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CHAPTER 12

Quantile Regression: Head
Circumference for Age

12.1 Introduction

12.2 Quantile Regression

12.3 Analysis Using R

We begin with a graphical inspection of the influence of age on head circumfer-
ence by means of a scatterplot. Plotting all pairs of age and head circumference
in one panel gives more weight to the teens and 20s, so we produce one plot
for younger boys between two and nine years old and one additional plot for
boys older than nine years (or > 108 months, to be precise). The cut function
is very convenient for constructing a factor representing these two groups

R> summary(db)

head age

Min. :33.5 Min. : 0.03

1st Qu.:48.8 1st Qu.: 1.75

Median :53.0 Median : 9.99

Mean :51.7 Mean : 8.94

3rd Qu.:55.7 3rd Qu.:14.84

Max. :66.3 Max. :21.68

R> db$cut <- cut(db$age, breaks = c(2, 9, 23),

+ labels = c("2-9 yrs", "9-23 yrs"))

which can then be used as a conditioning variable for conditional scatterplots
produced with the xyplot function (Sarkar, 2014, package lattice). Because
we draw 5101 points in total, we use transparent shading (via rgb(.1, .1,

.1, .1)) in order to obtain a clearer picture for the more populated areas in
the plot.

Figure 12.1, as expected, shows that head circumference increases with age.
It also shows that there is considerable variation and also quite a number of
extremely large or small head circumferences in the respective age cohorts. It
should be noted that each point corresponds to one boy participating in the
study due to its cross-sectional study design. No longitudinal measurements
(cf. Chapter ??) were taken and we can safely assume independence between
observations.

We start with a simple linear model, computed separately for the younger
and older boys, for regressing the mean head circumference on age
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4 QUANTILE REGRESSION

R> db$cut <- cut(db$age, breaks = c(2, 9, 23),

+ labels = c("2-9 yrs", "9-23 yrs"))

R> xyplot(head ~ age | cut, data = db, xlab = "Age (years)",

+ ylab = "Head circumference (cm)",

+ scales = list(x = list(relation = "free")),

+ layout = c(2, 1), pch = 19,

+ col = rgb(.1, .1, .1, .1))

Figure 12.1 Scatterplot of age and head circumference for 5101 Dutch boys.

R> (lm2.9 <- lm(head ~ age, data = db, subset = age < 9))

Call:

lm(formula = head ~ age, data = db, subset = age < 9)

Coefficients:

(Intercept) age

43.72 1.52

R> (lm9.23 <- lm(head ~ age, data = db, subset = age > 9))

Call:

lm(formula = head ~ age, data = db, subset = age > 9)

Coefficients:

(Intercept) age

48.619 0.469

This approach is equivalent to fitting two intercepts and two slopes in the
joint model
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R> (lm_mod <- lm(head ~ age:I(age < 9) + I(age < 9) - 1,

+ data = db))

Call:

lm(formula = head ~ age:I(age < 9) + I(age < 9) - 1, data = db)

Coefficients:

I(age < 9)FALSE I(age < 9)TRUE age:I(age < 9)FALSE

48.620 43.715 0.469

age:I(age < 9)TRUE

1.517

while omitting the global intercept. Because the median of the normal distri-
bution is equal to its mean, the two models can be interpreted as conditional
median models under the normal assumption. The model states that within
one year, the head circumference increases by 1.517 cm for boys less than nine
years old and by 0.469 for older boys.

We now relax this distributional assumption and compute a median regres-
sion model using the rq function from package quantreg (Koenker, 2013):

R> library("quantreg")

R> (rq_med2.9 <- rq(head ~ age, data = db, tau = 0.5,

+ subset = age < 9))

Call:

rq(formula = head ~ age, tau = 0.5, data = db, subset = age <

9)

Coefficients:

(Intercept) age

45.01 1.28

Degrees of freedom: 3193 total; 3191 residual

R> (rq_med9.23 <- rq(head ~ age, data = db, tau = 0.5,

+ subset = age > 9))

Call:

rq(formula = head ~ age, tau = 0.5, data = db, subset = age >

9)

Coefficients:

(Intercept) age

48.579 0.472

Degrees of freedom: 3842 total; 3840 residual

When we construct confidence intervals for the intercept and slope parameters
from both models for the younger boys

