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Chapter 1

Overview

GenABEL is an R library developed to facilitate Genome-Wide Association (GWA)
analysis of binary and quantitative traits. GenABEL is implemented as an R li-
brary. R is a free, open source language and environment for general-purpose
statistical analysis (available at http://www.r-project.org/). It implements
powerful data management and analysis tools. Though it is not strictly neces-
sary to learn everything about R to run GenABEL, it is highly recommended as
this knowledge will improve flexibility and quality of your analysis.

Originally GenABEL was developed to facilitate GWA analysis of quantita-
tive traits using data coming from extended families and/or collected form ge-
netically isolated populations. At the same time GenABEL implements a large
number of procedures used in analysis of population-based data; it supports
analysis of binary and quantitative tarits, and of survival (time-till-event) data.
Most up-to-date information about GenABEL can be found at the web-site http:
//mga.bionet.nsc.ru/nlru/GenABEL/.

GenABEL is a part of more extensive ABEL collection (http://mga.bionet.
nsc.ru/~yurii/ABEL/)) of software supporting different kinds of GWA analyses.

This tutorial was originally written to serve as a set of exercises for the
"Advances in population-based studies of complex genetic disorders” (GE03)
course of the Netherlands Institute of Health Sciences (Nihes).

If you read this tutorial not as a part of the GE03 course, and you are eager
to start with you GWA analysis without reading all the not-so-strictly-necessary
staff, start directly from the section [5 (f5]").

Otherwise, you can start with R basics and simple association analyises using
few SNPs in section ”. In the next section, (”) you will learn how to
work with the gwaa.data-class, which is used to store GWA data in GenABEL
and will perform some simple large-scale analyses.

In the next section, (”), you will do quality control of genetic data and
do association analysis under realistic conditions. This section is the core of this
tutorial.

The section [7] ([7") is dedicated to analysis in presence of populational strat-
ification and analysis of family-based data.

Genetic data imputations are covered in section [9] '[0]".

The last section, ([12]), is dedicated to analysis of haplotype association
and analysis of SNP interactions.


http://www.r-project.org/
http://mga.bionet.nsc.ru/nlru/GenABEL/
http://mga.bionet.nsc.ru/nlru/GenABEL/
http://mga.bionet.nsc.ru/~yurii/ABEL/
http://mga.bionet.nsc.ru/~yurii/ABEL/
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Information on importing the data from different formats to GenABEL is given
in appendix [A] Answers to exercises are provided in appendix ??.
Experienced R users start directly with the section ”).



Chapter 2

Introduction to R

In this section we will consider base R data types and operations, and tools for
analysis of qualitative and quantitative traits. Only basic R functionality — the
things which are crucial to know before we can proceed to genetic association
analysis — will be covered within this section. If you want to make most of your
data, though, we strongly recommend that you improve your knowledge of R
using books other than this. A number of excellent manuals (’An introduction
to R’, ’Simple R’, 'Practical Regression and Anova using R’, and others) is
available free of charge from the R project web-site (http://www.r-project.org).

In the first part of this chapter you will learn about the most important
R data types and will learn how to work with R data. Next, we will cover
exploratory data analysis. The chapter will end with introduction to regression
analysis.

2.1 Basic R data types and operations

On the contrast to many other statistical analysis package, analysis in R is not
based on graphic user interface, but is command line-based. When you first
start R, a command prompt appears. To get help and overview of R, type
help.start() on the command line and press enter. This will start internet
browser and open the main page of the R documentation.

Let us first use R as a powerful calculator. You can directly operate with
numbers in R. Try multiplying two by three:

> 2 % 3
(1] 6

Other standard arithmetic operations can be performed in similar manner:

> 2/3
[1] 0.6666667
(division)

> 273
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[1]1 8
(power)

>2 -3

[1] -1
(subtraction)

>2+ 3
(11 5

(summation)ﬂ
Mathematical functions, such as square roots, base-10 logarithm, and expo-
nentiation, are available in R as well:

> sqrt(5)

[1] 2.236068
> log10(2.24)
[1] 0.350248
> exp(0.35)
[1] 1.419068

Here, we have computed e to the power of base-10 logarithm of the square
root of the sum of two and three. After each operation performed, we have
rounded the result to the two digits after the floating point — just in order to
do less typing.

The arithmetic operations and functions can be nested and therefore we can
obtain the above result in one line, and without the 2nd-digit approximation:

> exp(logl0(sqrt(2 + 3)))
[1] 1.418337

R functions include not only the standard mathematical ones, but also a
wide range of statistical function, for example, probability density functions of
many probability distributions. We will make extensive use of these at a later
stage, when computing significance and estimating statistical power.

For any function with name say 'fun’, help may be obtained by typing
’help(fun)’ (or ?fun) on the command line.

R help pages have standard layout, documenting usage of the function, ex-
plaining function arguments, providing details of implementation and/or usage,
explaining the value returned by the function, and giving references and exam-
ples of the function use.

1For complete list of arithmetic operations try help("+")
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Most of the documented functions have examples of their usage at the
end of the ’help’ page, and these examples can be evaluated in R. E.g. try
‘example(logl0)’.

Exercise 1. Explore help for Wilcoxon test
Explore the help page for the Wilcoxon test (function: wilcox.test) and
answer the questions:
1. When exact Wilcoxon test is computed by default?

2. If the default conditions for the exact test are not satisfied, what approx-
imation is used?
If you do not know the exact name for the function you look for, try ’help.search("query")’,
where query is the keyword.

Exercise 2. Finding functions and help pages

Try to find out what are the functions to do
1. Fisher exact test

2. T-test

One of important R operations is assignment, which is done with ’<-’ oper-
ator. A (new) variable name should be provided on the left-hand side of this
operator and on the right-hand side, there must be either name of already ex-
isting variable or an expression. For example, we if want to assign value '2’
to variable ’a’, and value ’3’ to the variable b’ we would use the assignment
operator:

> a <- 2
> b <- 3

Typing the variable name in R command line will return its’ value, e.g.
>b
[1] 3

Evaluation of the expression

> exp(log10(sqrt(a + b)))
[1] 1.418337

gives the expected result we have obtained above using numerical arguments.

While the variables ’a’ and ’b’ contain single numeric values, variables in
general can be multi-dimensional; an one-dimensional example of such is a vector
(array). Let us create an example vector and experiment with it:

>v<-c(1, 3,5, 7, 11)

Here, 'c ()’ is a function, which combines its arguments to make a vector. This
vector is then assigned to a variable named ’v’.
Now, let us try different operations with this vector:

>v + 1
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[11] 2 4 6 8 12

It is easy to see that the result is a vector, which is obtained by adding one to
each element of the original vector v. Other arithmetic operations and mathe-
matical functions behave in the same way, e.g. the operation is performed for
each element of the vector, and the results are returned:

> 1/v

[1] 1.0000000 0.3333333 0.2000000 0.1428571 0.0909091
> log(v)

[1] 0.000000 1.098612 1.609438 1.945910 2.397895

What happens if two vectors are supplied as function arguments? Let us
define a new vector

> ov <- ¢c(1, 2, 3, 4, 5)
and add it to the vector v:
> v + ov

[1] 2 5 8 11 16

You can see that the summation was done element-wise, i.e. the first element
of the result vector is obtained as the sum of the first elements of v and ov, the
second is the sum of the second elements, and so forth.

Other arithmetic operations with two vectors are performed in the same
element-wise manner:

> vV % ov

[1] 1 6 15 28 55

(multiplication)

> voov

[1] 1 9 125 2401 161051
(power).

The vector operations considered above returned a same-length vector as
output. There are others — statistical and summary — functions which evaluate
a vector as a whole and return a single value as output. For example, to obtain
a sum of vector’s elements, use

> sum(v)
[1] 27

Other examples of such functions involve length, returning number of ele-
ments of a vector, mean, returning the mean, var, returning the variance, etc.:

> length(v)
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[1] 5
> mean(v)
[1] 5.4
> var(v)
[1] 14.8
One of the basic, and probably most used, data operations in R is sub-setting.
This refers to an operations which help you deriving a subset of the data. Let
us create a short vector and play a bit with sub-setting. This vector will contain
5 simple character strings:
> a <- ¢("I am element 1", "I am element 2", "I am element 3",
+ "T am element 4", "I am element 5")

> a

[1] "I am element 1" "I am element 2" "I am element 3" "I am element 4"
[6] "I am element 5"

To find out what is the value of the i-th element of this vector, you can
sub-set it by a[i]. For example the 3rd elements is:

> al3]
[1] "I am element 3"

You can also select a bigger sub-set, e.g. all elements from 2 to 4:

> alc(2:4)]
[1] "I am element 2" "I am element 3" "I am element 4"

Here, operation c(2:4) stays for ’combine numbers from 2 to 4 into a vector’.
An equivalent result is obtained by

> alc(2, 3, 4]
[1] "I am element 2" "I am element 3" "I am element 4"

We can also easily get disjoint elements; e.g. if you want to retrieve elements
1, 3, and 5, you can do that with

> dje <- ¢(1, 3, 5)
> dje

[1] 135
> aldje]

[1] "I am element 1" "I am element 3" "I am element 5"
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One of very attractive features of R data objects is possibility to derive a sub-
set based on some condition. Let us consider two vectors, tmphgt, containing
the height of some subjects, and tmpids, containing their identification codes
(IDs):

> tmphgt <- c(150, 175, 182, 173, 192, 168)
> tmphgt

[1] 150 175 182 173 192 168

> tmpids <- c("fem1", "fem2", "manl", "fem3", "man2", "man3")
> tmpids

[1] |Ifem1l| Ilfem2ll Ilmanlll llfemsll |Iman2l| Ilman3ll

Imagine you need to derive the IDs of the people with height over 170 cm.
To do that, we need to combine several operations. First, we shoudl run the
logical function >170 on the height data:

> vec <- (tmphgt > 170)
> vec

[1] FALSE TRUE TRUE TRUE TRUE FALSE

This returns a logical vector whose elements are 'TRUE’, when a particular
element of the tmphgt satisfies the condition >170. The returned logical vector,
in turn, can be applied to sub-set any other vector of the same lengtkﬂ including
itself. Thus if you need to see what are the heights in people, which are taller
than 170 cm, you can use

> tmphgt [vec]
(1] 175 182 173 192

As you can see, only the elements of tmphgt, for which the corresponding value
of vec was 'TRUE’, are returned. In the same manner, the logical vector vec can
be applied to select elements of the vector of IDs:

> tmpids[vec]
[1] "fem2" "manl" "fem3" "man2"

You can combine more than one logical condition to derive sub-sets. For
example, to see what are the IDs of people taller than 170 but shorter than 190
cm, you can use

> vec <- (tmphgt > 170 & tmphgt < 190)
> vec

[1] FALSE TRUE TRUE TRUE FALSE FALSE

2 Actually, you can apply it to a longer vector too, and then the logical vector will be
Yexpanded” to total length by repeating the original vector head-to-tail. However, we will not
use this in our exercises.
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> tmpids[vec]
[1] "fem2" "manl" "fem3"

A bettetﬂ way to do logical sub-setting assumes use of the which() function
on the top of the logical vector. This function reports which elements are TRUE.
To obtain above results you can run:

> vec <- which(tmphgt > 170 & tmphgt < 190)
> vec

[1] 234
> tmpids[vec]
[1] "fem2" "ma.nl" llfem3ll

You can see that no vec contains a vector, whose elements are the indexes of
the elements of tmphgt for which the logical condition satisfies.

