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Abstract

Outliers have more than two centuries’ history in the field of statistics.
Recently, they have become a focal topic because of their relevance to terror-
ism, network intrusions, financial fraud, and other areas where rare events
are critical to understanding a process. This paper presents a new algorithm,
called hdoutliers, for detecting multidimensional outliers. It is unique
for a) dealing with a mixture of categorical and continuous variables, b)
dealing with the curse of dimensionality (many columns of data), c) deal-
ing with many rows of data, d) dealing with outliers that mask other out-
liers, and e) dealing consistently with unidimensional and multidimensional
datasets. Unlike ad hoc methods found in many machine learning papers,
hdoutliers is based on a distributional model that allows outliers to be
tagged with a probability.
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1 Introduction
According to Hawkins [28], “An outlier is an observation which deviates so much
from the other observations as to arouse suspicions that it was generated by a
different mechanism”. The modern history of outlier detection began with con-
cerns over combining astronomical observations [56, 4]. The prevailing concern
among many scientists from the earliest times was over how much outliers could
bias estimates of location and spread. Statistically-based rules for outlier rejection
emerged as early as the late 18th century.

There are two predominant reasons for analysts’ longstanding interest in out-
liers. The first is to identify cases that can bias estimates of statistical models.
The second is to locate extreme cases in a distribution because such values may
be especially (or solely) interesting. The first reason is not a good approach to
the estimation problem. Outliers should not be eliminated from model fits unless
a clear reason for their occurrence is available. Furthermore, there are numerous
robust versions of classical models that automatically downweight outliers with-
out introducing substantial bias [25]. The second reason overlooks the possibility
of inliers [29]. These are unusual cases found in the middle of mixtures of distri-
butions.

This paper is concerned with the interplay of visual methods and outlier de-
tection methods. It is not an attempt to survey the vast field of outlier detection or
to cover the full range of currently available methods. For general introductions,
see the references at the beginning of the Related Work section below.

The contributions in this paper are:

• We demonstrate why the classical definition of an outlier (a large distance
of a point from a central location estimate (mean, median, etc.) is unneces-
sarily restrictive and often involves a circularity.

• We introduce a new algorithm, called hdoutliers, for multidimensional
outliers on n rows by p columns of data that addresses the curse of di-
mensionality (large p), scalability (large n), categorical variables, and non-
normal distributions. This algorithm is designed to be paired with visual-
ization methods that can help an analyst explore unusual features in data.

• We demonstrate why visual analytic tools cannot be used to detect multidi-
mensional outliers.

• We introduce some novel applications of outlier detection and accompany-
ing visualizations based on hdoutliers.
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2 Related Work
There are several excellent books on outliers written by statisticians [4, 28, 52, 57].
Statisticians have also written survey papers [24, 34, 2]. Computer scientists have
written books and papers on this topic as well [1, 11, 31]. The latter include
surveys of the statistical sources.

2.1 Univariate Outliers
The detection of outliers in the observed distribution of a single variable spans
the entire history of outlier detection. It spans this history not only because it is
apparently the oldest formulation of the problem, but also is the focus of relatively
recent research on outliers.

2.1.1 The Distance from the Center Rule

The word outlier implies lying at an extreme end of a set of ordered values – far
away from the center of those values. The modern history of outlier detection
emerged with methods that depend on a measure of centrality and a measure of
distance from that measure of centrality. As early as the 1860’s, Chauvenet (cited
in [4]) judged an observation to be an outlier if it lies outside the lower or upper
1/(4n) points of the Normal distribution. Barnett and Lewis [4] document many
other early rules that depend on the Normal distribution but fail to distinguish
between population and sample variance.

Grubbs [23], in contrast, based his rule on the sample moments of the Normal:

G =

max
1≤i≤n

|xi− x̄|

s

where x̄ and s are the sample mean and standard deviation, respectively.
Grubbs referenced G against the t distribution in order to spot an upper or

lower outlier:

G >
n−1√

n

√√√√ t2
α/(2n),n−2

n−2+ t2
α/(2n),n−2

If one knows that the values on a variable are sampled randomly from a Nor-
mal distribution and if the estimates of location and scale are unbiased and if one
wishes to detect only the largest absolute outlier, it is a valid test.
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Unfortunately, the usual sample estimates of the mean and standard deviation
are not robust against outliers. So we have a circularity problem. We assume a
null distribution (say, the Normal), estimate its parameters, and then use those es-
timates to test whether a point could have plausibly come from that distribution.
But if our alternative hypothesis is that it doesn’t (the usual case), then the out-
lier should not be included in the estimation. Barnett and Lewis [4] discuss this
problem in more detail, where they distinguish inclusive and exclusive methods.
They, as well as [52], also discuss robust estimation methods for overcoming this
circularity problem.

