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CHAPTER 14

Simultaneous Inference and Multiple
Comparisons: Genetic Components of
Alcoholism, Deer Browsing Intensities,

and Cloud Seeding

14.1 Introduction

14.2 Simultaneous Inference and Multiple Comparisons

14.3 Analysis Using R

14.3.1 Genetic Components of Alcoholism

We start with a graphical display of the data. Three parallel boxplots shown
in Figure 14.1 indicate increasing expression levels of alpha synuclein mRNA
for longer NACP -REP1 alleles.

In order to model this relationship, we start fitting a simple one-way ANOVA
model of the form yij = µ + γi + εij to the data with independent normal
errors εij ∼ N (0, σ2), j ∈ {short, intermediate, long}, and i = 1, . . . , nj . The
parameters µ + γshort, µ + γintermediate and µ + γlong can be interpreted as
the mean expression levels in the corresponding groups. As already discussed
in Chapter 5, this model description is overparameterised. A standard ap-
proach is to consider a suitable re-parameterization. The so-called “treatment
contrast” vector θ = (µ, γintermediate − γshort, γlong − γshort) (the default re-
parameterization used as elemental parameters in R) is one possibility and is
equivalent to imposing the restriction γshort = 0.
In addition, we define all comparisons among our three groups by choos-

ing K such that Kθ contains all three group differences (Tukey’s all-pairwise
comparisons):

KTukey =





0 1 0
0 0 1
0 −1 1





with parameters of interest

ϑTukey = KTukeyθ = (γintermediate − γshort, γlong − γshort, γlong − γintermediate).

The function glht (for generalised linear hypothesis) from package mult-

comp (Hothorn et al., 2012, 2008) takes the fitted aov object and a description
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4 SIMULTANEOUS INFERENCE AND MULTIPLE COMPARISONS

R> n <- table(alpha$alength)

R> levels(alpha$alength) <- abbreviate(levels(alpha$alength), 4)

R> plot(elevel ~ alength, data = alpha, varwidth = TRUE,

+ ylab = "Expression Level",

+ xlab = "NACP-REP1 Allele Length")

R> axis(3, at = 1:3, labels = paste("n = ", n))
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Figure 14.1 Distribution of levels of expressed alpha synuclein mRNA in three
groups defined by the NACP-REP1 allele lengths.

of the matrix K. Here, we use the mcp function to set up the matrix of all
pairwise differences for the model parameters associated with factor alength:

R> library("multcomp")

R> amod <- aov(elevel ~ alength, data = alpha)

R> amod_glht <- glht(amod, linfct = mcp(alength = "Tukey"))

The matrix K reads

R> amod_glht$linfct

(Intercept) alengthintr alengthlong

intr - shrt 0 1 0

long - shrt 0 0 1

long - intr 0 -1 1

attr(,"type")

[1] "Tukey"

The amod_glht object now contains information about the estimated linear
function ϑ̂ and their covariance matrix which can be inspected via the coef

and vcov methods:
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R> coef(amod_glht)

intr - shrt long - shrt long - intr

0.434 1.189 0.755

R> vcov(amod_glht)

intr - shrt long - shrt long - intr

intr - shrt 0.1472 0.104 -0.0431

long - shrt 0.1041 0.271 0.1666

long - intr -0.0431 0.167 0.2096

The summary and confintmethods can be used to compute a summary statis-
tic including adjusted p-values and simultaneous confidence intervals, respec-
tively:

R> confint(amod_glht)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Quantile = 2.37

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

intr - shrt == 0 0.4342 -0.4757 1.3440

long - shrt == 0 1.1888 -0.0452 2.4227

long - intr == 0 0.7546 -0.3313 1.8405

R> summary(amod_glht)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = elevel ~ alength, data = alpha)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

intr - shrt == 0 0.434 0.384 1.13 0.492

long - shrt == 0 1.189 0.520 2.28 0.061

long - intr == 0 0.755 0.458 1.65 0.227

(Adjusted p values reported -- single-step method)

Because of the variance heterogeneity that can be observed in Figure 14.1,
one might be concerned with the validity of the above results stating that
there is no difference between any combination of the three allele lengths.
A sandwich estimator might be more appropriate in this situation, and the
vcov argument can be used to specify a function to compute some alternative
covariance estimator as follows:

R> amod_glht_sw <- glht(amod, linfct = mcp(alength = "Tukey"),

+ vcov = sandwich)