Sub-setting for 2D objects (matrices) is done in similar manner. Let us
construct a simple matrix and do several sub-setting operations on it:

> a <- matrix(c(11, 12, 13, 21, 22, 23, 31, 32, 33), nrow = 3,
+ ncol = 3)
> a

[,11 [,2]1 [,3]
(1,1 11 21 31
[2,] 12 22 32
(3,] 13 23 33

To obtain the element in the 2nd row and 2nd column, you can use
> al2, 2]
[1] 22
To access the elemnt from the second row and third column, use
> a2, 3]
[1] 32

Note that here, the row index (2) comes first, and the column index (3) comes
second.
To obtain the 2x2 set of elements contained in upper left corner, you can do

> af1:2, 1:2]

[,11 [,2]
(1,1 11 21
(2,1 12 22

3 Because it treats NAs for you
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1 2 3
111 4 7
212 5 8
313 6 9

Table 2.1: Vector representation of a matrix. Elements in the table are the
vector indices of the matrix elements.

Or you can even get the variables, which reside in corners:

> alc(1, 3), c(1, 3)]

[,1] [,2]
[1,] 11 31
[2,] 13 33

If one of the dimensions is not specified, complete vector is returned for this
dimension. For example, here we retrieve the first row

> al1, ]
[1] 11 21 31
...and the third column
> al, 3]
[1] 31 32 33
...or columns 1 and 3:
> al, c(1, 3)]
[,11 [,2]
(1,1 11 31
2,1 12 32
[3,] 13 33
Other way to address elements of a matrix is to use one-dimensional index.

For example, if you want to access element in the 2nd row and 2nd column,
instead of

> al2, 2]
[1] 22

you can use

> al5]

[1] 22
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This way of accessing the elements of a matrix is based on the fact, that each
matrix can be preseted as a vector, whose elements are numbered consequtively:
the element in the upper-left corner has index 1, the element in the second row
of the first column has index 2, and the last elemnt in the borrom-right corner
has the maximal value, as shown in Table [21]

As well as with vectors, you can sub-set matrices using logical conditions or
indexes. For example, if we want to see what elements of a are greater than 21,
we can run

>a > 21

[,11 [,21 [,3]
[1,] FALSE FALSE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE

or, better

> which(a > 21)
[11 567 89

Note that in the latter case, a vector whose elements give the 1-D indexes of the
matrix, is returned. This vector indicates the elemnts of matrix a, for which the
condition (a>21) is satisfied.

You can obtain the values of the matrix’s elements, for which the condition
isfulfilled, either by

> ala > 21]
[1] 22 23 31 32 33

or

> al[which(a > 21)]
[1] 22 23 31 32 33

Once again, the latter method should be prefered. Consider an example,
where some elements of the matrix are missing (NA) — a situation which is
common in real data analysis. Let us replace the elemnt number 5 with NA
and perform sub-setting operations on the resulting matrix:

> a

[,11 [,2] [,3]
[1,] 11 21 31
[2,1] 12 22 32
[3,] 13 23 33

> a[b5] <- NA
> a
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[,11 [,2] [,3]
(1,1 11 21 31
[2,] 12 NA 32
(3,] 13 23 33

> ala > 21]

[1] NA 23 31 32 33
> al[which(a > 21)]
[1] 23 31 32 33

You can see that when ala>21] was used, not only the elements which are
greater than 21 were returned, but also NA was. As a rule, this is not what you
want, and which should be used unless you do want to make some use of the NA
elements.

In this section, we have generated a number of R data objects. Some of
these were numeric (e.g. vector of heights, tmphgt) and some were character,
or string (e.g. vector of study IDs, tmpids). Some times you need to figure
out what is the class of a certain object. This can be done using the class()
function. For example,

> tmphgt

[1] 150 175 182 173 192 168

> class (tmphgt)

[1] "numeric"

> tmpids

[1] "feml" "fem2" "manl" "fem3" "man2" "man3"
> class(tmpids)

[1] "character"

What happens if we try to find out the class of

> a

[,11 [,21 [,3]
[1,] 11 21 31
[2,1] 12 NA 32
[3,] 13 23 33

— an object, which contains a matrix?

> class(a)

[1] "matrix"
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Results are expected — we find out that a is a matrix, which is correct. At
the same time, a matrix is an upper-level class, which contains a number of
elemnts, belonging to some lower-level (e.g. character/numeric) class. To see
what is the class of the matrix’s elements, try

>all, ]

[1] 11 21 31

> class(al1, 1)
(1] "numeric"

which says that elemnts (at least of the first row) are numeric. Because all
elements of a matrix should have the same class, we can conclude that a is a
matrix containing numeric values.

At this point, it is worthwile inspecting what data objects were created
during our work. This can be done with the 1s() command:

> 1s()
[1] Ilall ||bl| lldj e n n ovll Iltmphgt n |Itmpids n llvll

Obviously, this "list” command is very useful — you will soon find that it is
just too easy to forget the name of a variable which it took long time to create.
Some times you may wish to remove some of the data objects because you do
not need then anymore. You can remove an object using the rm() command,
where the names of objects to be deleted are listed as arguments. For example,
to remove tmphgt and tmpids variable you can use

> rm(tmphgt, tmpids)

If you now look up what data obejcts are still left in you workspace with the
1s() command

> 1s()
[1] Ila" l|b|l Ildjell l|ovll IIV" l|vecl|

you find that you have successfully deleted tmphgt and tmpids.
At this point, you can exit R by typing q() on the command line and pressing
Enter.

Summary:

e You can get access to the top-level R documentation by help.start()
command. To search help for some keyword keywrd, you can use
help.search(keywrd) command. To get description of some function
fun, use help(fun).

e You can use R as a powerful calculator

vec
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e It is possible to get sub-sets of vectors and matrices by specifying index
value or a logical condition (of the same length as the vector / matrix)
between square brackets ([, 1)

e When you obtain an element of a matrix with [i,j], i is the row and j
is the column of the matrix.

e Function which(A) returns index of the elements of A which are TRUE

e You can see objects available in your workspace by using the 1s() com-
mand

e Unnecessary object (say, tmphgt) can be deleted from the workspace using
rm command, e.g. rm(tmphgt)

e You can leave R using the q() command

Exercise 3. Exploring srdta

In this exercise, you will explore few vectors representing different data on study
subjects described in srdta example data set supplied together with GenABEL .
First, you need to load GenABEL by typing

> library(GenABEL)
and load the data by
> data(srdta)

The vector containing study subjects sex can be accessed through male (srdta);
this vector’s value is one when the corresponding person is male and zero other-
wise. The vector containing SNP names can be accessed via snpnames (srdta),
chromosome ID — through chromosome (srdta) and map — through map (srdta).
Explore these vectors and answer the questions.

1. What is the ID and sex of the first person in the data set?

Of the 22nd person?

How many males are observed among first hundred subjects?

How many FEMALES are among 4th hundred?

What is the male proportion in first 1000 people?

What is the FEMALE proportion in second 1000 (1001:2000) people?
What is name, chromosome and map position of 33rd maker?

What is distance between markers 25 and 267

® N o Uk N

2.2 Data frames

A data frame is a class of R data, which, basically, is a data table. In such
tables, it is usually assumed that rows correspond to subjects (observations) and
columns correspond to variables (characteristics) measured on these subjects.
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A nice feature of data frames is that columns (variables) have names, and the
data can be addressed by referencing to these namesﬂ

We will explore R data frames using example data set assoc. Start R with
double-click on the file named assocbase.RData. You can see the names of the
loaded objects by using the ”list” command:

> 1s()
[1] "assoc"

Thus, only one object is loaded. The class of this object is:

> class(assoc)
[1] "data.frame"

— a data frame.
The dimensionality of a data frame (or a matrix) can be determined by using
the dim() command:

> dim(assoc)
[1] 250 7

Here, the first number corresponds to the number of rows (subjects) and the
second to the number of columns (variables). Thus, the data frame assoc
contains the data on 250 subjects, who are characterised by 7 variables each.
Let us now figure out what are the names of the 7 variables present in the
data frame. To see what are the variable names, use the command names():

> names (assoc)
[1] n Subj n "SeX" n affll ||qt|l n Snp4|| n Snp5|l n snp6 n

These variables correspond to the personal identifier (ID, variable subj),
sex, affection status, quantitative trait qt and several SNPs. Each variable can
have its own type (numeric, character, logic), but all variables must have the
same length — thus forming a matrix-like data structure.