Barnett and Lewis discuss other detection methods for non-Normal distribu-
tions. The same principals apply in these cases, namely, that the sample is ran-
dom, the population distributions are known and that the parameter estimates are
unbiased.

2.1.2 The Box Plot Rule

A box-plot graphically depicts a batch of data using a few summary statistics
called letter values [58, 19]. The letter values in Tukey’s original definition are
the median and the hinges (medians of the upper and lower halves of the data).
The hinge values correspond closely, but not necessarily, to the lower quartile (Q1)
and the upper quartile (Q3). Tukey called the difference between the hinges the
Hspread, which corresponds closely to the quantity Q3–Q1, or the Inter Quartile
Range (IQR). In Tukey’s version of the box-plot (see the upper panel of Fig-
ure 1), a box is drawn to span the Hspread. The median is marked inside the box.
Whiskers extend from the edges of the box to the farthest upper and lower data
points (Adjacent values) inside the so-called inner fences. The upper inner fence
is the

upperhinge+1.5×Hspread

and the lower inner fence is the

lowerhinge−1.5×Hspread

Any data point beyond the Adjacent values is plotted as an outlying point. 1

1Few statistics packages produce box plots according to Tukey’s definition [19]. Surprisingly,
the boxplot function in the core R package does not, despite its ancestry inside Tukey’s group at
Bell Laboratories.
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Tukey designed the box plot (he called it a schematic plot) to be drawn by
hand on a small batch of numbers. The whiskers were designed not to enable
outlier detection, but to locate the display on the interval that supports the bulk of
the values. Consequently, he chose the Hspread to correspond roughly to three
standard deviations on normally distributed data. This choice led to two conse-
quences: 1) it doesn’t apply to skewed distributions, which constitute the instance
many advocates think is the best reason for using a box plot in the first place, and
2) it doesn’t include sample size in its derivation, which means that the box plot
will falsely flag outliers on larger samples. As Dawson [14] shows, “regardless of
size, at least 30% of samples drawn from a normally-distributed population will
have one or more data flagged as outliers.” The top panel of Figure 1 illustrates
this problem for a sample of 100,000 Normally distributed numbers. Thousands
of points are denoted as outliers in the display.

To deal with the skewness problem, Hubert and Vandervieren [33] and others
have suggested modifying the fences rule by using a robust estimate of skewness.
By contrast, Tukey’s approach for this problem involved transforming the data
through his ladder of powers [58] before drawing the box plot.

The Letter-Value-Box-Plot [32] was designed to deal with the second problem.
The authors compute additional letter values (splitting the splits) until a statistical
measure of fit is satisfied. Each letter-value region is represented by a rectan-
gle. The lower panel of Figure 1 shows the result. On the same 100,000 Normal
variables, only two points are identified as outliers.

Figure 1: Outliers revealed in a box plot [58] and letter values box plot [32]. These
plots are based on 100,000 values sampled from a Gaussian (Standard Normal)
distribution. By definition, the data contain no probable outliers, yet the ordinary
box plot shows thousands of outliers. This example illustrates why ordinary box
plots cannot be used to discover probable outliers.
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2.1.3 The Gaps Rule

Suppose that we do not know the population distribution and suppose, further,
that our idea of outliers is that they do not belong to the generating distribution
we suspect underlies our data. Figure 2 shows two dotplots of batches of data that
have the same mean and standard deviation. Absent knowledge of the parametric
distribution, we cannot apply the usual outlier detection algorithms. Furthermore,
we are more inclined to say the the largest point in the right dot plot is an outlier,
whereas the largest point in the left plot, having the same score, is not.