R> cbind(coef(lm2.9)[1], confint(lm2.9, parm = "(Intercept)"))

2.5 % 97.5 %

(Intercept) 43.7 43.6 43.9



6 QUANTILE REGRESSION

R> cbind(coef(lm2.9)[2], confint(lm2.9, parm = "age"))

2.5 % 97.5 %

age 1.52 1.47 1.57

R> summary(rq_med2.9, se = "rank")

Call: rq(formula = head ~ age, tau = 0.5, data = db, subset = age <

9)

tau: [1] 0.5

Coefficients:

coefficients lower bd upper bd

(Intercept) 45.01 44.81 45.21

age 1.28 1.23 1.38

we see that the two intercepts are almost identical but there seems to be a
larger slope parameter for age in the median regression model. For the older
boys, we get the confidence intervals via

R> cbind(coef(lm9.23)[1], confint(lm9.23, parm = "(Intercept)"))

2.5 % 97.5 %

(Intercept) 48.6 48.4 48.9

R> cbind(coef(lm9.23)[2], confint(lm9.23, parm = "age"))

2.5 % 97.5 %

age 0.469 0.452 0.486

R> summary(rq_med9.23, se = "rank")

Call: rq(formula = head ~ age, tau = 0.5, data = db, subset = age >

9)

tau: [1] 0.5

Coefficients:

coefficients lower bd upper bd

(Intercept) 48.579 48.391 48.893

age 0.472 0.430 0.486

with again almost identical intercepts and only a slightly increased slope for
age in the median regression model.
Since one of our aims was the construction of growth curves, we first use

the linear models regressing head circumference on age to plot such curves.
Based on the two normal linear models, we can compute the quantiles of head
circumference for age. For the following values of τ

R> tau <- c(.01, .1, .25, .5, .75, .9, .99)

and a grid of age values

R> gage <- c(2:9, 9:23)

R> i <- 1:8
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(the index i denoting younger boys), we compute the standard prediction in-
tervals taking the randomness of the estimated intercept, slope, and variance
parameters into account. We first set up a data frame with our grid of age
values and then use the predict function for a linear model to compute pre-
diction intervals, here with a coverage of 50%. The lower limit of such a 50%
prediction interval is equivalent to the conditional 25% quantile for the given
age and the upper limit corresponds to the 75% quantile. The conditional
mean is also reported and is equivalent to the conditional median:

R> idf <- data.frame(age = gage[i])

R> p <- predict(lm2.9, newdata = idf, level = 0.5,

+ interval = "prediction")

R> colnames(p) <- c("0.5", "0.25", "0.75")

R> p

0.5 0.25 0.75

1 46.7 44.5 49.0

2 48.3 46.1 50.5

3 49.8 47.6 52.0

4 51.3 49.1 53.5

5 52.8 50.6 55.0

6 54.3 52.1 56.5

7 55.9 53.6 58.1

8 57.4 55.2 59.6

We now proceed with 80% prediction intervals for constructing the 10% and
90% quantiles, and with 98% prediction intervals corresponding to the 1% and
99% quantiles and repeat the exercise also for the older boys:

R> p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.8,

+ interval = "prediction")[,-1])

R> colnames(p)[4:5] <- c("0.1", "0.9")

R> p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.98,

+ interval = "prediction")[,-1])

R> colnames(p)[6:7] <- c("0.01", "0.99")

R> p2.9 <- p[, c("0.01", "0.1", "0.25", "0.5",

+ "0.75", "0.9", "0.99")]

R> idf <- data.frame(age = gage[-i])

R> p <- predict(lm9.23, newdata = idf, level = 0.5,

+ interval = "prediction")

R> colnames(p) <- c("0.5", "0.25", "0.75")

R> p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.8,

+ interval = "prediction")[,-1])

R> colnames(p)[4:5] <- c("0.1", "0.9")

R> p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.98,

+ interval = "prediction")[,-1])

R> colnames(p)[6:7] <- c("0.01", "0.99")

We now reorder the columns of this table and get the following conditional
quantiles, estimated under the normal assumption of head circumference:
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R> p9.23 <- p[, c("0.01", "0.1", "0.25", "0.5",