A variable from a data frame (say, fram), which has some name (say, nam)
can be accessed through fram$nam. This will return a conventional vector,
containing the values of the variable. For example to see the affection status
(aff) in the data frame assoc, use

> assoc$aff

(tJ] o1t 1 0 0O 0O OO O OOOOOOUOOOO0O
[26] 0 1 0 01 1 0 O O O OO OO 1 O O 1NA O
(611 1+ 1 0 1t 0 0 0 0 01 0 1 O O O O O O O 1
[rf6] o o0 1t 1 1 0 0O 0 O OO OOT11T 1 0 0 OO 1

[t02] 1 0 0 21 1 0O 1 0 O O 0 O 0 1 1 O O O O O

4This may also be true for matrices; more fundamental difference is though that a matrix
always contains variables of the same data type, e.g. character or numeric, while a data frame
may contain variables of different types

N

O = O O -

O O O O O

O O O O O

= O O O

O O O O O
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[126] 1 0 0 0 1 0 O 0 1 O 1NA 1 O O O O O O O
[151] 0 0 0 0 0 O 0 1 1 1 0 O O O 1 0 O O O O
[176] 0 0 1 1 NA O O O O 1 1 1 1 ONA 1 O O O O
[201] 0 0 0O OO O O O OO 11 O0O0OTO0OT1TO0TO0O0 O0 1
[226] 0 0 0 1 1 0 0 O 0 O 1 0 O O O 1 O O O 1

The aff (affected) variable here codes for a case/control status, conventi-
nally, the cases are coded as ”1” and controls as ”0”. You can also see several
"NA”s, which stays for missing observation.

Exercise 4. Exploring assoc

1. Investigate types of the variables presented in data frame assoc. For
each variable, write down the class.

Data frame may be thought of as a matrix which is a collection of (potentily
different-type) vectors. All sub-setting operations discussed before for matrices
are applicable to a data frame, while all operations dicussed for vectors are
applicable to data frame’s variables.

Thus, as any particular variable present in a data frame is a conventional
vector, its elements can be accessed using the vector’s indices. For example, if
you would like to know what are the ID, sex and affection status for the person
with index 75, you can request

> assoc$subj[75]
[1] 1409

> assoc$sex[75]
[1] 1

> assoc$aff[75]
(11 o

Alternatively, using the matrix-style of sub-setting, you can see all the data
for person 75:

> assoc[75, ]

subj sex aff qt snp4 snp5 snp6
75 1409 1 0 1.014664 A/B B/A B/B

In the same manner as with matrices, you can get data for e.g. subjects 5
to 15 by

> assoc[5:15, ]

subj sex aff gt snp4 snp5 snp6
5 1533 0 0 0.1009220 A/B B/A B/A
6 2466 1 0 -0.1724321 A/B A/A A/A
7 2425 0 0 -0.3378473 B/B A/A A/A

O O O O O

O O O O O

O O O ¥

O O, OO

O O O O o
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8 1068 0 0 -1.7112925 A/A B/B <NA>
9 198 1 0 -0.4815822 A/B B/A B/A
10 1496 1 0 1.2281232 A/A B/B B/B
11 909 0 0 0.5993945 A/B B/A B/A
12 1213 0 0 1.9792190 A/A B/B B/B
13 181 1 0 1.5435921 A/A B/B B/B
14 1783 0 0 -1.6242738 A/B B/A B/A
15 1914 0 0 -0.5160331 A/A B/B B/B

The result is actually a new data frame containing data only on people with
index from 5 to 15:

> x <- assoc[5:15, ]
> class(x)

[1] "data.frame"
> dim(x)
[1] 11 7

As well as with matrices and vectors, it is possible to sub-set elements of a
data frame based on (a combination of) logical conditions. For example, if you
are interested in people who have the qt values over 1.4, you can find out what
are the indices of these people

> vec <- which(assoc$qt > 1.4)
> vec

[1] 12 13 33 41 54 68 72 76 89 106 118 142 156 161 175 181 193 219 241

and then show the compelte data with

> assoc$subj[vec]

[1] 1213 181 1737 1319 516 1355 186 1426 1284 822 2129 212 1443 704 1648
[16] 1628 562 858 698

At the same time, if you only want to check what are the IDs of these people,
try

> assoc$subj[vec]

[1] 1213 181 1737 1319 516 1355 186 1426 1284 822 2129 212 1443 704 1648
[16] 1628 562 858 698

Or, if we are interested to find what are the IDs and what are the SNP
genotypes of these people, we can try

> assoc[vec, c(1, 5, 6, 7)]
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subj snp4 snpb5 snp6
12 1213 A/A B/B B/B
13 181 A/A B/B B/B
33 1737 A/A B/B B/B
41 1319 A/A B/A B/A
54 516 A/B B/A B/A
68 1355 A/A B/B B/B
72 186 A/A B/A B/A
76 1426 A/B B/A B/A
89 1284 A/A B/B B/B
106 822 A/B B/A B/A
118 2129 A/B B/A B/A
142 212 A/B B/A B/A
166 1443 A/A B/B B/B
161 704 A/B B/A B/A
175 1648 A/B B/A B/A
181 1628 A/B B/A B/A
193 562 A/A B/B B/B
219 858 A/B B/A B/A
241 698 B/B A/A A/A

here, we select people identified by vec in the first dimension (subjects), and by
c(1,5,6,7) we select first, fifth, sixth and seventh column (variable).

The same result can be obtained using variables’ names insted of the vari-
ables’ indices. To remind you the variables’ names:

> names (assoc)
[1] "Subj n "SeX" llaffll l|q n ||snp4l| n Snp5" n Snp6|l

And now make a vector of the variables’ names of interest and filter the data
based on it:

> namstoshow <- c("subj", "snp4", "snp5", "snp6")
> assoc[vec, namstoshow]

subj snp4 snp5 snp6
12 1213 A/A B/B B/B
13 181 A/A B/B B/B
33 1737 A/A B/B B/B
41 1319 A/A B/A B/A
54 516 A/B B/A B/A
68 1355 A/A B/B B/B
72 186 A/A B/A B/A
76 1426 A/B B/A B/A
89 1284 A/A B/B B/B
106 822 A/B B/A B/A
118 2129 A/B B/A B/A
142 212 A/B B/A B/A
156 1443 A/A B/B B/B
161 704 A/B B/A B/A
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175 1648 A/B B/A B/A
181 1628 A/B B/A B/A
193 562 A/A B/B B/B
219 858 A/B B/A B/A
241 698 B/B A/A A/A

A more convenient way to access data presented in a data frame is through
“attaching” it to the R search path by

> attach(assoc)

After that, the variables can be accessed directly, e.g.
> subj[75]

[1] 1409

instead of assoc$subj[75].

While it is possible to explore the data presented in a data frame using
the sub-setting operations and screen output, and modify certain data elements
using the assignment (”<-”) operation, you can also explore and modify the data
contained in a data framd’| by using £ix() command (e.g. try fix(assoc)).
However, normally this is not necessary.

With attached data frames, a possible complication is that later on you may
have several data frames which contain the variables with the same names. The
variable which will be used when you directly use the name would be the one
from the data frame attached last. You can use detach() function to remove a
certain data frame from the search path, e.g. after

> detach(assoc)

we can not use direct reference to the name (try subj[75]) anymore, but have
to use the full path instead:

> assoc$subj[75]

[11 1409

Summary:

e The list of available objects can be viewed with 1s(); a class of some
object obj can be interrogated with class(obj).

e Simple summary statistics for numeric variables can be generated by using
summary function

e Histogram for some variable var can be generated by hist (var)

e A variable with name name from a data frame frame, can be accessed
through frame$name.

5and also a matrix
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e You can attach the data frame to the search path by attach(frame).
Then the variables contained in this data frame may be accessed directly.
To detach the data frame (because, e.g., you are now interested in other
data frame), use detach(frame).

Exercise 5. Explore phenotypic part of srdta

Load the srdta data object supplied with GenABEL by loading the package

with library(GenABEL) and then loading the data with data(srdta). The
srdta object contains a data frame with phenotypes. This data frame may
be accessed through phdata(srdta). Explore this data frame and answer the
questions

1. What is the value of the 4th variable for the subject number 757

2. What is the value of variable 1 for person 757 Check what is the value
of this variable for the first ten people. Can you guess what first variable
is?

3. What is the sum of variable 27 Can you guess what data variable 2
contains?

2.3 Exploratory analysis of qualitative and quan-
titative traits

Let us now attach the data frame asscoc
> attach(assoc)

and explore it.

Let us first check how many of the subjects are males. In the sex variable,
males are coded with ”1” and females with ”0”. Therefore to see the numer of
males, you can use

> sum(sex == 1)

[1] 129

and to determine what is male sex proportion you can use
> sum(sex == 1)/length(sex)

[1] 0.516

This way to compute the proportion would only work correctly if there are no
missing observations (lenght () returns the total length of a variable, including
NAs).

Because of the way the males are coded, the same answer is reached by

> mean (sex)

[1] 0.516
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However, that would not have worked if the sex was coded differently, e.g.
with ”1” for males and 72" for females.

Let us now try to find out the mean of the quantitative trait qt. By defini-
tion, the mean of a variable, say x (with i-th element denoted as x;) is

Ef\ilmi
N

T =

where N is the number of measurements.

If we try to find out the mean of qt by direct use of this formula, we first
need to find out the sum of the qt’s elements. The sum() function of R precisely
does the operation we need. However, if we try it

> sum(qt)
[1] NA

this returns "NA”. The problem is that the gt variable contains "NA”s (try qt
to see these) and by default the "NA” is returned. We can, however, instruct
the sum() function to remove "NA”s from consideration:

> sum(qt, na.rm = T)
[1] -26.4733

where na.rm=T tells R that missing variables should be be removed (NonAvail-
able.ReMove:True)ﬂ
We can now try to compute the mean with

> sum(qt, na.rm = T)/length(qt)
[1] -0.1058932

This result, however, is not correct. The length() function returns the total
length of a vector, which includes "NA”s as well. Thus we need to compute the
number of the qt’s elements, which are not missing.

For this, we can use R function is.na(). This function returns TRUE if sup-
plied argument is missing (NA) and FALSE otherwise. Let us apply this function
to the vector assoc$qt:

> is.na(qt)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[49] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

6The same argument works for a number of R statistical functions such as mean, median,
var, etc

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
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[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Indeed, the 7 missing elements are correctly identified. However, we are
interested in elements which are not missing. To get these, we can use the
logical function NOT (!), which changes all FALSE to TRUE and visa versa:

> lis.na(qt)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[37] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[49] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[73] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[97] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[109] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[133] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[145] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1567] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[193] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[2056] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[217] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[229] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[241] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Thus the number of elements which are not missingﬂ is
> sum(!is.na(qt))
[1] 243

Finally, we can compute the mean of the qt with

> sum(qt, na.rm = T)/sum(!is.na(qt))

7A hidden trick here is that arithmetic operations treat TRUE as one and FALSE as zero

FALSE
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[1] -0.1089436

While this way of computing the mean is enlightening in the sense of how
to treat the missing values, the same correct result should be normally achieved
by supplying the na.rm=T argument to the mean() function:

> mean(qt, na.rm = T)
[1] -0.1089436

The function table(x) produces a frequency table for the variable x. Thus,
we can use

> table(sex)

sex
0 1
121 129

which, again, tells us that there are 129 males and 121 females in this data set.
This function excludes missing observations form consideration.