A simple example emphasizes this point. Suppose we give a test to 100 stu-
dents and find the mean score is 50 and the standard deviation is 5. Among these
students, we find one perfect score of 100. The next lower score is 65. We might
be inclined to suspect the student with a score of 100 is a genius or a cheat. And if
there were three students with perfect scores in this overall distribution, we might
suspect cheating even more. On the other hand, if the perfect score is at the top of
a chain of scores spaced not more than 5 points apart, we might be less suspicious.
Classical outlier tests would not discriminate among these possibilities.

These considerations and others led to a different criterion for discovering
outliers. Namely, we should look for gaps (spacings) between the ordered values
rather than extremities. A consequence of this point of view is that we can identify
unusual scores in the middle of distributions as well as in the extremes, as long as
they are separated from other scores by a large gap.

Dixon [15] headed in this direction by developing an outlier test based on the
gap between the largest point and the second largest point, standardized by the
range of scores. His test was originally based on a normal distribution, but in
subsequent publications, he developed nonparametric variations. Dixon tabulated
percentage points for a range of Q statistics.

Q =
xn− xn−1

xn− x1

Tukey [58] considered the more general question of identifying gaps anywhere
in a batch of scores. Wainer and Schacht [60] adapted Tukey’s gapping idea for
a version of the test that weighted extreme values more than middle ones. They
derived an approximate z score that could be used to test the significance of gaps.

Burridge and Taylor [9] developed an outlier test based on the extreme-value
distribution of gaps between points sampled from the Exponential family of dis-
tributions:
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Figure 2: Dot plots of small batches of data with comparable means and standard
deviations.

f (xi;θi,φ) = exp
[

xθ −a(θ)
b(φ)

+ c(x,φ)
]

where x is a scalar or vector, θ is a scalar or vector of parameters, φ is a scale
parameter, and a(.),b(.),c(.) are functions. This family of mathematical distribu-
tions is quite large (including the Normal, Exponential, Gamma, Beta, Bernoulli,
Poisson, and many others).

2.2 Multivariate Outliers
2.2.1 Mahalanobis Distance

The squared Mahalanobis distance (D2) of a multidimensional point x from the
centroid of a multivariate Normal distribution described by covariance matrix Σ

and centroid µ is

D2 = (x−µ)′Σ−1(x−µ)

Figure 3 shows how this works in two dimensions. The left panel shows a bivariate
normal distribution with level curves inscribed at different densities. The right
panel shows the same level curves as horizontal slices through this mountain.
Each is an ellipse. Distance to the centroid of the ellipses is measured differently
for different directions. The weights are determined by the covariance matrix Σ.
If Σ is an identity matrix, then D2 is equivalent to squared Euclidean distance.

The squared distance in the above formula is a chi-square variate (a member
of the Gamma distribution family). This means that, if the assumption of Nor-
mality is met, D2 can be tested against a chi-square distribution with p degrees of
freedom. As with univariate outlier tests based on a Normality assumption, this
test is valid if the assumption of multivariate Normality is met. Unfortunately,
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Figure 3: Mahalanobis Distance. The left panel shows a bivariate Normal distri-
bution. The right shows level curves for that distribution. Each curve corresponds
to a value of D2.

this is seldom true for real data and, furthermore, estimates of the covariance ma-
trix and centroid are far from robust. Consequently, this outlier test has limited
applicability.

Rousseeuw and Van Zomeren [51] introduce a robust Mahalanobis Distance
estimator that can be used to overcome some of these problems. Ram Gnanade-
sikan [21] discusses applications of Gamma probability plots to these multivariate
problems. They can be interpreted similarly to the way univariate probability plots
are interpreted.

2.2.2 Multivariate Gap Tests

Multivariate data do not have a simple ordering for computing gaps between ad-
jacent points. There have been several attempts at getting around this problem.
Rohlf [49] proposed using the edge lengths of the geometric minimum span-
ning tree (MST) as a single distribution measure. Assuming these edges follow
a gamma distribution, one could construct a gamma probability plot on them or
examine the upper tail for judgments on outliers. There are problems with this
method, however, when variates are correlated [10]. Similar methods based on
the MST have been proposed [44, 48], but they suffer from the same problem.

2.2.3 Clustering

A popular multivariate outlier detection method has been to cluster the data and
then look for any points that are far from their nearest cluster centroids [66, 35,
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47, 36]. This method works reasonably well for moderate-size datasets with a few
singleton outliers. Most clustering algorithms do not scale well to larger datasets,
however.