R> summary(amod_glht_sw)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts
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Fit: aov(formula = elevel ~ alength, data = alpha)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

intr - shrt == 0 0.434 0.424 1.02 0.559

long - shrt == 0 1.189 0.443 2.68 0.023

long - intr == 0 0.755 0.318 2.37 0.050

(Adjusted p values reported -- single-step method)

We use the sandwich function from package sandwich (Zeileis, 2004, 2006)
which provides us with a heteroscedasticity-consistent estimator of the covari-
ance matrix. This result is more in line with previously published findings for
this study obtained from non-parametric test procedures such as the Kruskal-
Wallis test. A comparison of the simultaneous confidence intervals calculated
based on the ordinary and sandwich estimator is given in Figure 14.2.

R> par(mai = par("mai") * c(1, 2.1, 1, 0.5))

R> layout(matrix(1:2, ncol = 2))

R> ci1 <- confint(glht(amod, linfct = mcp(alength = "Tukey")))

R> ci2 <- confint(glht(amod, linfct = mcp(alength = "Tukey"),

+ vcov = sandwich))

R> ox <- expression(paste("Tukey (ordinary ", bold(S)[n], ")"))

R> sx <- expression(paste("Tukey (sandwich ", bold(S)[n], ")"))

R> plot(ci1, xlim = c(-0.6, 2.6), main = ox,

+ xlab = "Difference", ylim = c(0.5, 3.5))

R> plot(ci2, xlim = c(-0.6, 2.6), main = sx,

+ xlab = "Difference", ylim = c(0.5, 3.5))
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Figure 14.2 Simultaneous confidence intervals for the alpha data based on the
ordinary covariance matrix (left) and a sandwich estimator (right).

It should be noted that this data set is heavily unbalanced; see Figure 14.1,
and therefore the results obtained from function TukeyHSD might be less ac-
curate.
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14.3.2 Deer Browsing

Since we have to take the spatial structure of the deer browsing data into
account, we cannot simply use a logistic regression model as introduced in
Chapter 7. One possibility is to apply a mixed logistic regression model (using
package lme4, Bates and Sarkar, 2012) with random intercept accounting for
the spatial variation of the trees. These models have already been discussed in
Chapter 13. For each plot nested within a set of five plots oriented on a 100m
transect (the location of the transect is determined by a predefined equally
spaced lattice of the area under test), a random intercept is included in the
model. Essentially, trees that are close to each other are handled like repeated
measurements in a longitudinal analysis. We are interested in probability es-
timates and confidence intervals for each tree species. Each of the five fixed
parameters of the model corresponds to one species (in absence of a global
intercept term); therefore, K = diag(5) is the linear function we are interested
in:

R> mmod <- glmer(damage ~ species - 1 + (1 | lattice / plot),

+ data = trees513, family = binomial())

R> K <- diag(length(fixef(mmod)))

R> K

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 1 0 0

[4,] 0 0 0 1 0

[5,] 0 0 0 0 1

In order to help interpretation, the names of the tree species and the corre-
sponding sample sizes (computed via table) are added to K as row names;
this information will carry through all subsequent steps of our analysis:

R> colnames(K) <- rownames(K) <-

+ paste(gsub("species", "", names(fixef(mmod))),

+ " (", table(trees513$species), ")", sep = "")

R> K

spruce (119) pine (823) beech (266) oak (1258)

spruce (119) 1 0 0 0

pine (823) 0 1 0 0

beech (266) 0 0 1 0

oak (1258) 0 0 0 1

hardwood (191) 0 0 0 0

hardwood (191)

spruce (119) 0

pine (823) 0

beech (266) 0

oak (1258) 0

hardwood (191) 1

Based on K, we first compute simultaneous confidence intervals for Kθ and

transform these into probabilities. Note that
(

1 + exp(−ϑ̂)
)

−1

(cf. Equa-

tion ??) is the vector of estimated probabilities; simultaneous confidence in-
tervals can be transformed to the probability scale in the same way:
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R> plot(ci, xlab = "Probability of Damage Caused by Browsing",

+ xlim = c(0, 0.5), main = "", ylim = c(0.5, 5.5))
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Figure 14.3 Probability of damage caused by roe deer browsing for five tree
species. Sample sizes are given in brackets.

