
A Handbook of Statistical Analyses
Using R — 3rd Edition

Torsten Hothorn and Brian S. Everitt

CHAPTER 9

Recursive Partitioning: Predicting
Body Fat, Glaucoma Diagnosis, and

Happiness in China

9.1 Introduction

9.2 Recursive Partitioning

9.3 Analysis Using R

9.3.1 Predicting Body Fat Content

The rpart function from rpart can be used to grow a regression tree. The
response variable and the covariates are defined by a model formula in the
same way as for lm, say. By default, a large initial tree is grown, we restrict
the number of observations required to establish a potential binary split to at
least ten:

R> library("rpart")

R> data("bodyfat", package = "TH.data")

R> bodyfat_rpart <- rpart(DEXfat ~ age + waistcirc + hipcirc +

+ elbowbreadth + kneebreadth, data = bodyfat,

+ control = rpart.control(minsplit = 10))

A print method for rpart objects is available; however, a graphical repre-
sentation (here utilizing functionality offered from package partykit, Hothorn
and Zeileis, 2014) shown in Figure 9.1 is more convenient. Observations that
satisfy the condition shown for each node go to the left and observations that
don’t are an element of the right branch in each node. As expected, higher
values for waist and hip circumferences and wider knees correspond to higher
values of body fat content. The rightmost terminal node consists of only three
rather extreme observations.

To determine if the tree is appropriate or if some of the branches need to
be subjected to pruning we can use the cptable element of the rpart object:

R> print(bodyfat_rpart$cptable)

CP nsplit rel error xerror xstd

1 0.6629 0 1.0000 1.027 0.1684

2 0.0938 1 0.3371 0.427 0.0943

3 0.0770 2 0.2433 0.445 0.0869

4 0.0451 3 0.1663 0.354 0.0696

5 0.0184 4 0.1212 0.264 0.0597

3

4 RECURSIVE PARTITIONING

R> library("partykit")

R> plot(as.party(bodyfat_rpart), tp_args = list(id = FALSE))

waistcirc

1

< 88.4 ≥ 88.4

hipcirc

2

< 96.2 ≥ 96.2

age

3

< 59.5 ≥ 59.5

n = 11

10

20

30

40

50

60

n = 6

10

20

30

40

50

60

waistcirc

6

< 80.8 ≥ 80.8

n = 13

10

20

30

40

50

60

n = 10

●

●

10

20

30

40

50

60

kneebreadth

9

< 11.1 ≥ 11.1

hipcirc

10

< 110 ≥ 110

n = 13

●

10

20

30

40

50

60

n = 15

10

20

30

40

50

60

n = 3

10

20

30

40

50

60

Figure 9.1 Initial tree for the body fat data with the distribution of body fat in
terminal nodes visualized via boxplots.

6 0.0182 5 0.1028 0.286 0.0622

7 0.0100 6 0.0846 0.279 0.0624

R> opt <- which.min(bodyfat_rpart$cptable[,"xerror"])

The xerror column contains estimates of cross-validated prediction error for
different numbers of splits (nsplit). The best tree has four splits. Now we
can prune back the large initial tree using

R> cp <- bodyfat_rpart$cptable[opt, "CP"]

R> bodyfat_prune <- prune(bodyfat_rpart, cp = cp)

The result is shown in Figure 9.2. Note that the inner nodes three and six
have been removed from the tree. Still, the rightmost terminal node might
give very unreliable extreme predictions.
Given this model, one can predict the (unknown, in real circumstances)

body fat content based on the covariate measurements. Here, using the known
values of the response variable, we compare the model predictions with the
actually measured body fat as shown in Figure 9.3. The three observations
with large body fat measurements in the rightmost terminal node can be
identified easily.

9.3.2 Glaucoma Diagnosis

R> data("GlaucomaM", package = "TH.data")

R> glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM,

ANALYSIS USING R 5

R> plot(as.party(bodyfat_prune), tp_args = list(id = FALSE))

waistcirc

1

< 88.4 ≥ 88.4

hipcirc

2

< 96.2 ≥ 96.2

n = 17

10

20

30

40

50

60

n = 23

10

20

30

40

50

60

kneebreadth

5

< 11.1 ≥ 11.1

hipcirc

6

< 110 ≥ 110

n = 13

●

10

20

30

40

50

60

n = 15

10

20

30

40

50

60

n = 3

10

20

30

40

50

60

Figure 9.2 Pruned regression tree for body fat data.