A related approach, called Local Outlier Factor (LOF) [8], is similar to density-
based clustering. Like DBSCAN clustering [17], it is highly sensitive to the choice
of input parameter values.

Most clustering methods are not based on a probability model (see [18] for an
exception) so they are susceptible to false negatives and false positives. We will
show one remedy in Section 3.3.2.

3 A New Multivariate Outlier Algorithm
The new algorithm hdoutliers is designed to meet several criteria at once:

• It allows us to identify outliers in a mixture of categorical and continuous
variables.

• It deals with the curse of dimensionality by exploiting random projections
for large p (number of dimensions).

• It deals with large n (number of points) by exploiting a one-pass algorithm
to compress the data.

• It deals with the problem of masking [4], in which clusters of outlying points
can elude detection by traditional methods.

• It works for both single-dimensional and multi-dimensional data.

3.1 The Algorithm
1. If there are any categorical variables in the dataset, convert each categorical

variable to a continuous variable by using Correspondence Analysis [22].

2. If there are more than 10,000 columns, use random projections to reduce
the number of columns to p = 4logn/(ε2/2− ε3/3), where ε is the error
bound on squared distances.

3. Normalize the columns of the resulting n by p matrix X .

4. Let row(i) be the ith row of X .
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5. Let radius = .1/(logn)1/p.

6. Initialize exemplars, a list of exemplars with initial entry [row(1)].

7. Initialize members, a list of lists with initial entry [1]; each exemplar will
eventually have its own list of affiliated member indices.

8. Now do one pass through X :

forall the row(i), i = 1, . . . ,n do
d = distance to closest exemplar, found in exemplars( j)
if d < radius then

add i to members( j)list
else

add row(i) to exemplars
add new list to members, initialized with [i]

end
end

9. Now compute nearest-neighbor distances between all pairs of exemplars in
the exemplars list.

10. Fit an Exponential distribution to the upper tail of the nearest-neighbor dis-
tances and compute the upper 1−α point of the fitted cumulative distribu-
tion function (CDF).

11. For any exemplar that is significantly far from all the other exemplars based
on this cutpoint, flag all entries of members corresponding to exemplar as
outliers.

3.2 Comments on the Algorithm
1. Correspondence Analysis (CA) begins by representing a categorical vari-

able with a set of dummy codes, one code (1 or 0) for each category. These
codes comprise a matrix of 1’s and 0’s with as many columns as there are
categories on that variable. We then compute a principal components de-
composition of the covariance matrix of the dummy codes. This analysis is
done separately for each of k categorical variables in a dataset. CA scores
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on the rows are computed on each categorical variable by multiplying the
dummy codes on that row’s variable times the eigenvectors of the decom-
position for that variable. 2

2. The Johnson-Lindenstrauss lemma [37] states that if a metric on X results
from an embedding of X into a Euclidean space, then X can be embedded in
Rp with distortion less than 1+ ε , where p∼ O(ε2 logn). Remarkably, this
embedding is achieved by projecting onto a p-dimensional subspace using
random Gaussian coefficients. Because our algorithm depends only on a
similarity transformation of Euclidean distances, we can logarithmically re-
duce the complexity of the problem through random projections and avoid
the curse of dimensionality. The number of projected columns based on the
formula in this step was based on ε = .2 for the analyses in this paper. The
value 10,000 is the lower limit for the formula’s effectiveness in reducing
the number of dimensions when ε = .2.

3. X is now bounded by the unit (hyper) cube.

4. A row represents a p-dimensional vector in a finite vector space.

5. The value of radius is designed to be well below the expected value of the
distances between n(n− 1)/2 pairs of points distributed randomly in a p
dimensional space.

6. The exemplars list contains a list of row values representing clusters of
points.

7. The members list of lists contains one list of indices for each exemplar that
point to rows represented by that exemplar.

8. The Leader algorithm [27] in this step creates clusters in one pass through
the data. It is equivalent to centering balls in p dimensional space on points
considered to be exemplars. Unlike k-means clustering, the Leader algo-
rithm centers clusters on actual data points rather than on centroids and it
involves only one pass through the data. In rare instances, the resulting clus-
ters can be dependent on the order of the data, but not enough to affect the
identification of outliers because of the large number of clusters produced.
We are characterizing a high-dimensional density by covering it with many
small balls.
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9. The number of clusters resulting from radius applied even to large numbers
of data points is small enough to allow the simple brute-force algorithm for
finding nearest neighbors.