R> ci <- confint(glht(mmod, linfct = K))

R> ci$confint <- 1 - binomial()$linkinv(ci$confint)

R> ci$confint[,2:3] <- ci$confint[,3:2]

The result is shown in Figure 14.3. Browsing is more frequent in hardwood
but especially small oak trees are severely at risk. Consequently, the local
authorities increased the number of roe deers to be harvested in the following
years.

14.3.3 Cloud Seeding

In Chapter 6 we studied the dependency of rainfall on S-Ne values by means
of linear models. Because the number of observations is small, an additional
assessment of the variability of the fitted regression lines is interesting. Here,
we are interested in a confidence band around some estimated regression line,
i.e., a confidence region which covers the true but unknown regression line with
probability greater or equal 1− α. It is straightforward to compute pointwise

confidence intervals but we have to make sure that the type I error is controlled
for all x values simultaneously. Consider the simple linear regression model

rainfalli = β0 + β1snei + εi
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where we are interested in a confidence band for the predicted rainfall, i.e.,
the values β̂0+ β̂1snei for some observations snei. (Note that the estimates β̂0

and β̂1 are random variables.)
We can formulate the problem as a linear combination of the regression

coefficients by multiplying a matrix K to a grid of S-Ne values (ranging from
1.5 to 4.5, say) from the left to the elemental parameters θ = (β0, β1):

Kθ =















1 1.50
1 1.75
...

...
1 4.25
1 4.50















θ = (β0 + β11.50, β0 + β11.75, . . . , β0 + β14.50) = ϑ.

Simultaneous confidence intervals for all the parameters of interest ϑ form a
confidence band for the estimated regression line. We implement this idea for
the clouds data writing a small reusable function as follows:

R> confband <- function(subset, main) {

+ mod <- lm(rainfall ~ sne, data = clouds, subset = subset)

+ sne_grid <- seq(from = 1.5, to = 4.5, by = 0.25)

+ K <- cbind(1, sne_grid)

+ sne_ci <- confint(glht(mod, linfct = K))

+ plot(rainfall ~ sne, data = clouds, subset = subset,

+ xlab = "S-Ne criterion", main = main,

+ xlim = range(clouds$sne),

+ ylim = range(clouds$rainfall))

+ abline(mod)

+ lines(sne_grid, sne_ci$confint[,2], lty = 2)

+ lines(sne_grid, sne_ci$confint[,3], lty = 2)

+ }

The function confband basically fits a linear model using lm to a subset of
the data, sets up the matrix K as shown above and nicely plots both the
regression line and the confidence band. Now, this function can be reused
to produce plots similar to Figure ?? separately for days with and without
cloud seeding in Figure 14.4. For the days without seeding, there is more
uncertainty about the true regression line compared to the days with cloud
seeding. Clearly, this is caused by the larger variability of the observations in
the left part of the figure.

14.4 Summary

Multiple comparisons in linear models have been in use for a long time. The
multcomp package extends much of the theory to a broad class of parametric
and semi-parametric statistical models, which allows for a unified treatment
of multiple comparisons and other simultaneous inference procedures in gener-
alised linear models, mixed models, models for censored data, robust models,
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R> layout(matrix(1:2, ncol = 2))

R> confband(clouds$seeding == "no", main = "No seeding")

R> confband(clouds$seeding == "yes", main = "Seeding")
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Figure 14.4 Regression relationship between S-Ne criterion and rainfall with and
without seeding. The confidence bands cover the area within the
dashed curves.

etc. Honest decisions based on simultaneous inference procedures maintaining
a pre-specified familywise error rate (at least asymptotically) can be derived
from almost all classical and modern statistical models. The technical details
and more examples can be found in Hothorn et al. (2008) and the package
vignettes of package multcomp (Hothorn et al., 2012).

Exercises

Ex. 14.1 Compare the results of glht and TukeyHSD on the alpha data.

Ex. 14.2 Consider the linear model fitted to the clouds data as summarised
in Figure ??. Set up a matrix K corresponding to the global null hypothe-
sis that all interaction terms present in the model are zero. Test both the
global hypothesis and all hypotheses corresponding to each of the inter-
action terms. Which interaction remains significant after adjustment for
multiple testing?

Ex. 14.3 For the logistic regression model presented in Figure ?? perform
a multiplicity adjusted test on all regression coefficients (except for the
intercept) being zero. Do the conclusions drawn in Chapter 7 remain valid?
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