+ "0.75", "0.9", "0.99")]

R> round((q2.23 <- rbind(p2.9, p9.23)), 3)

0.01 0.1 0.25 0.5 0.75 0.9 0.99

1 39.1 42.5 44.5 46.7 49.0 50.9 54.4

2 40.6 44.1 46.1 48.3 50.5 52.5 55.9

3 42.2 45.6 47.6 49.8 52.0 54.0 57.4

4 43.7 47.1 49.1 51.3 53.5 55.5 58.9

5 45.2 48.6 50.6 52.8 55.0 57.0 60.4

6 46.7 50.1 52.1 54.3 56.5 58.5 62.0

7 48.2 51.6 53.6 55.9 58.1 60.1 63.5

8 49.7 53.2 55.2 57.4 59.6 61.6 65.0

1 48.8 50.6 51.7 52.8 54.0 55.1 56.9

2 49.3 51.1 52.1 53.3 54.5 55.5 57.4

3 49.7 51.5 52.6 53.8 55.0 56.0 57.8

4 50.2 52.0 53.1 54.2 55.4 56.5 58.3

5 50.7 52.5 53.5 54.7 55.9 56.9 58.8

6 51.1 53.0 54.0 55.2 56.4 57.4 59.2

7 51.6 53.4 54.5 55.7 56.8 57.9 59.7

8 52.1 53.9 54.9 56.1 57.3 58.4 60.2

9 52.5 54.4 55.4 56.6 57.8 58.8 60.6

10 53.0 54.8 55.9 57.1 58.2 59.3 61.1

11 53.5 55.3 56.4 57.5 58.7 59.8 61.6

12 53.9 55.8 56.8 58.0 59.2 60.2 62.1

13 54.4 56.2 57.3 58.5 59.6 60.7 62.5

14 54.9 56.7 57.8 58.9 60.1 61.2 63.0

15 55.3 57.2 58.2 59.4 60.6 61.6 63.5

We can now superimpose these conditional quantiles on our scatterplot. To
do this, we need to write our own little panel function that produces the
scatterplot using the panel.xyplot function and then adds the just computed
conditional quantiles by means of the panel.lines function called for every
column of q2.23.
Figure 12.2 shows parallel lines owing to the fact that the linear model

assumes an error variance independent from age; this is the so-called variance
homogeneity. Compared to a plot with only a single (mean) regression line,
we plotted a whole bunch of conditional distributions here, one for each value
of age. Of course, we did so under extremely simplifying assumptions like
linearity and variance homogeneity that we’re going to drop now.
For the production of a nonparametric version of our growth curves, we

start with fitting not only one but multiple quantile regression models, one
for each value of τ . We start with the younger boys

R> (rq2.9 <- rq(head ~ age, data = db, tau = tau,

+ subset = age < 9))

Call:

rq(formula = head ~ age, tau = tau, data = db, subset = age <

9)
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R> pfun <- function(x, y, ...) {

+ panel.xyplot(x = x, y = y, ...)

+ if (max(x) <= 9) {

+ apply(q2.23, 2, function(x)

+ panel.lines(gage[i], x[i]))

+ } else {

+ apply(q2.23, 2, function(x)

+ panel.lines(gage[-i], x[-i]))

+ }

+ panel.text(rep(max(db$age), length(tau)),

+ q2.23[nrow(q2.23),], label = tau, cex = 0.9)

+ panel.text(rep(min(db$age), length(tau)),

+ q2.23[1,], label = tau, cex = 0.9)

+ }

R> xyplot(head ~ age | cut, data = db, xlab = "Age (years)",

+ ylab = "Head circumference (cm)", pch = 19,

+ scales = list(x = list(relation = "free")),

+ layout = c(2, 1), col = rgb(.1, .1, .1, .1),

+ panel = pfun)

Figure 12.2 Scatterplot of age and head circumference for 5101 Dutch boys with
superimposed normal quantiles.
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Coefficients:

tau= 0.01 tau= 0.10 tau= 0.25 tau= 0.50 tau= 0.75

(Intercept) 35.63 38.37 41.20 45.01 46.70

age 1.68 1.68 1.55 1.28 1.28

tau= 0.90 tau= 0.99

(Intercept) 47.69 49.43

age 1.35 1.42

Degrees of freedom: 3193 total; 3191 residual

and continue with the older boys

R> (rq9.23 <- rq(head ~ age, data = db, tau = tau,

+ subset = age > 9))