10. We use a modification of the Burridge and Taylor [9] algorithm due to
Schwarz [55]. For all examples in this paper, α (the critical value) was
set to .05.

11. Flagging all members of an outlying cluster means that this algorithm can
identify outlying sets of points as well as outlying singletons.

3.3 Validation
We validate hdoutliers by examining its performance with regard to 1) false
positives and 2) false negatives. If the claims for the algorithm are true, then we
should expect it 1) to find outliers in random data not more than 100α percent
of the time and 2) not to miss outliers when they are truly due to mixtures of
distributions or anomalous instances.

3.3.1 False Positives

• Table 1 contains results of a simulation using random distributions. The
entries are based on 1,000 runs of hdoutliers on normally distributed vari-
ables with α (the critical value) set to .05. The entries show that hdoutliers
is generally conservative.

• The results were similar for random Exponential and Uniform variables.

3.3.2 False Negatives

• Figure 4 is based on the dataset in Figure 2. The hdoutliers identifies the
outlier in the right dot plot but finds none in the left.

• Figure 5 shows that hdoutliers correctly identifies the inlier in the center
of both one-dimensional and two-dimensional configurations.

2Computing the decomposition separately for each categorical variable is equivalent to doing
an MCA separately for each variable instead of pooling all the categorical variable dummy codes
into one matrix.

14



Table 1: Empirical level of hdoutliers test based on null model with Gaussian
variables and critical value α = .05.

p=1 p=5 p=10 p=100
n=100 .011 .040 .018 .012
n=500 .015 .035 .027 .020
n=1000 .017 .045 .027 .024

• Figure 6 is based on the dfki dataset in [20]. The left panel shows what
the authors consider to be outliers. The right panel shows the result of
implementing hdoutliers inside a k-means clustering. On each iteration
of the k-means algorithm, we apply hdoutliers to the points assigned to
each cluster in order to determine if any points belonging to their nearest
cluster should be treated as outliers. The outliers are then left out of the
computation of the cluster centroids.

• Table 2 shows that hdoutliers correctly identifies the outlier in a table
defined by two categorical variables. The data consist of two columns of
strings, one for {A,B,C,W} and one for {A,B,C,X}. There is only one row
with the tuple 〈W,X〉. The hdoutliers also handles mixtures of categorical
and continuous variables.

-5 -3 -1 1 3 5
Z

-5 -3 -1 1 3 5
W

Figure 4: The hdoutliers algorithm applied to data shown in Figure2.

Table 2: Crosstab with an outlier (red entry)

A B C X
A 100 0 0 0
B 0 100 0 0
C 0 0 100 0
W 0 0 0 1
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Figure 5: Inlier datasets; hdoutliers correctly identifies the inliers.
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Figure 6: Test dataset from [20]. The left plot shows what the authors consider
to be outliers and the right plot is the result produced by hdoutliers inside a
k-means clustering. The outliers are colored red in both plots.

4 Visualization
This section covers various probability-based methods for visualizing outliers.
The main point in all these examples is that a statistical algorithm based on prob-
ability theory is necessary for reliably discovering outliers but visualizations are
necessary for interpreting the results of these discoveries.

4.1 Visualizing Unidimensional Outliers
For univariate outlier detection, histograms, probability plots [12], and dot plots
[61] are most useful. Figure 7 shows a dot plot and normal probability plot of
residuals from a two-factor experiment. In these probability plots, we look for
major distortions from a straight line. A probability plot can be constructed from
any parametric distribution for which a cumulative distribution function can be
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computed. They are widely used in experimental design and analysis of residuals.
Even though these univariate displays can be helpful in exploratory analysis

to detect outliers, they do not yield the kind of risk estimate that hdoutliers or
the parametric methods described in the Related Work sections provide. Without
a risk estimate, the chance of false discoveries is uncontrolled. In practical terms,
we might see terrorists in groups where none exist. Thus, as in Figure 7, it is
helpful to highlight outliers using a statistical method like hdoutliers. This
approach will also help with false negatives, where significant outliers may not be
visually salient.
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Figure 7: Dot plot and normal probability plot of residuals from a two-factor
experiment. One lower outlier is evident.