Tables of other qualitative variables, such as affection and SNPs, can be
generated in the same manner.

As with arithmetic operations and mathematical functions, most of the R
operations can be combined within a single line. Let us try to combine logical
conditions and the table() command to check the distribution of number of
affected in men and women separately:

> table(aff[which(sex == 1)])

0 1
95 31

> table(aff[which(sex 0)1)

0 1
95 24

On R command line pressing the ”up-arrow” button makes the last typed
command re-appear (pressing it one more time will bring you to the one
before the last, so on). This is very handy when you have to repeat the same

analysis of different variables

Exercise 6. Explore assoc

Explore phenotypic variables presented in assoc
1. How many affected and unaffected are present in the data set?
2. What is the proportion of affected?

3. What is the distribution of snp4 (how many different genotype classes
are present and what are the counts)?
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Contingency tables for pairs of variables (cross-tables) can be generated in R
using the table command we have used in previous section to explore frequency
distributions. For example, if you want cross-tabulate sex and affection status
in the data frame assoc, you can use

> table(sex, aff)

aff
sex 0 1

0 95 24

1 95 31

Here, the first variable (sex) is presented in rows and the second (affection
status) in columns.

As is usually the case with R, the output may be saved as a new object (of
class ’table’, which is a variety of a matrix):

> a <- table(sex, aff)
> class(a)

[1] "table"
> a

aff
sex 0 1

0 95 24

1 95 31

and this object may be analysed further.
For example, we can easily get the number of affected male with

> al2, 2]
[1] 31

Alternatively, we can analyse the resulting contingency table a with more
complex functions. If we want to see proportions in this table, we can use

> prop.table(a)

aff

sex 0 1
0 0.38775510 0.09795918
1 0.38775510 0.12653061

Needless to say, this is equivalent to

> prop.table(table(assoc$sex, assoc$aff))

0 1
8775510 0.09795918

0 0.3
1 0.38775510 0.12653061
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In the above table, we see what proportion of people belong to four dif-
ferent classes (affected male, affected female, unaffected male and unaffected
female). We may be though interested in the proportion of males in affected
and unaffected. This may be achieved by

> prop.table(a, 2)

aff

sex 0 1
0 0.5000000 0.4363636
1 0.5000000 0.5636364

saying us that 56.4% of affected are male.
Alternatively, we may be interested in proportion of affected among males/females.
To answer this question, run

> prop.table(a, 1)

aff

sex 0 1
0 0.7983193 0.2016807
1 0.7539683 0.2460317

saying us that 56.4% of male are affected.
Other useful contingency table analysis function is fisher.test, which im-
plements the Fisher Exact Test of independence:

> fisher.test(a)

Fisher's Exact Test for Count Data

data: a
p-value = 0.4457
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.676759 2.482869
sample estimates:
odds ratio
1.290313

Exploration of genetic data within base R, though possible, may be a bit
of a pain. For example, we can easily generate contingency table of SNP5 vs
affected status:

> a <- table(aff, snp5)
> a

snpb

aff A/A B/A B/B
0 31 88 68
1 8 26 17

We can also look up what is the proportion of affected among different genotypic
groups
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> prop.table(a, 2)

snpb5
aff A/A B/A B/B
0 0.7948718 0.7719298 0.8000000
1 0.2051282 0.2280702 0.2000000

showing that proportion of cases is similar in ’A /A’ and A /B’ genotypic groups
and somewhat decreased in 'B/B’. It is easy to test if this affection is statistically
independent of genotype by

> chisq.test(a)
Pearson's Chi-squared test

data: a
X-squared = 0.2511, df = 2, p-value = 0.882

which gives (insignificant) genotypic association test on two degrees of freedom.

However, testing Hardy-Weinberg equilibrium, testing allelic effects, and
even computation of allelic frequency is not so straightforward. Such specific ge-
netic tests are implemented in special R libraries, such as genetics and GenABEL
and will be covered in later sections of this document.

At this moment we will switch to exploratory analysis of quantitative traits.
We will make use of the srdta data supplied with GenABEL . As you can re-
member from an exercise, the library is loaded with 1ibrary(GenABEL) and the
data are loaded with data(srdta): Then the phenotypic data frame may be
accessed through phdata(srdta).

Exercise 7. Explore phenotypes in srdta

Explore phenotypic data content of srdta object (phdata(srdta)).
1. How many observations and variables are presented in the data frame?

2. What are the classes of these variables?
As it was mentioned before, the function summary() generates a summary
statistics for an object. For example, to see summary for trait qt1, we can use

> summary (phdata(srdta)$qt1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-4.6000 -0.9500 -0.3100 -0.2981 0.3800 3.2000 3.0000

summary is quite useful function which may operate in different ways for
objects of different classes. Try summary(phdata(srdta)).

With R, it is also easy to explore the data graphically. For example, the
histogram for qt1 may be generated by

> hist(phdata(srdta)$qti)
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Histogram of phdata(srdta)$qtl

Frequency
300 400
| |

200
|

100
|

phdata(srdta)$qtl

Figure 2.1: Histogram of qt1
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Figure 2.2: Scatter-plot of qt1 against qt3

(resulting histogram is shown at figure [2.1))
In similar manner, scatter-plots may be generated. To see relation between
qtl and qt3, you can run

> plot(phdata(srdta)$qtl, phdata(srdta)$qt3)

(resulting plot is shown at figure

The mean, median, minimum and maximum of the distribution of the trait
may be found out using functions mean, median, min and max, respectively. The
variance and standard deviation can be computed with var and sd.

To compute correlation between two variables (or all variables in a ma-
trix/data frame), use cor.

In GenABEL , there is a special function designed to facilitate phenotypic
quality control. This function takes names of variables and a data frame as
an input, and returns summary statistics, list of outliers (using False Discovery
Rate) and graphs.

For example, to do QC of sex, age and qt3, try

> check.trait(c("sex", "age", "qt3"), phdata(srdta))

Trait sex has 2500 measurements
Missing: 0 ( 0 %)

Mean = 0.51 ; s.d. = 0.5

NO outliers discovered for trait sex
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Figure 2.3: Quality control graph for sex, age, qt3

Trait age has 2500 measurements
Missing: 0 ( 0 %)

Mean = 50.0378 ; s.d. = 7.060125

NO outliers discovered for trait age
Trait qt3 has 2489 measurements
Missing: 11 ( 0.44 %)

Mean = 2.60859 ; s.d. = 1.101154

NO outliers discovered for trait qt3

The corresponding graph is depicted at figure ?7.

Before you start with the exercise: if a function returns unexpected results,
and you are confident that syntax was right, checking help page is always a

good idea!

Exercise 8. Exploring phenotypic part of srdta
Explore phdata part of srdta object

1. How many people has age over 65 years?
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2. What is the sex distribution (proportion of males) in the people over 65
years old?

3. What is the mean, median, minimum and maximum age in the sample?

4. Compare the distribution of qt3 in people younger and older than 65
years. Use function sd(A) to get standard deviation of A

5. Produce distributions of different traits. Do you see something special?

6. What is correlation between qt3 and age?

2.4 Regression analysis

While contingency tables, bi-plots and correlation are powerful tools to analyse
relations between pairs of variable, a more general framework allowing investiga-
tion of relation of an outcome to multiple predictors is regression. In R, function
1m implements linear regression modelling, and function glm implements gen-
eralised linear regression. In this section, we will use these two functions to
analyse quantitative an binary outcomes.

You can do linear regression to check if trait qt2 has relation with sex and
age by

> a <- lm(phdata(srdta)$qt2 ~ phdata(srdta)$age + phdata(srdta)$sex)

The results of analysis are stored in object ’a’, which has class ’lm’ and
contains may sub-objects:

> class(a)
[1] "m"

> names (a)

[1] "coefficients" '"residuals" "effects" "rank"
[6] "fitted.values" "assign" "qr" "df .residual"
[9] "xlevels" "call" "terms" "model"

At this moment you do not need to understand all these sub-objects; the
meaningful summary of analysis is produced with

> summary (a)

Call:
Im(formula = phdata(srdta)$qt2 ~ phdata(srdta)$age + phdata(srdta)$sex)

Residuals:
Min 1Q Median 3Q Max
-5.6498 -1.7953 -1.0328 -0.3148 883.0808

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.55892 4.41667 -0.353 0.724
phdata(srdta)$age 0.14022 0.08668 1.618 0.106
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phdata(srdta)$sex 1.30377 1.22393 1.065 0.287

Residual standard error: 30.59 on 2497 degrees of freedom
Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181
F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

You can see that qt2 is not associated with age or sex.

As before, to make easy access to your data (basically, to avoid typing ph-
data(srdta) before every trait name, you may attach the data to the search
path:

> attach(phdata(srdta))

Then,the above expression to run linear regression analysis simplifies to:
> summary(Im(qt2 ~ age + sex))

Call:
lm(formula = qt2 ~ age + sex)

Residuals:
Min 1Q Median 3Q Max
-5.6498 -1.7953 -1.0328 -0.3148 883.0808

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -1.55892 4.41667 -0.353 0.724
age 0.14022 0.08668 1.618 0.106
sex 1.30377 1.22393 1.065 0.287

Residual standard error: 30.59 on 2497 degrees of freedom
Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181
F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

with the same results.

Analysis of binary outcomes may be performed using glm function, using
binomial family for the error distribution and the link function. For example,
to figure out if your binary trait (bt) is associated with sex and age, you need
to tell that this is binary trait:

> a <- glm(bt ~ age + sex, family = "binomial")
> summary (a)

Call:
glm(formula = bt ~ age + sex, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max
-1.992 -1.091 -0.444 1.094 1.917

Coefficients:
Estimate Std. Error z value Pr(>|zl)
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(Intercept) -4.639958 0.330519 -14.038 < 2e-16 **x
age 0.088860 0.006463 13.749 < 2e-16 **x*
sex 0.379593 0.084138 4.512 6.44e-06 **x*

Signif. codes: O &A¥***3AZ 0.001 aA¥**xahZ 0.01 aAV*aAZ 0.05 &AY.aAZ 0.1 aAY &kZ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3450.5 on 2488 degrees of freedom
Residual deviance: 3216.5 on 2486 degrees of freedom
(11 observations deleted due to missingness)
AIC: 3222.5

Number of Fisher Scoring iterations: 4

There is strong association between bt and sex and age. If you want to
characterise the strength of association to a binary trait with Odds Ratios,
take the exponents of the regression coefficient. For example, the odds ratio
associated with male is

> exp(0.3796)

[1] 1.461700

2.5 Answers to exercises

Answer of Exercise 1. Explore help for Wilcoxon test

By default (if exact’ is not specified), an exact p-value is computed if the samples
contain less than 50 finite values and there are no ties. Otherwise, a normal
approximation is used.