Call:

rq(formula = head ~ age, tau = tau, data = db, subset = age >

9)

Coefficients:

tau= 0.01 tau= 0.10 tau= 0.25 tau= 0.50 tau= 0.75

(Intercept) 44.335 46.438 47.60 48.579 49.672

age 0.481 0.469 0.46 0.472 0.477

tau= 0.90 tau= 0.99

(Intercept) 50.716 52.667

age 0.475 0.465

Degrees of freedom: 3842 total; 3840 residual

Naturally, the intercept parameters vary but there is also a considerable varia-
tion in the slopes, with the largest value for the 1% quantile regression model
for younger boys. The parameters βτ have to be interpreted with care. In
general, they cannot be interpreted on an individual-specific level. A boy who
happens to be at the τ × 100% quantile of head circumference conditional
on his age would not be at the same quantile anymore when he gets older.
When knowing βτ , the only conclusion that can be drawn is how the τ×100%
quantile of a population with a specific age differs from the τ × 100% quantile
of a population with a different age.
Because the linear functions estimated by linear quantile regression, here in

model rq9.23, directly correspond to the conditional quantiles of interest, we
can use the predict function to compute the estimated conditional quantiles:

R> p2.23 <- rbind(predict(rq2.9,

+ newdata = data.frame(age = gage[i])),

+ predict(rq9.23,

+ newdata = data.frame(age = gage[-i])))

It is important to note that these numbers were obtained without assuming
anything about the continuous distribution of head circumference given any
age. Again, we produce a scatterplot with superimposed quantiles, this time
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each line corresponds to a specific model. For the sake of comparison with the
linear model, we add the linear model quantiles as dashed lines to Figure 12.3.
For the older boys, there seems to be almost no difference but the more extreme
1% and 99% quantiles for the younger boys differ considerably. So, at least for
the younger boys, we might want to allow for age-specific variability in the
distribution of head circumference.

Still, with the quantile regression models shown in Figure 12.3 we assume
that the quantiles of head circumference depend on age in a linear way. Ad-
ditive quantile regression is one way to approach the estimation of non-linear
quantile functions. By considering two different models for younger and older
boys, we allowed for a certain type of non-linear function in the results shown
so far. Additive quantile regression should be able to deal with this problem
and we therefore fit these models to all boys simultaneously. For our differ-
ent choices of τ , we fit one additive quantile regression model using the rqss
function from the quantreg and allow smooth quantile functions of age via
the qss function in the right-hand side of the model formula. Note that we
transformed age by the third root prior to model fitting. This does not affect
the model since it is a monotone transformation, however, it helps to avoid
fitting a function with large derivatives for very young boys resulting in a low
penalty parameter λ:

R> rqssmod <- vector(mode = "list", length = length(tau))

R> db$lage <- with(db, age^(1/3))

R> for (i in 1:length(tau))

+ rqssmod[[i]] <- rqss(head ~ qss(lage, lambda = 1),

+ data = db, tau = tau[i])

For the analysis of the head circumference, we choose a penalty parameter λ =
1, which is the default for the qss function. Simply using the default without
a careful hyperparameter tuning, for example using crossvalidation or similar
procedures, is almost always a mistake. By visual inspection (Figure 12.4)
we find this choice appropriate but ask the readers to make a second guess
(Exercise 3).

For a finer grid of age values, we compute the conditional quantiles from
the predict function:

R> gage <- seq(from = min(db$age), to = max(db$age),

+ length = 50)

R> p <- sapply(1:length(tau), function(i) {

+ predict(rqssmod[[i]],

+ newdata = data.frame(lage = gage^(1/3)))

+ })

Using very similar code as for plotting linear quantiles, we produce again
a scatterplot of age and head circumference but this time overlaid with non-
linear regression quantiles. Given that the results from the linear models pre-
sented in Figure 12.3 looked pretty convincing, the quantile curves in Fig-
ure 12.4 shed a surprising new light on the data. For the younger boys, we
expected to see a larger variability than for boys between two and three years
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R> pfun <- function(x, y, ...) {

+ panel.xyplot(x = x, y = y, ...)