4.2 Low-dimensional visualizations cannot be used to discover
multivariate outliers

There have been many outlier identification proposals based on looking at axis-
parallel views or low-dimensional projections (usually 2D) that are presumed to
reveal high-dimensional outliers (e.g., [39, 30, 38, 42]). This approach is infea-
sible. Figure 8 shows why. The data are samples from a multivariate Normal
distribution. The left panel plot illustrates the problem for two dimensions. The
figure incorporates a 95 percent joint confidence ellipse based on the sample dis-
tribution of points. Two points are outside this ellipse. The red point on the left is
at the extreme of both marginal histograms. But the one on the right is well inside
both histograms. Examining the separate histograms would fail to identify that
point.

The right panel plot shows the situation for three dimensions. The three
marginal 2D plots are shown as projections onto the facets of the 3D cube. Each
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confidence ellipse is based on the pairwise plots. The red outlying point in the
joint distribution is inside all three marginal ellipses. The 2D scatterplots fail to
reveal the 3D outlier. The situation gets even worse in higher dimensions.

Some authors have proposed methods for finding low-dimensional views based
on projection pursuit or ad hoc projections (e.g., [7, 53]). This approach is rela-
tively ineffective for visualizing outliers in higher-dimensional datasets because
many projections are required to discriminate outliers. Furthermore, most outlier-
seeking projection methods are impractical on large datasets.

Parallel coordinates, another 2D display, have been advocated for the purpose
of outlier detection [46]. Figure 9 shows why this is infeasible.

Figure 8: 2D (left) and 3D (right) joint outliers. The figures show why lower-
dimensional projections cannot be used to discern outliers.

4.3 Using statistical algorithms to highlight outliers in visual-
izations

While visualizations cannot be used to detect multidimensional outliers, they are
invaluable for inspecting and understanding outliers detected by statistical meth-
ods. This section covers a variety of visualizations that lend themselves to outlier
description.

4.3.1 Parallel Coordinates

As mentioned in the last section, parallel coordinates cannot be used to discover
outliers. Figure 9 shows parallel coordinates on four variables from the Adult
dataset in the UCI dataset repository [41]. The algorithm discovered two outliers
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out of 32,561 cases. The profiles appear to run through the middle of the densi-
ties even though they are multivariate outliers. Although parallel coordinates are
generally useless for discovering outliers, they can be useful for inspecting outlier
profiles detected by a statistical algorithm.

Figure 9: Parallel coordinates plot of five variables from the Adult dataset in the
UCI data repository. The red profiles are multivariate outliers.

4.3.2 Regression Residuals

The conventional statistical wisdom for dealing with outliers in a regression con-
text is to examine residuals using a variety of diagnostic graphics and statistics
[3, 5, 13]. Following this advice is critical before promoting any particular regres-
sion model on a dataset. It is a necessary but not sufficient strategy, however. The
reason is that some outliers have a high influence on the regression and can pull
the estimates so close to them that they are masked.

Figure 10, derived from an example in [52], shows how this can happen in even
the simplest bivariate regression. The data are measurements of light intensity and
temperature of a sample of stars. In the left panel, the ordinary least squares (OLS)
regression line is pulled down by the four outliers in the lower right corner, leaving
a bad fit to the bulk of the points. We would detect most, but not all, of the outliers
in a residual plot. The right pane, based on a least median of squares regression
(LMS) [50], shows six red points as regression outliers. They are, in fact, dwarf
stars.

19



There are numerous robust regression models, but LMS has the lowest break-
down point against outliers [16]. Therefore, the most prudent approach to regres-
sion modeling is to compute the fit both ways and see if the regression coefficients
and residual plots differ substantially. If they do, then LMS should be the choice.
Otherwise, the simpler OLS model is preferable.
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Figure 10: Ordinary Least Squares (OLS) regression (left panel) and Least Median
of Squares (LMS) regression (right panel) on attributes of stars. Data are from [52]

.

4.3.3 Time Series Outliers

Detecting time series outliers requires some pre-processing. In particular, we need
to fit a time series model and then examine residuals. Fitting parametric models
like ARIMA [6] can be useful for this purpose, but appropriate model identifica-
tion can be complicated. A simpler approach is to fit a nonparametric smoother.
The example in Figure 11 was fit by a kernel smoother with a biweight function on
the running mean. The data are measurements of snowfall at a Greenland weather
station, used in [62]. The outliers (red dots) are presumably due to malfunctions
in the recording equipment.