Answer of Exercise 2. Finding functions and help pages

Try help.search("Fisher") and help.search("Student t-test"). You will
find that the corresponding functions are fisher.test t.test.

Answer of Exercise 3. Exploring srdta

For the first person id is "pl” and sex code is 1 (1=male, O=female)

> idnames (srdta) [1]
[1] "pl"
> male(srdta) [1]

pl
1

For the 22nd person id is "p22” and sex code is 1:

> idnames (srdta) [22]
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[1] ||p22||
> male(srdta) [22]

p22
1

Among first 100 subjects, there are 53 males:

> sum(male(srdta) [1:100])

[1] 53

Among 4th hundred subjects there are 45 females:
> 100 - sum(male(srdta) [301:400])

[1] 45

Male proportion among first 1000 people is

> mean(male(srdta) [1:1000])

[1] 0.508

Female proportion among second 1000 people is

> 1 - mean(male(srdta) [1001:2000])

[1] 0.476

Name, chromosome and map position of the 33rd marker are:
> snpnames (srdta) [33]

[1] "rs422"

> chromosome (srdta) [33]

[1] ™1

> map(srdta) [33]

rs422
105500

The map positions for and distance between markers 25 and 26 are:

> pos25 <- map(srdta) [25]
> pos25

rs365
91250

> pos26 <- map(srdta) [26]
> pos26
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rs372

92750

> pos26 - pos25

rs372

1500

Answer of Exercise 4. Exploring assoc

Here is an automatic script which explores the classes of variables in assoc:

> for (i in names(assoc)) {

+ cat("Variable '", i, "' has class '", class(assoc[, il),
+ ul\nn sep = nn)

b
+ }

Variable 'subj' has class 'integer'
Variable 'sex' has class 'numeric'
Variable 'aff' has class 'numeric'
Variable 'qt' has class 'numeric'
Variable 'snp4' has class 'character'
Variable 'snp5' has class 'character'
Variable 'snp6' has class 'character'

Answer of Exercise 5. Explore phenotypic part of srdta

Load the data and look at the few first rows of the phenotypic data frame:

> data(srdta)
> phdata(srdta) [1:5, ]

id sex age qtl qt2 qt3 bt

1 p1 143.4 -0.58 4.46 1.43 O
2 p2 148.2 0.80 6.32 3.90 1
3 p3 037.9-0.562 3.26 5.056 1
4 pa 1 53.8 -1.55 888.00 3.76 1
5 pb 147.5 0.256 5.70 2.89 1

Value of the 4th variable of person 75:

> phdata(srdta) [75, 4]

[1] -0.04

Value for the variable 1 is

> phdata(srdta) [75, 1]

[1] "p75"

Also, if we check first 10 elements we see

> phdata(srdta)[1:10, 1]
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[1] |Ip1Il llp2ll |Ip3Il llp4ll |Ip5ll llp6l| Ilp7ll llp8l| “p9"

This is personal ID.
The sum for variable 2 is

> sum(phdata(srdta) [, 2])
[1] 1275

This is sex variable — so there are 1275 males in the data set.

Answer of Exercise 6. Explore assoc

The number of affected (coded with ’1’) and unaffected (’0) is

> table(aff)

aff
0 1
190 55

The proportion of unaffected and affected is

> prop.table(table(aff))

aff
0 1
0.7755102 0.2244898

Distribution of the ’snp4’ is

> t <- table(snp4)
>t

snp4

A/A A/B B/B
109 105 29

> prop.table(t)
snp4

A/A A/B B/B
0.4485597 0.4320988 0.1193416

Answer of Exercise 7. Explore phenotypes in srdta

Number of people:

> nids(srdta)

[1] 2500

Number of variables:

> length(names (phdata(srdta)))

llploll

39
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(11 7

The same — dimensions of phenotypic data frame:
> dim(phdata(srdta))

[1] 2500 7

Class of variables in phenotypic data frame:

> for (i in names(phdata(srdta))) {

+ cat("class of variable '", i, " is '", class(phdata(srdta)/[,
+ l]), nl\nn’ sep = nu)
+ }

class of variable 'id' is 'character'
class of variable 'sex' is 'integer'
class of variable 'age' is 'numeric'
class of variable 'qtl' is 'numeric'
class of variable 'qt2' is 'numeric'
class of variable 'qt3' is 'numeric'
class of variable 'bt' is 'integer'

Answer of Exercise 8. Exploring phenotypic part of srdta

To obtain the number of people with age >65 y.o., you can use any of the
following

> sum(phdata(srdta)$age > 65)
[1] 48

> vec <- which(phdata(srdta)$age > 65)
> length(vec)

[1] 48

To get sex of these people use any of:

> sx65 <- phdata(srdta)$sex[phdata(srdta)$age > 65]
> sx65

1110011011100001110111101110000
111
> sx65

1110011011100001110111101110000
111

Thus, number of males is:

> sum(sx65)
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[1]1 26

To conclude, the proportion of male is 0.541666666666667.

41

Distribution of qt3 in people younger and older than 65 are:

> summary (phdata(srdta)$qt3[vec])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.730 2.690 3.480 3.499 4.265 5.840

> sd(phdata(srdta)$qt3[vec], na.rm = TRUE)
[1] 1.128701

> young <- which(phdata(srdta)$age < 65)
> summary (phdata(srdta)$qt3[young])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.97 1.83 2.58 2.59 3.35 6.34

> sd(phdata(srdta)$qt3[young], na.rm = TRUE)
[1] 1.093374

Mean, median, min and max of age:

> summary (phdata(srdta)$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
24.10 45.10 50.00 50.04 54.80 71.60

NA's
11.00

The histogram for qt2 looks strange (you can generate that using hist (phdata(srdta)$qt2)):
it seems there are few very strong outliers. You can also see that with summary:

> summary (phdata (srdta) $qt2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 4.220 5.045 6.122 5.910 888.000
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Chapter 3

Introduction to genetic
association analysis in R

When analyzing several (dozens of) SNPs, facilities of base R are sufficient
and efficient for data storage and analysis. Few specific test, such as these
of Hardy-Weinberg Equilibrium (HWE) and Linkage Disequilibrium (LD), are
implemented in different libraries, e.g. genetics and GenABEL .

In this section, we will describe library genetics and will make use of it to
guide you through simple genetic analysis exercise using a small example data
set. In the last part, you will investigate a bigger data set as based on the
knowledge obtained in the first part, and will answer the questions.

3.1 Characterisation of genetic data

3.2 Exploring genetic data with library genetics

Library genetics was written by Gregory R. Warnes to facilitate analysis of
genetic data in R. This library

e Implements genetic analysis tests, such as test for Hardy-Weinberg equi-
librium and Linkage disequilibrium.

o Implements new data classes, such as genotype, haplotype and LD.data.frame.

e Modifies default R functions, such as summary and plot to correctly anal-
yse and present these new classes.

e Facilitates export of the data from R to the formats supported by such
genetic analysis packages as GenePop and QTDT.

Start R by double-click on the file ge03d1p1.RData. Load library genetics,
which we will need for testing HWE and computations of LD by

> library(genetics)

NOTE: THIS PACKAGE IS NOW OBSOLETE.

43
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The R-Genetics project has developed an set of enhanced genetics
packages to replace 'genetics'. Please visit the project homepage
at http://rgenetics.org for informtion.

The file you have loaded contains single data frame assocg. Let us briefly
explore it:

> class(assocg)

[1] "data.frame"

> names (assocg)

[1] "subj" "sex" "aff" "qt" "snp4" "snpb5" "snp6"
> dim(assocg)

[1] 250 7

You can see that assocg looks remarkably similar to the previously explored
data frame assoc (section page . Indeed, they are almost equivalent.
Let us present the data for the subjects 5 to 15 and compare this output to that

presented on page

> assocg[5:15, ]

subj sex aff qt snp4 snp5 snp6
1633 1633 0 0 0.1009220 A/B B/A B/A
2466 2466 1 0 -0.1724321 A/B A/A A/A
2425 2425 0 0 -0.3378473 B/B A/A A/A
1068 1068 0 0 -1.7112925 A/A B/B <NA>
198 198 1 0 -0.4815822 A/B B/A B/A
1496 1496 1 0 1.2281232 A/A B/B B/B
909 909 O O 0.5993945 A/B B/A B/A
1213 1213 0 0 1.9792190 A/A B/B B/B
181 181 1 0 1.5435921 A/A B/B B/B
1783 1783 0 0 -1.6242738 A/B B/A B/A
1914 1914 0 0 -0.5160331 A/A B/B B/B

The data are identical. However, the SNP data presented in the new data frame
have special class genotype, as implemented in genetics library:

> class(assocg$snp4)
[1] "genotype" "factor"

Previously, the SNP genotypes were coded as characters. This new way of
presentation allows library genetics to recognise the SNP data as genetic and
analyse them accordingly.

Let us attach the assocg data frame and explore what data analysis advan-
tages are achieved by application of library genetics.