+ control = rpart.control(xval = 100))

R> glaucoma_rpart$cptable

CP nsplit rel error xerror xstd

1 0.6531 0 1.000 1.531 0.0605

2 0.0714 1 0.347 0.388 0.0565

3 0.0136 2 0.276 0.378 0.0559

4 0.0100 5 0.235 0.449 0.0596

R> opt <- which.min(glaucoma_rpart$cptable[,"xerror"])

R> cp <- glaucoma_rpart$cptable[opt, "CP"]

R> glaucoma_prune <- prune(glaucoma_rpart, cp = cp)

As we discussed earlier, the choice of the appropriately sized tree is not a
trivial problem. For the glaucoma data, the above choice of three leaves is
very unstable across multiple runs of cross-validation. As an illustration of
this problem we repeat the very same analysis as shown above and record the
optimal number of splits as suggested by the cross-validation runs.

R> nsplitopt <- vector(mode = "integer", length = 25)

R> for (i in 1:length(nsplitopt)) {

+ cp <- rpart(Class ~ ., data = GlaucomaM)$cptable

+ nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"]

+ }

6 RECURSIVE PARTITIONING

R> DEXfat_pred <- predict(bodyfat_prune, newdata = bodyfat)

R> xlim <- range(bodyfat$DEXfat)

R> plot(DEXfat_pred ~ DEXfat, data = bodyfat, xlab = "Observed",

+ ylab = "Predicted", ylim = xlim, xlim = xlim)

R> abline(a = 0, b = 1)

● ●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

● ●

● ●● ●●

●

●

●

●

●

●●

●● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●●● ● ●●● ●

●●

●

10 20 30 40 50 60

10
20

30
40

50
60

Observed

P
re

di
ct

ed

Figure 9.3 Observed and predicted DXA measurements.

R> table(nsplitopt)

nsplitopt

1 2 5

14 7 4

Although for 14 runs of cross-validation a simple tree with one split only is
suggested, larger trees would have been favored in 11 of the cases. This short
analysis shows that we should not trust the tree in Figure 9.4 too much.
One way out of this dilemma is the aggregation of multiple trees via bagging.

In R, the bagging idea can be implemented by three or four lines of code. Case

ANALYSIS USING R 7

R> plot(as.party(glaucoma_prune), tp_args = list(id = FALSE))

varg

1

< 0.2 ≥ 0.2

n = 76

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1

mhcg

3

≥ 0.2 < 0.2

n = 7
no

rm
al

gl
au

co
m

a

0

0.2

0.4

0.6

0.8

1
n = 113

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1

Figure 9.4 Pruned classification tree of the glaucoma data with class distribution
in the leaves.

count or weight vectors representing the bootstrap samples can be drawn from
the multinominal distribution with parameters n and p1 = 1/n, . . . , pn =
1/n via the rmultinom function. For each weight vector, one large tree is
constructed without pruning and the rpart objects are stored in a list, here
called trees:

R> trees <- vector(mode = "list", length = 25)

R> n <- nrow(GlaucomaM)

R> bootsamples <- rmultinom(length(trees), n, rep(1, n)/n)

R> mod <- rpart(Class ~ ., data = GlaucomaM,

+ control = rpart.control(xval = 0))

R> for (i in 1:length(trees))

+ trees[[i]] <- update(mod, weights = bootsamples[,i])

The update function re-evaluates the call of mod, however, with the weights
being altered, i.e., fits a tree to a bootstrap sample specified by the weights.
It is interesting to have a look at the structures of the multiple trees. For
example, the variable selected for splitting in the root of the tree is not unique
as can be seen by

R> table(sapply(trees, function(x) as.character(x$frame$var[1])))

phcg varg vari vars

1 14 9 1

8 RECURSIVE PARTITIONING

Although varg is selected most of the time, other variables such as vari occur
as well – a further indication that the tree in Figure 9.4 is questionable and
that hard decisions are not appropriate for the glaucoma data.
In order to make use of the ensemble of trees in the list trees we estimate

the conditional probability of suffering from glaucoma given the covariates for
each observation in the original data set by

R> classprob <- matrix(0, nrow = n, ncol = length(trees))

R> for (i in 1:length(trees)) {

+ classprob[,i] <- predict(trees[[i]],

+ newdata = GlaucomaM)[,1]

+ classprob[bootsamples[,i] > 0,i] <- NA

+ }

Thus, for each observation we get 25 estimates. However, each observation has
been used for growing one of the trees with probability 0.632 and thus was
not used with probability 0.368. Consequently, the estimate from a tree where
an observation was not used for growing is better for judging the quality of
the predictions and we label the other estimates with NA.