Computing outlying series for multiple time series is straightforward with the
hdoutliers algorithm. We simply treat each series as a row in the data matrix.
For n series on p time points, we have a p-dimensional outlier problem. Figure 12
shows series for 20 years of the Bureau of Labor Statistics Unemployment data.
The red series clearly indicate the consequences of the Great Recession. This
example illustrates why a probability-based outlier method is so important. We
could rank the series by their average levels of unemployment or use one of the
other ad-hoc multidimensional outlier detectors, but we would have no way of
knowing how many at the top are significant outliers.
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Figure 11: Outlying measurements of snow cover at a Greenland weather station.
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Figure 12: US unemployment series outliers. The shock and ensuing recovery
from the Great Recession is clearly indicated in the outliers.

4.3.4 Ipsative Outliers

An ipsative outlier is a case that is an outlier with respect to itself. That is, we
standardize values within each case (row) and then look for outliers in each stan-
dardized profile. Any profile with an outlier identified by hdoutliers is consid-
ered noteworthy; in other words, we can characterize a person simply by referring
to his outliers. It is easiest to understand this concept by examining a graphic.
Figure 13 shows an outlying profile for a baseball player who is hit by pitches
more frequently than we would expect from looking at his other characteristics.
This player may not be hit by pitches significantly more than other players, how-
ever. We are instead interested in a player with a highly unusual profile that can
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be described simply by his outlier(s). In every other respect, the player is not nec-
essarily noteworthy. This method should not be used, of course, unless there are
enough features to merit computing the statistical outlier model on a case.
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Figure 13: One baseball player’s profile showing an outlier (hit by pitch) that
deviates significantly from his other features.

4.3.5 Text Outliers

An important application for multivariate outlier detection involves document
analysis. Given a collection of documents (Twitter messages, Wikipedia pages,
emails, news pages, etc.), one might want to discover any document that is an
outlier with respect to the others. The simplest approach to this problem is to
use a bag-of-words model. We collect all the words in the documents, stem them
to resolve variants, remove stopwords and punctuation, and then apply the tf-idf
measure [54] on the words within each document. The resulting vectors for each
document are then submitted to hdoutliers.

Figure 14 shows the results for an analysis of 21 novels from the Guttenberg
Web site [26]. This problem requires the use of random projections. Before pro-
jection, there are 21,021 columns (tf-idf measures) in the dataset. After projection
there are 653. Not surprisingly, Ulysses stands out as an outlier. Distinctively, it
contains numerous neologisms.
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Tristram Shandy was identified by hdoutliers as the second largest, but not
significant, outlier. It too contains numerous neologisms. These two novels lie
outside most of the points in Figure 14. Not all multivariate outliers will fall on
the periphery of 2D projections, however, as we showed in Section 4.2.

Figure 14: Document outliers. Nonmetric multidimensional scaling on matrix of
Spearman correlations computed on tfidf scores. The stress for this solution is
.163 and one document (Ulysses) is flagged as an outlier by hdoutliers.

4.4 Graph Outliers
There are several possibilities related to finding outliers in graphs. One popular
application is the discovery of outliers among nodes of a network graph. The best
way to exploit hdoutliers in this context is to featurize the nodes. Common
candidates are Prominence, Transitivity (Watts-Strogatz Clustering Coefficient),
Closeness Centrality, Betweenness Centrality, Node Degree, Average Degree of
Neighbors, and Page Rank [45]. Figure 15 shows an example for the Les Miser-
ables dataset [40]. The nodes were featurized for Betweenness Centrality in order
to discover any extraordinarily influential characters. Not surprisingly, Valjean is
connected to significantly more characters than anyone else in the book.
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Figure 15: Les Miserables characters network graph. Valjean is identified as out-
lying on Betweenness Centrality.