> attach(assocg)
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As we noted in section testing Hardy-Weinberg equilibrium, testing al-
lelic effects, and even computation of allelic frequency is not so straightforward
in base R. These tests, are, however, easy with library genetics. To see the
allelic frequencies and other summary statistics for a SNP, you can use

> summary (snp4)
Number of samples typed: 243 (97.2%)

Allele Frequency: (2 alleles)
Count Proportion

A 323 0.66
B 163 0.34
NA 14 NA

Genotype Frequency:
Count Proportion

B/B 29 0.12
A/B 105 0.43
A/A 109 0.45
NA 7 NA
Heterozygosity (Hu) = 0.4467269
Poly. Inf. Content = 0.3464355

To check these characteristics in controls and cases separately, you can use
> summary (snp4[aff == 0])
Number of samples typed: 190 (97.9%)

Allele Frequency: (2 alleles)
Count Proportion

A 255 0.67
B 125 0.33
NA 8 NA

Genotype Frequency:
Count Proportion

B/B 22 0.12
A/B 81 0.43
A/A 87 0.46
NA 4 NA
Heterozygosity (Hu) = 0.4426469
Poly. Inf. Content = 0.3440288

> summary (snp4[aff == 1])
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Number of samples typed: 53 (94.6%)

Allele Frequency: (2 alleles)
Count Proportion

A 68 0.64
B 38 0.36
NA 6 NA

Genotype Frequency:
Count Proportion

B/B 7 0.13
A/B 24 0.45
A/A 22 0.42
NA 3 NA
Heterozygosity (Hu) = 0.4643306
Poly. Inf. Content = 0.3541731

Let us check if HWE holds for the SNPs described in this data frame. We
can do exact test for HWE by

> HWE.exact (snp4)

Exact Test for Hardy-Weinberg Equilibrium

data: snp4
N11 = 109, N12 = 105, N22 = 29, N1 = 323, N2 = 163, p-value = 0.666

If you want to check HWE using controls only, you can do it by
> HWE.exact (snp4[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp4laff == 0]
Ni1 = 87, N12 = 81, N22 = 22, N1 = 255, N2 = 125, p-value = 0.6244

Let us check if the there is LD between snp4 and snpb:
> LD(snp4, snp5)

Pairwise LD
D D' Corr
Estimates: 0.2009042 0.9997352 0.8683117

X"2 P-value N
LD Test: 354.3636 0 235

The output shows results of the test for significance of LD, and estimates of the
magnitude of LD (D’ and correlation, 7). To obtain r2, you can either square
the correlation manually
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> 0.8683117 * 0.8683117

[1] 0.7539652

or simply ask LD() to report it by
> LD(snp4, snp5)$"R"2"

[1] 0.7539652

The latter command is possible because the LD() function actually computes
more things than it reports. This is quite common for R functions. You can
apply names() function to the analysis objects to see (at least part of) what

was actually computed. Try
> 1d45 <- LD(snp4, snpb)
and check what are the sub-objects contained in this analysis object

> names (1d45)

[1] llcallll "Dll llD'll llrll "R"zll Ilnll IIX“QII
[8] "P-value"

Any of these variables can be accessed through object$var syntax, e.g.
check D’ we can use

> 1d45$"D'"
[1] 0.9997352

To check LD for more that two SNPs, we can compute an LD analysis object

by
> ldall <- LD(data.frame(snp4, snp5, snp6))
and later check

> ldall$"P-value"

snp4 snp5 snp6
snp4 NA 0 0
snpb NA NA 0
snp6 NA NA NA

to see significance,

> 1dallg"D'"

snp4 snpb snp6
snp4 NA 0.9997352 0.8039577
snps NA NA 0.9997231
snp6 NA NA NA
for D' and

> 1dall$"R"2"
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Figure 3.1: r2 plot for snp4, snp5 and snp6
snp4 snpb5 snp6
snp4 NA 0.7539652 0.5886602
snpb  NA NA 0.8278328
snp6 NA NA NA

for r2.
You can also present e.g. 72 matrix as a plot by

> image(1dall$"R"2")

A more neat way to present it requires specification of the set of threshold
(break points) and colors to be used (you do not need to try this example if you
do not want):

> image(1dall$"R"2", breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1), col = heat.colors(5))

Resulting plot is shown at figure

For any R command, you can get help by typing help(command). Try
help(image) if you are interested to understand what are ”breaks” and ”col”;

or try help(heat.colors) to figure this color schema out.

Similar to our HWE checks, we may want to compute (and compare) LD in
cases and controls separately:
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> ldcases <- LD(data.frame(snp4, snp5, snp6) [aff == 1, ])
> ldcases$"R"2"

snp4 snpb5 snp6
snp4 NA 0.7615923 0.6891558
snp5 NA NA 0.8943495
snp6 NA NA NA

> ldcontr <- LD(data.frame(snp4, snp5, snp6)[aff == 0, ])
> ldcontr$"R"2"

snp4 snpb snp6
snp4 NA 0.7512458 0.5616395
snps NA NA 0.8075894
snp6  NA NA NA

and even present it results for cases and controls on the same graph (you do not
need to produce this graph, which is presented at the figure [3.2):

> image(ldcases$"R"2", breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1),

+ col = heat.colors(5))

> image(t(ldcontr$"R"2"), breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1),
+ col = heat.colors(5), add = T)

3.3 Genetic association analysis

3.4 Example association analysis

Now, after we have described genetic and phenotypic data separately, we are
ready to test association between these two. In previous sections, we showed
that association between a binary trait and genotype may be analysed using
contingency tables (functions table, prop.table, fisher.test, etc.). The
association between a quantitative trait and genotype may be done using cor-
relations, T-test, etc.

However, a more flexible analysis is possible when using regression modelling.
First, we will investigate relation between the quantitative trait gt and the SNPs
by using linear regression

> mg <- 1m(qt ~ snp4)

The 1m command fits linear regression model to the data and returns an analysis
object. The summary of analysis may be generated with

> summary (mg)

Call:
Im(formula = gt ~ snp4)

Residuals:
Min 1Q Median 3Q Max
-2.63700 -0.62291 -0.01225 0.58922 3.05561
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Figure 3.2: 72 plot for snp4, snp5 and snp6. Above diagonal: LD in cases;
below: controls

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.081114  0.092517 -0.877 0.382
snp4A/B -0.108366  0.132079 -0.820 0.413
snp4B/B -0.006041 0.201820 -0.030 0.976

Residual standard error: 0.9659 on 240 degrees of freedom

(7 observations deleted due to missingness)
Multiple R-squared: 0.003049, Adjusted R-squared: -0.005259
F-statistic: 0.367 on 2 and 240 DF, p-value: 0.6932

From the summary output, it is clear that the model assumes arbitrary (esti-
mated) effects of the genotypes AA, AB and BB. Neither effect of AB nor BB
is significant in this case. The global test on two degrees of freedom (bottom of
the output) is also not significant.

If you want to include some covariate into your model, e.g. sex, you can
easily do that by adding the term to the formula:

> summary (Im(qt ~ sex + snp4))

Call:
Im(formula = qt ~ sex + snp4)
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Residuals:
Min 1Q Median 3Q Max
-2.664422 -0.624169 -0.008752 0.597045 3.080857

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.110298 0.115260 -0.957 0.340

sex 0.053018 0.124493 0.426 0.671
snp4A/B -0.104429 0.132628 -0.787 0.432
snp4B/B -0.002452 0.202340 -0.012 0.990

Residual standard error: 0.9676 on 239 degrees of freedom

(7 observations deleted due to missingness)
Multiple R-squared: 0.003805, Adjusted R-squared: -0.0087
F-statistic: 0.3043 on 3 and 239 DF, p-value: 0.8223

You can also allow for interaction by using the ”*” operator
> summary(1lm(qt ~ sex * snp4))
Call:
Im(formula = qt ~ sex * snp4)
Residuals:
Min 1Q Median 3Q Max

-2.570485 -0.645961 -0.002641 0.610938 3.019696

Coefficients:
Estimate Std. Error t value Pr(>lt|)

(Intercept) -0.20579 0.13834 -1.487 0.138
sex 0.22649 0.18647 1.215 0.226
snp4A/B 0.05222 0.19024 0.274 0.784
snp4B/B 0.18071 0.28576 0.632 0.528
sex:snp4A/B -0.30191 0.26566 -1.136 0.257
sex:snp4B/B -0.35508 0.40531 -0.876 0.382

Residual standard error: 0.9684 on 237 degrees of freedom

(7 observations deleted due to missingness)
Multiple R-squared: 0.01041, Adjusted R-squared: -0.01047
F-statistic: 0.4984 on 5 and 237 DF, p-value: 0.7773

Note that both main effects of sex and snp4, and also effects of interaction are
estimated in this model.

Of interest in genetic studies may be three other models: additive, dominant
and recessive.

The additive model assumes that the difference between mean trait’s values
between "AA’ and 'BB’ is twice the difference between ’AA’ and 'BB’, that is
the mean value of the trait for heterozygous genotypes is right in between the
two homozygotes. To test additive model, we first need to recode the predictor
(genotype) as a numeric factor to be used as covariate. This can be easy done
with function as.numeric:
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> add4 <- as.numeric(snp4) - 1
We can check if recoding was done correctly by producing the table

> table(snp4, add4)

add4
snp4 0 1 2
A/A 109 0 O
A/B 0105 O
B/B 0 0 29

Now to test the additive model run

> summary(1m(qt ~ add4))

Call:
Im(formula = qt ~ add4)

Residuals:
Min 1Q Median 3Q Max
-2.54813 -0.62104 -0.02754 0.60584 3.00652

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.10476 0.08710 -1.203 0.230
add4 -0.03563 0.09133 -0.390 0.697

Residual standard error: 0.9651 on 241 degrees of freedom

(7 observations deleted due to missingness)
Multiple R-squared: 0.0006313, Adjusted R-squared: -0.003516
F-statistic: 0.1522 on 1 and 241 DF, p-value: 0.6968

The model assuming dominant action of the ’A’ allele means that the means
of genotypes ’AA’ and 'AB’ are the same. This is equivalent to the model of
recessive action of ‘B’ allele. To code SNP4 according to this model, we can use
function replace:

> dom4 <- add4
> dom4[dom4 == 2] <- 1
> table(snp4, dom4)

domé4
snp4 0 1
A/A 109 O
A/B 0 105
B/B 0 29

To test association with a binary outcome, we will use function glm with
binomial family:

> summary(glm(aff ~ snp4, family = "binomial"))
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Call:
glm(formula = aff ~ snp4, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max
-0.7433 -0.7204 -0.6715 -0.6715 1.7890

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.3749 0.2386 -5.761 8.35e-09 **x*
snp4A/B 0.1585 0.3331 0.476 0.634

snp4B/B 0.2297 0.4952 0.464 0.643

Signif. codes: 0 aA¥***3AZ 0.001 aA¥**3AZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 aAY &aAZ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.91 on 242 degrees of freedom
Residual deviance: 254.58 on 240 degrees of freedom
(7 observations deleted due to missingness)
AIC: 260.58

Number of Fisher Scoring iterations: 4
To make a test of global significance of the SNP effect, you can use
> anova(glm(aff ~ snp4, family = "binomial"), test = "Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 242 254 .91
snp4 2 0.32894 240 254 .58 0.8483

In the manner similar to that described for quantitative traits, additive and
dominance/recessive models can be tested by proper coding of the genotypic
variable, e.g. to test the additive model, use

> summary(glm(aff ~ as.numeric(snp4), family = "binomial"))

Call:
glm(formula = aff ~ as.numeric(snp4), family

"binomial")

Deviance Residuals:
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Min 1Q  Median 3Q Max
-0.7548 -0.7139 -0.6747 -0.6747 1.7842

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.4913 0.4164 -3.581 0.000342 *x**
as.numeric (snp4) 0.1272 0.2268 0.561 0.574994

Signif. codes: 0 aA¥***aAZ 0.001 aA¥**aAZ 0.01 aAY*3AZ 0.05 &AY.aAZ 0.1 aAV¥ &z
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.91 on 242 degrees of freedom
Residual deviance: 254.60 on 241 degrees of freedom
(7 observations deleted due to missingness)
AIC: 258.60

Number of Fisher Scoring iterations: 4

Now you have learned all commands necessary to answer the questions of
the next section.