Now, we can average the estimates and we vote for glaucoma when the
average of the estimates of the conditional glaucoma probability exceeds 0.5.
The comparison between the observed and the predicted classes does not suffer
from overfitting since the predictions are computed from those trees for which
each single observation was not used for growing.

R> avg <- rowMeans(classprob, na.rm = TRUE)

R> predictions <- factor(ifelse(avg > 0.5, "glaucoma",

+ "normal"))

R> predtab <- table(predictions, GlaucomaM$Class)

R> predtab

predictions glaucoma normal

glaucoma 77 12

normal 21 86

Thus, an honest estimate of the probability of a glaucoma prediction when
the patient is actually suffering from glaucoma is

R> round(predtab[1,1] / colSums(predtab)[1] * 100)

glaucoma

79

per cent. For

R> round(predtab[2,2] / colSums(predtab)[2] * 100)

normal

88

percent of normal eyes, the ensemble does not predict glaucomateous damage.
The bagging procedure is a special case of a more general approach called

random forest (Breiman, 2001). The package randomForest (Breiman et al.,
2013) can be used to compute such ensembles via

ANALYSIS USING R 9

R> library("lattice")

R> gdata <- data.frame(avg = rep(avg, 2),

+ class = rep(as.numeric(GlaucomaM$Class), 2),

+ obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]),

+ var = factor(c(rep("varg", nrow(GlaucomaM)),

+ rep("vari", nrow(GlaucomaM)))))

R> panelf <- function(x, y) {

+ panel.xyplot(x, y, pch = gdata$class)

+ panel.abline(h = 0.5, lty = 2)

+ }

R> print(xyplot(avg ~ obs | var, data = gdata,

+ panel = panelf,

+ scales = "free", xlab = "",

+ ylab = "Estimated Class Probability Glaucoma"))

E
st

im
at

ed
 C

la
ss

 P
ro

ba
bi

lit
y

G
la

uc
om

a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0

●● ●●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●

●

● ●●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

varg
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.00 0.05 0.10 0.15 0.20 0.25

●● ●●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●

●

●● ●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

vari

Figure 9.5 Estimated class probabilities depending on two important variables.
The 0.5 cut-off for the estimated glaucoma probability is depicted as a
horizontal line. Glaucomateous eyes are plotted as circles and normal
eyes are triangles.

10 RECURSIVE PARTITIONING

R> plot(bodyfat_ctree, tp_args = list(id = FALSE))

hipcirc
p < 0.001

1

≤ 108 > 108

waistcirc
p < 0.001

2

≤ 76.5 > 76.5

n = 17

10

20

30

40

50

60

hipcirc
p < 0.001

4

≤ 99 > 99

n = 11

10

20

30

40

50

60

n = 17

●

10

20

30

40

50

60

kneebreadth
p = 0.003

7

≤ 10.6 > 10.6

n = 19

10

20

30

40

50

60

n = 7

10

20

30

40

50

60

Figure 9.6 Conditional inference tree with the distribution of body fat content
shown for each terminal leaf.

R> library("randomForest")

R> rf <- randomForest(Class ~ ., data = GlaucomaM)

and we obtain out-of-bag estimates for the prediction error via

R> table(predict(rf), GlaucomaM$Class)

glaucoma normal

glaucoma 80 11

normal 18 87

9.3.3 Trees Revisited

For the body fat data, such a conditional inference tree can be computed using
the ctree function

R> bodyfat_ctree <- ctree(DEXfat ~ age + waistcirc + hipcirc +

+ elbowbreadth + kneebreadth, data = bodyfat)

This tree doesn’t require a pruning procedure because an internal stop crite-
rion based on formal statistical tests prevents the procedure from overfitting
the data. The tree structure is shown in Figure 9.6. Although the structure
of this tree and the tree depicted in Figure 9.2 are rather different, the corre-
sponding predictions don’t vary too much.
Very much the same code is needed to grow a tree on the glaucoma data:

R> glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM)

and a graphical representation is depicted in Figure 9.7 showing both the
cutpoints and the p-values of the associated independence tests for each node.

