R> library("rmeta")

R> meta.MH(ntrt = ntrtM, nctrl = nctrl,

+ ptrt = ptrtM, pctrl = pctrl)

Fixed effects ( Mantel-Haenszel ) Meta-Analysis

Call: meta.MH(ntrt = ntrtM, nctrl = nctrl, ptrt = ptrtM, pctrl = pctrl)

Mantel-Haenszel OR =3.89 95% CI ( 2.13, 7.09 )

Test for heterogeneity: X^2( 3 ) = 4.77 ( p-value 0.1897 )

R> meta.MH(ntrt = ntrtH, nctrl = nctrl,

+ ptrt = ptrtH, pctrl = pctrl)

Fixed effects ( Mantel-Haenszel ) Meta-Analysis

Call: meta.MH(ntrt = ntrtH, nctrl = nctrl, ptrt = ptrtH, pctrl = pctrl)

Mantel-Haenszel OR =10.25 95% CI ( 5.59, 18.8 )

Test for heterogeneity: X^2( 3 ) = 0.99 ( p-value 0.8042 )

For moderate smokers, the effect is a little weaker compared with the re-
sults reported on earlier and for heavy smokers, the meta analysis identifies
a stronger effect for heavy smokers. Nevertheless, the differences between the
two rather different approaches are negligible and the conclusions would have
been the same.

18.4 Summary of Findings

We have seen that, using a Bayesian approach to incorporate prior knowl-
edge into a model, the odds of developing lung cancer increase with increased
amounts of smoking. Of course, our analysis here is very simplistic, because we
ignored that also pipe and cigar smokers were present in the data, we merged
the data based on a very rough assessment of the number of cigarettes smoked
per day, ignored whether or not the smokers inhaled the smoke into their lungs,
or if nonsmokers were subject to passive-smoking, as we call it today. Most
importantly, we must not misinterpret findings from case-control studies as ca-
sual and, in fact, none of the authors cited here did so. The debate on whether
smoking, and which kind of smoking, actually causes lung cancer was initiated
by the publications cited in this chapter and many famous statisticians took
part in the debate, for example, Sir Ronald Fisher (?), took the view that
the inference of causation was premature. In retrospect this was one issue
(perhaps the only one) where Fisher was mistaken.

18.5 Final Comments

There remain a few hard-line opponents of Bayesian inference (just a few) who
reject the method because of the use of subjective prior distributions which,
these opponents feel, have no place in scientific investigations. And there are
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Bayesians who think that the only defense of using non-Bayesian methods is
incompetence.

But for an increasing number of statisticians Bayesian inference is very at-
tractive, because we can use the posterior distribution of the parameters to
draw conclusions from the data. Although this requires the specification of a
prior distribution, we have seen in this chapter that, using data from previous
experiments, priors can be defined in a reasonable way. It is not absolutely
necessary to rely on rather complex numerical procedures to‘estimate’ a poste-
rior distribution. When we are willing to cut some corners, we can implement
simple Bayesian approaches using standard software. We should also keep in
mind that the prior can be interpreted as a penalty on the parameters, and
many penalization approaches therefore have an (often implicit) connection
to the Bayesian way of doing statistics. Of course, just picking the prior that
‘works best’ is dangerous and almost surely inappropriate.

Exercises

Ex. 18.1 Produce a forest plot as introduced in Chapter ?? for the four
smoking studies analyzed here.

Ex. 18.2 Produce a modified forest plot where one can see how the evidence
for smoking being related to lung cancer evolved between 1940 and 1950.

Ex. 18.3 Use the INLA add-on package to perform a similar analysis by
using the coefficients and their standard errors estimated from our initial
logistic regression model m[["Mueller1940"]] as parameters of a normal
prior for a logistic regression applied to the Schairer and Schöniger data.
Compare the resulting credibility intervals for the two odds-ratios with the
approximate results obtained in this chapter.
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