Exit R by typing q() command (do not save image) and and proceed to the
self exercise.

3.5 Exercise: Exploring genetic data using li-
brary genetics

Start R by double-click over the file ge03d1p2.RData (Windows) or by changing
to the directory containing the data, starting R and loading the data set with
load("ge03d1p2.RData") (Linux). Explore the data frame present and answer
the questions.

Ex. 1 — How many SNPs are described in this data frame?

Ex. 2 — What is the frequency (proportion) of snpl allele ’A’?
Ex. 3 — What is its frequency of ’A’ in affected (aff==1)?

Ex. 4 — How many cases and controls are present in the data set?

Ex. 5 — If all subjects are used to test HWE, are there any SNPs out of HWE
at nominal P < 0.057 Which ones?

Ex. 6 — If only controls are used to test the SNPs which are out of HWE in
total sample, are these still out of HWE?

Ex. 7 — Which SNP pairs are in strong LD (r2 > 0.8)?

Ex. 8 — For SNPs in strong LD, what is r? for separate samples of cases and
controls?
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Ex. 9 — Is there significant association between affection status and sex?
What is P-value for association?

Ex. 10 — Is association between the disease and gt significant?

Ex. 11 — Which SNPs are significantly associated with affection status at
nominal p-value < 0.057 Use general genotypic (2 d.f.) model.

Ex. 12 — Test association between aff and snp5 and snpl0, allowing for the
SNPs interaction effect. Use arbitrary (not an additive) model. Do you observe
significant interaction? How can you describe the model of concert action of
snpb and snpl0?

Ex. 13 — Test for association between the quantitative trait qt and SNPs
1-10 using additive model. Which SNPs are associated at nominal P < 0.057

Ex. 14 — OPTIONAL, difficulty is medium, but may be time-consuming.

If you adjust the analysis under additive model for sex, how do the findings
change? Before doing the exercise, please check the answer to previous exer-
cise — it shows a quick way to do testing for all 10 SNPs.

Ex. 15 — Which SNPs are associated with the quantitative trait qt at nom-
inal P < 0.05 when general genotypic (2 d.f. test) model is used?

Ex. 16 — ADVANCED: How can you describe the model of action of the
significant SNPs? Test if the data are compatible with additive/dominant /recessive
model.

3.6 Answers to exercises

Answer (Ex. 1) — The answer is 10 snps:

> attach(popdat)
> names (popdat)

[1] |Isubj n "SeX" Ilaffll Ilqtll Ilsnplll Ilsnp2l| Ilsnp3l| Ilsnp4ll
[10] n snp6 n n snp7 n n snp8 n n snpg n n snplo n

Answer (Ex. 2) — The frequency of A’ in all subjects is 0.73:
> summary (snpl)
Number of samples typed: 2374 (95%)

Allele Frequency: (2 alleles)
Count Proportion

A 3462 0.73

B 1286 0.27

NA 252 NA

Ilsnp5ll
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Genotype Frequency:
Count Proportion

B/B 199 0.08
A/B 888 0.37
A/A 1287 0.54
NA 126 NA
Heterozygosity (Hu) = 0.3950646
Poly. Inf. Content = 0.3169762

Answer (Ex. 3) — The frequency of A in affected subjects is 0.7:
> summary (snpl[aff == 1])
Number of samples typed: 519 (94.5%)

Allele Frequency: (2 alleles)
Count Proportion

A 729 0.7
B 309 0.3
NA 60 NA

Genotype Frequency:
Count Proportion

B/B 48 0.09
A/B 213 0.41
A/A 258 0.50
NA 30 NA
Heterozygosity (Hu) = 0.4185428
Poly. Inf. Content = 0.3307192

Answer (Ex. 4) — There are 549 cases and 1951 controls:
> table(aff)

aff
0 1
1951 549

Answer (Ex. 5) — Only SNP 1 is out of HWE in the total sample. Here is a
sciript testing all SNPs (no need to reproduce that, just check the results):

> for (i in 1:10) {

+ snpname <- paste("snp", i, sep = "")

+ cat ("HWE P-value for SNP", snpname, "is", HWE.exact(get (snpname))$p.value,
+ "\n")

+ }
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HWE P-value for SNP snpl is 0.01083499
HWE P-value for SNP snp2 is 1

HWE P-value for SNP snp3 is 0.4197772
HWE P-value for SNP snp4 is 0.8960298
HWE P-value for SNP snp5 is 0.2960967
HWE P-value for SNP snp6 is 0.5207056
HWE P-value for SNP snp7 is 0.6284575
HWE P-value for SNP snp8 is 0.1309458
HWE P-value for SNP snp9 is 0.4457363

HWE P-value for SNP snpl0 is 0.7897327

Answer (Ex. 6) — Yes, SNP one is out of HWE also in controls:
> HWE.exact (snpl[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium
data: snpllaff == 0]

N11 = 1029, N12 = 675, N22 = 151, N1 = 2733, N2 = 977, p-value =
0.008393

Answer (Ex. 7) — SNP pairs 4-5 and 5-6 have r% > 0.8:
> LD(popdat[, 5:14])$"R"2"
snpl snp2 snp3 snp4 snpb5 snp6 snp7 snp8 snp9 snpll

snpl NA 0.016 0.235 0.206 0.258 0.227 0.152 0.117 0.090 0.000
snp2 NA NA 0.004 0.004 0.005 0.004 0.000 0.000 0.000 0.000
snp3 NA NA NA 0.602 0.457 0.346 0.641 0.031 0.042 0.001
snp4 NA NA NA NA 0.803 0.650 0.729 0.027 0.037 0.002
snpb NA NA NA NA NA 0.874 0.586 0.034 0.046 0.002
snp6 NA NA NA NA NA NA 0.670 0.030 0.040 0.002
snp7 NA NA NA NA NA NA NA 0.020 0.027 0.003
snp8 NA NA NA NA NA NA NA NA 0.002 0.000
snp9 NA NA NA NA NA NA NA NA NA 0.001

snpl0 NA NA NA NA NA NA NA NA NA NA

Answer (Ex. 8) — For controls,

> LD(data.frame(snp4, snp5, snp6)[aff == 0, ]J)$"R"2"

snp4 snpb5 snp6
snp4 NA 0.806591 0.6419715
snpb NA NA 0.8661005
snp6 NA NA NA
For cases,

> LD(data.frame(snp4, snp5, snp6)[aff == 1, J)$"R"2"

snp4 snpb snp6
snp4 NA 0.7951475 0.6773275

o7
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snpb5 NA NA 0.9083237

snp6 NA NA NA

Note that the fact that LD is higher in cases may mean nothing because the
estimates of LD are biased upwards with smaller sample sizes. For example in a
small sample (5 people) of controls we expect even higher LD because of strong
upward bias:

> LD(popdat [which(aff == 0)[1:5], 8:10])$"R"2"

snp4 snpb5 snp6
snp4 NA 0.9995876 0.9995876
snpb NA NA 0.9995876
snp6  NA NA NA

More elaborate methods, such as that by |[ZAYKIN et al.| (2006)), are required to
contrast LD between sample of unequal size.

Answer (Ex. 9) — There is no significant association:

> t <- table(aff, sex)
>t

sex
aff O 1
0 973 978
1 260 289

> fisher.test(t)

Fisher's Exact Test for Count Data

data: t
p-value = 0.3104
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9107753 1.3430565
sample estimates:
odds ratio
1.105811

binomial()))

> summary(glm(aff ~ sex, family

Call:
glm(formula = aff ~ sex, family

binomial())

Deviance Residuals:
Min 1Q Median 3Q Max
-0.7196 -0.7196 -0.6882 -0.6882 1.7644

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.31970 0.06981 -18.90 <2e-16 *x*x
sex 0.10062 0.09673 1.04 0.298

Signif. codes: 0 &AY*xxaAZ 0.001 aAY**3AZ 0.01 aAY*aAZ 0.05 aAY

=(
<
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2632.0 on 2499 degrees of freedom
Residual deviance: 2630.9 on 2498 degrees of freedom
AIC: 2634.9

Number of Fisher Scoring iterations: 4

Answer (Ex. 10) — There is no significant association:
> summary(glm(aff ~ qt, family = binomial()))

Call:
glm(formula = aff ~ qt, family = binomial())

Deviance Residuals:
Min 1Q Median 3Q Max
-0.7326 -0.7079 -0.7012 -0.6905 1.7675

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.26769 0.04832 -26.238 <2e-16 ***
qt -0.02514 0.04862 -0.517 0.605

Signif. codes: 0 &A¥**xaAZ 0.001 aAY**ahZ 0.01 aAY*aAZ 0.05 aAV.aAZ 0.1 &AV &AZ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2632.0 on 2499 degrees of freedom
Residual deviance: 2631.7 on 2498 degrees of freedom
AIC: 2635.7

Number of Fisher Scoring iterations: 4

Answer (Ex. 11) — SNPs 5 and 10 are significantly associated:
> for (i in 1:10) {

+ snpname <- paste("snp", i, sep = "")

+ cat ("\nTesting association between aff and SNP", snpname,

+ I!:\nll)

+ print (anova(glm(aff ~ get(snpname), family = binomial), test = "Chisq"))
+}

Testing association between aff and SNP snpl :
Analysis of Deviance Table

Model: binomial, link: logit

Response: aff
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Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2373 2493.4
get (snpname) 2 5.4094 2371 2488.0 0.06689 .