ANALYSIS USING R 11

R> plot(glaucoma_ctree, tp_args = list(id = FALSE))

vari
p < 0.001

1

≤ 0.1 > 0.1

vasg
p < 0.001

2

≤ 0.1 > 0.1

n = 79

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1
n = 8

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1

tms
p = 0.049

5

≤ −0.1 > −0.1

n = 65

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1
n = 44

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1

Figure 9.7 Conditional inference tree with the distribution of glaucomateous eyes
shown for each terminal leaf.

The first split is performed using a cutpoint defined with respect to the volume
of the optic nerve above some reference plane, but in the inferior part of the
eye only (vari).

9.3.4 Happiness in China

A conditional inference tree is a simple alternative to the proportional odds
model for the regression analysis of the happiness variable from the Chinese
Health and Family Life Survey. In each node, a linear association test intro-
duced in Section ?? taking the ordering of the happiness levels into account
is applied for selecting variables and split-points. Before we fit the tree with
the ctree function, we recode the levels of the happiness variable to allow
plotting of these symbols with restricted page space:

12 RECURSIVE PARTITIONING

R> plot(CHFLS_ctree, ep_args = list(justmin = 10),

+ tp_args = list(id = FALSE))

R_health
p < 0.001

1

≤ Good > Good

R_health
p < 0.001

2

<= Not good
> Not good

n = 149

A B C D

0

0.2

0.4

0.6

0.8

1

R_health
p < 0.001

4

≤ Fair > Fair

R_income
p = 0.026

5

≤ 1000 > 1000

n = 427

A B C D

0

0.2

0.4

0.6

0.8

1
n = 34

A B C D

0

0.2

0.4

0.6

0.8

1

R_region
p = 0.03

8

Coastal South, Coastal East, North
Inlands, Northeast, Central West

n = 331

A B C D

0

0.2

0.4

0.6

0.8

1
n = 251

A B C D

0

0.2

0.4

0.6

0.8

1
n = 342

A B C D

0

0.2

0.4

0.6

0.8

1

Figure 9.8 Conditional inference tree with the distribution of self-reported hap-
piness shown for each terminal leaf. The levels of happiness have been
abbreviated (A: very unhappy, B: not too happy, C: somewhat happy;
D: very happy). The justmin argument ensures that split descriptions
longer than 10 characters are displayed over two lines.

R> levels(CHFLS$R_happy)

[1] "Very unhappy" "Not too happy" "Somewhat happy"

[4] "Very happy"

R> levels(CHFLS$R_happy) <- LETTERS[1:4]

R> CHFLS_ctree <- ctree(R_happy ~ ., data = CHFLS)

The resulting tree is depicted in Figure 9.8 and very nicely backs up the results
obtained from the proportional odds model in Chapter ??. The distribution
of self-reported happiness is shifted from very unhappy to very happy with
increasing values of self-reported health, i.e., women that reported excellent
health (mind the > sign in the right label of the root split!) were at least
somewhat happy with only a few exceptions. Women with poor or not good
health reported being not too happy much more often. There seems to be
further differentiation with respect to geography and also income but the
differences in the distributions depicted in the terminal leaves are negligible.

Bibliography

Breiman, L. (2001), “Random forests,”Machine Learning , 45, 5–32.

Breiman, L., Cutler, A., Liaw, A., and Wiener, M. (2013), randomForest:

Breiman and Cutler’s Random Forests for Classification and Regression,
URL http://stat-www.berkeley.edu/users/breiman/RandomForests,
R package version 4.6-7.

Hothorn, T. and Zeileis, A. (2014), partykit: A Toolkit for Recursive Party-

tioning , URL http://R-forge.R-project.org/projects/partykit/, R
package version 0.8-0.

http://stat-www.berkeley.edu/users/breiman/RandomForests
http://R-forge.R-project.org/projects/partykit/

	Recursive Partitioning
	Introduction
	Recursive Partitioning
	Analysis Using R