+ if (max(x) <= 9) {

+ apply(q2.23, 2, function(x)

+ panel.lines(gage[i], x[i], lty = 2))

+ apply(p2.23, 2, function(x)

+ panel.lines(gage[i], x[i]))

+ } else {

+ apply(q2.23, 2, function(x)

+ panel.lines(gage[-i], x[-i], lty = 2))

+ apply(p2.23, 2, function(x)

+ panel.lines(gage[-i], x[-i]))

+ }

+ panel.text(rep(max(db$age), length(tau)),

+ p2.23[nrow(p2.23),], label = tau, cex = 0.9)

+ panel.text(rep(min(db$age), length(tau)),

+ p2.23[1,], label = tau, cex = 0.9)

+ }

R> xyplot(head ~ age | cut, data = db, xlab = "Age (years)",

+ ylab = "Head circumference (cm)", pch = 19,

+ scales = list(x = list(relation = "free")),

+ layout = c(2, 1), col = rgb(.1, .1, .1, .1),

+ panel = pfun)

Figure 12.3 Scatterplot of age and head circumference for 5101 Dutch boys with
superimposed regression quantiles (solid lines) and normal quantiles
(dashed lines).
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old, but in fact the distribution seems to be more complex. The distribution
seems to be positively skewed with a heavy lower tail and the degree of skew-
ness varies with age (note that the median is almost linear for boys older than
four years).

Also in the right part of Figure 12.4, we see an age-varying skewness, al-
though less pronounced as for the younger boys. The median increases up to
16 years but then the growth rate is much smaller. This does not seem to be
the case for the 1%, 10%, 90%, and 99% quantiles. Note that the discontinuity
in the quantiles between the two age groups is only due to the overlapping
abscissae.

However, the deviations between the growth curves obtained from a linear
model under normality assumption on the one hand and quantile regression
on the other hand as shown in Figures 12.3 and 12.4 are hardly dramatic for
the head circumference data.

12.4 Summary of Findings

We can conclude that the whole distribution of head circumference changes
with age and that assumptions like symmetry and variance homogeneity might
be questionable for such type of analysis.

One alternative to the estimation of conditional quantiles is the estimation
of conditional distributions. One very interesting parametric approach are
generalized additive models for location, scale, and shape (GAMLSS, Rigby
and Stasinopoulos, 2005). In Stasinopoulos and Rigby (2007), an analysis of
the age and head circumference by means of the gamlss package can be found.

One practical problem associated with contemporary methods in quantile
regression is quantile crossing. Because we fitted one quantile regression model
for each of the quantiles of interest, we cannot guarantee that the condi-
tional quantile functions are monotone, so the 90% quantile may well be larger
than the 95% quantile in some cases. Postprocessing of the estimated quantile
curves may help in this situation (Dette and Volgushev, 2008).

12.5 Final Comments

When estimating regression models, we have to be aware of the implica-
tions of model assumptions when interpreting the results. Symmetry, linearity,
and variance homogeneity are among the strongest but common assumptions.
Quantile regression, both in its linear and additive formulation, is an intellec-
tually stimulating and practically very useful framework where such assump-
tions can be relaxed. At a more basic level, one should always ask Am I really
interested in the mean? before using the regression models discussed in other
chapters of this book.
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R> pfun <- function(x, y, ...) {

+ panel.xyplot(x = x, y = y, ...)

+ apply(p, 2, function(x) panel.lines(gage, x))

+ panel.text(rep(max(db$age), length(tau)),

+ p[nrow(p),], label = tau, cex = 0.9)

+ panel.text(rep(min(db$age), length(tau)),

+ p[1,], label = tau, cex = 0.9)

+ }

R> xyplot(head ~ age | cut, data = db, xlab = "Age (years)",

+ ylab = "Head circumference (cm)", pch = 19,

+ scales = list(x = list(relation = "free")),

+ layout = c(2, 1), col = rgb(.1, .1, .1, .1),

+ panel = pfun)

Figure 12.4 Scatterplot of age and head circumference for 5101 Dutch boys with
superimposed non-linear regression quantiles.
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