An alternative application involves discovering outlying graphs in a collec-
tion of graphs. For this problem, we need to find a way to characterize a graph
and to derive a distance measure that can be fed to hdoutliers. This appli-
cation depends on assuming the collection of graphs is derived from a common
population model and that any outliers involve a contamination from some alter-
native model. We need a measure of the distance between two graphs to do this.
Unfortunately, graph matching and related graph edit distance calculations have
impractical complexities. Approximate distances are easier to calculate, however
[59]. The approach we take is as follows:

First, we compute the adjacency matrix for each graph. We then convert the
adjacencies above the diagonal to a single binary string. When doing that, how-
ever, we have to reorder the adjacency matrix to a canonical form; otherwise,
arbitrary input orderings could affect distance calculations on the string. A sim-
ple way to do this is to compute the eigendecomposition of the related Laplacian
matrix and permute the adjacencies according to the ordering of the values of the
eigenvector corresponding to the smallest nonzero eigenvalue. After permuting
and encoding the adjacency matrices into strings, we compute the Levenshtein
distances [43] between pairs of strings. Finally, we assemble the nearest-neighbor
distances from the resulting distance matrix and subject them to the hdoutliers
algorithm.

Figure 16 shows an example of this approach using the Karate Club graph
[65]. We generated 15 random minimum spanning tree graphs having the same
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number of nodes as the Karate Club graph. Then we applied the above procedure
to identify outliers. The Karate Club graph was strongly flagged as an outlier by
the algorithm.

Figure 16: Karate Club graph (red) is an outlier with respect to comparably scaled
random minimum spanning tree graphs.

4.4.1 Scagnostics Outliers

Scagnostics [63] can be used to identify outlying scatterplots. Because the calcu-
lations are relatively efficient, these measures can be computed on many thousands
of plots in practical time. This outlier application is multivariate, because there
are nine scagnostics for each scatterplot, so a multivariate detection algorithm like
hdoutliers is required.

Figure 17 shows two outlying scatterplots identified by hdoutliers when ap-
plied to a dataset of baseball player characteristics featured in [64]. While the
left plot in the figure is clearly unusual, the surprising result is to see an evidently
bivariate Normal scatterplot of Weight against Height in the right plot. Although
the dataset includes many physical and performance features of real baseball play-
ers, the type of Normal bivariate distribution found in many introductory statistics
books is an outlier among the 120 scatterplots considered in this example. This re-
sult should motivate authors writing tutorials on data analysis to include examples
beyond Normal distributions.
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Figure 17: Scatterplot outliers based on Scagnostics computed on 120 scatterplots
of baseball player features.

4.4.2 Geographic Outliers

We can compute spatial outliers using the hdoutliers algorithm. More fre-
quently, however, maps are a convenient way to display the results of outlier
detection on other variables. Figure 18 shows an example of outlier detection
on marriage and divorce rates by US state. Nevada is clearly an outlier. Despite
the simplicity of this example, analyses at the State level are usually too coarse
to be useful. Outliers displayed at a higher resolution (e.g., counties) are often
preferable.
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Figure 18: Marriage and Divorce rates in the US. There is one state that is an
outlier.
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5 Conclusions
There is a huge assortment of papers on outlier detection in the machine learning
community; only a fraction is cited here. While many of these approaches are
ingenious, few rest on a statistical foundation that takes risk into account. If we
label something as an outlier, we had better be able to quantify or control our risk.

Outliers are anomalies. An anomaly is not a thing; literally, anomaly means
lack of a law. It is a judgment based on evidence. Sometimes evidence is a
collection of facts. Sometimes it is a collection of indications that cause us to
modify our prior belief that what we are observing is not unusual.

The statistical detection of outliers is concerned with the latter case. Lacking
certainty of the process that generated what we think might be an outlier, we
must derive a judgment that an observation is inconsistent with our belief in that
process.

Many statistical outlier detection algorithms assume a generating process de-
rives from a parametric distribution. The more interesting cases are when we
cannot presume such a distribution. The most useful cases, ones that are more
relevant to real applications, involve the broadest class of prior beliefs in possible
generating processes.

In order to be consistent in our behavior, we need to assign a probability to
the strength of our belief that we are looking at an outlier. Methods that do not
do this, that simply rank discrepancies or flag observations above an arbitrary
threshold (like most of the algorithms in the Related Work section), can lead to
inconsistent results.

The hdoutliers algorithm reduces the risk of making a false outlier dis-
covery for a broad class of prior beliefs. Even for unusual applications such as
the graph outlier problem, this algorithm provides a foundation for framing the
judgment concerning an outlier. And importantly for the applications in this pa-
per, hdoutliers is designed specifically to guide, protect, and deepen our visual
analysis of data.
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