Signif. codes: 0 aA¥***3AZ 0.001 aA¥**aAZ 0.01 sAY*ahZ 0.05 aA¥.sAZ 0.1 sAY akZ 1

Testing association between aff and SNP snp2 :
Analysis of Deviance Table

Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2373 2485.8

get(snpname) 1 0.29367 2372 2485.5 0.5879

Testing association between aff and SNP snp3 :
Analysis of Deviance Table

Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2377 2503.0

get(snpname) 2  2.6087 2375 2500.4 0.2714

Testing association between aff and SNP snp4 :
Analysis of Deviance Table

Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2389 2519.1
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get(snpname) 2  5.2755 2387 2513.8 0.07152 .

Signif. codes: 0 &AY*x*aAZ 0.001 aAY**3aAZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 &AY &AZ 1

Testing association between aff and SNP snpb :
Analysis of Deviance Table

Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chil)

NULL 2382 2440.4
get(snpname) 2  9.2395 2380 2431.2 0.009855 *x*

Signif. codes: 0 &AY*x*aAZ 0.001 aAY**3AZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 &AY &AZ 1

Testing association between aff and SNP snp6 :
Analysis of Deviance Table

Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2379 2498.9

get (snpname) 2 1.7969 2377 2497.1 0.4072

Testing association between aff and SNP snp7 :
Analysis of Deviance Table

Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2367 2487.9

get (snpname) 2  1.3604 2365 2486.6 0.5065

Testing association between aff and SNP snp8 :
Analysis of Deviance Table
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Model: binomial, link: logit
Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2370 2489.4
get (snpname) 2 5.5375 2368 2483.9 0.06274 .

Signif. codes: 0 &AY*xxaAZ 0.001 aAY**3AZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 aAY &AZ 1

Testing association between aff and SNP snp9 :
Analysis of Deviance Table

Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2360 2476.8

get (snpname) 2 1.1891 2358 2475.6 0.5518

Testing association between aff and SNP snplO :
Analysis of Deviance Table

Model: binomial, link: logit
Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chil)
NULL 2383 2475.1
get(snpname) 2 6.7328 2381 2468.4  0.03451 *

Signif. codes: O &A¥***3AZ 0.001 aA¥**xahZ 0.01 aAV+aAZ 0.05 &AY.aAZ 0.1 ahY &iZ 1

Answer (Ex. 12) — It appears that SNP10 genotype is only relevant in these
who are homozygous for the low-risk A allele at the SNP5; in such cases SNP 10
allele B is risk increasing. In these homozygous for SNP 5 A, we observe highly
significant increase in risk for heterozygotes for SNP10 and increased (though
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not significantly) risk for SNP 10 BB:

> summary(glm(aff ~ snp5 * snpl0, family = binomial()))

Call:
glm(formula = aff ~ snp5 * snpl0, family = binomial())

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9906 -0.7340 -0.6323 -0.5215 2.0310

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.50840 .08905 -16.938 < 2e-16 *x*x
snp5A/A -0.41802 .19722 -2.120 0.0340 =*
snp5B/B 0.33441 .13360 2.503 0.0123 =*
snp10A/B -0.01403 .18251 -0.077 0.9387
snp10B/B -0.14983 .65277 -0.271  0.7863

snp5A/A:snpl10A/B  1.48369
snp5B/B:snpl10A/B  0.12989
snp5A/A:snpl0B/B 0.82348
snp5B/B:snpl0B/B -0.28562

Signif. codes: O aA¥***3AZ 0.001 aA¥**ahZ 0.01 aAV+&AZ 0.05 &aAY.aAZ 0.1 aAY &AZ 1

.32750 4.530 5.89e-06 *xx
.27441 0.473 0.6360
.98963 0.832 0.4053
.23104 -0.232 0.8165

= O O OO OO OO

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2282.4 on 2268 degrees of freedom
Residual deviance: 2242.9 on 2260 degrees of freedom
(231 observations deleted due to missingness)
AIC: 2260.9

Number of Fisher Scoring iterations: 4

Answer (Ex. 13) — SNPs 1, 4, 5, 6 and 9 are significantly associated at
nominal P < 0.05. Here is a testing script (no need to reproduce that, just
check the results):

> for (i in 1:10) {

+ snpname <- paste("snp", i, sep = "")

+ cat ("\nTesting association between qt and SNP", snpname,
+ H:\nll)

+ testmodel <- Im(qt ~ as.numeric(get (snpname)))

+ print (summary (testmodel) $coef)

+ }

Testing association between qt and SNP snpil

Estimate Std. Error t value Pr(>ltl)
(Intercept) -0.11874800 0.05260279 -2.257447 0.024070746
as.numeric(get (snpname)) 0.08859657 0.03147693 2.814651 0.004923315
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Testing association between

(Intercept) 0
as.numeric(get (snpname)) -0

Testing association between

(Intercept) 0
as.numeric(get (snpname)) -0

Testing association between

(Intercept)
as.numeric(get (snpname)) -0

Testing association between

(Intercept)
as.numeric(get(snpname)) O
Testing association between

(Intercept)
as.numeric(get(snpname)) O
Testing association between

(Intercept) 0
as.numeric(get (snpname)) -0

Testing association between

-0
0

(Intercept)
as.numeric(get (snpname))

Testing association between

Estimate Std. Error
-0.
0.

(Intercept)
as.numeric(get (snpname))

Testing association between

(Intercept)
as.numeric(get (snpname))

.06382773 0.05629376
.02517149 0.02894125 -0.8697443

0.
.07284539 0.02982557 -2.442380

-0.
.07404874 0.02941437 2.517434

-0.
.06724115 0.02924840 2.298969

.08884244 0.05475991
.03774136 0.03152701 -1.197112

-0.
0.

qt and SNP snp2 :

Estimate Std. Error t value

.09149145 0.1841115 0.4969352
.07749967 0.1806078 -0.4291047

qt and SNP snp3 :
Estimate Std. Error t value

1.1338331

qt and SNP snp4 :
Estimate Std. Error t value
14005988 0.05612775 2.495377

qt and SNP snp5 :
Estimate Std. Error t value
14350846 0.06620992 -2.167477

gt and SNP snp6 :
Estimate Std. Error t value
12737489 0.06768096 -1.881990

gt and SNP snp7 :
Estimate Std. Error t value

1.622399

gt and SNP snp8 :

Estimate Std. Error t value

.05214665 0.08116533 -0.6424744
.06942327 0.07222881

0.9611576

qt and SNP snp9 :

t value
2201742 0.07115711 -3.094199 0O
2110978 0.06112112 3.453761 O

qt and SNP snpil0 :

Estimate Std. Error t value
01474695 0.05749473 -0.2564921
03140888 0.04251458 0.7387789

Pr(>ltl)
0.6192808
0.6678860

Pr(>ltl)
0.2569789
0.3845280

Pr(>ltl)
.01264938
.01466282

Pr(>ltl)
.03029734
.01188645

Pr(>ltl)
0.05995937
0.02159304

Pr(>1tl)
0.1048511
0.2313829

Pr(>1tl)
0.5206274
0.3365710

Pr(>ltl)
.0019965937
.0005625794

Pr(>Itl)
0.7975930
0.4601141

Answer (Ex. 14) — Generally, results do not change much: still, SNPs 1, 4,
5, 6 and 9 are significantly associated, and p-values are close to these observed

without adjustment For SNPs
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> for (i in 1:10) {

+ snpname <- paste("snp", i, sep = "")

+ cat ("\nTesting sex-adjusted association between qt and SNP",
+ snpname, ":\n")

+ testmodel <- 1lm(qt ~ sex + as.numeric(get (snpname)))

+ print (summary (testmodel) $coef)

+}

Testing sex-adjusted association between qt and

Estimate Std. Error
-0.12783200 0.05660623
0.01766209 0.04061074
0.08868826 0.03148302

(Intercept)
sex
as.numeric(get (snpname))

Testing sex-adjusted association between qt and

Estimate Std. Error
(Intercept) 0.08169692 0.18525892
sex 0.01977118 0.04101612
as.numeric(get(snpname)) -0.07770464 0.18063757

Testing sex-adjusted association between qt and

Estimate Std. Error
(Intercept) 0.05518829 0.06028776
sex 0.01626276 0.04057000
as.numeric(get (snpname)) -0.02491788 0.02895328

Testing sex-adjusted association between qt and

Estimate Std. Error
(Intercept) 0.12611774 0.06040009
sex 0.02553529 0.04083273
as.numeric(get (snpname)) -0.07227905 0.02984312

Testing sex-adjusted association between qt and

Estimate Std. Error
-0.15272175 0.06880690
0.02009534 0.04076087
0.07357452 0.02943476

(Intercept)
sex
as.numeric(get (snpname))

Testing sex-adjusted association between qt and

Estimate Std. Error
-0.14110680 0.07002874
0.03117861 0.04077551
0.06634602 0.02927437

(Intercept)
sex
as.numeric(get (snpname))

Testing sex-adjusted association between qt and

Estimate Std. Error
(Intercept) 0.06697438 0.05879604
sex 0.04174468 0.04087001
as.numeric(get (snpname)) -0.03723286 0.03153066

SNP snpl :

t value
-2.2582672
0.4349117
2.8170191

SNP snp2 :

t value
0.4409878
0.4820343
-0.4301688

SNP snp3 :

t value
0.9154146
0.4008568
-0.8606239

SNP snp4 :

t value
2.0880388
0.6253633
-2.4219671

SNP snpb :

t value
-2.2195704
0.4930057
2.4995791

SNP snp6 :

t value
-2.0149841
0.7646406
2.2663517

SNP snp7 :
t value

Pr(>ltl)
0.024019551
0.663666095
0.004887301

Pr(>1tl)
0.659262
0.629826
0.667112

Pr(>Itl)
0.3600669
0.6885616
0.3895321

PrC>ltl)
0.03690009
0.53179244
0.01551079

PrC>ltl)
0.02654187
0.62205408
0.01250094

PrC>ltl)
0.04401871
0.44456146
0.02351939

Pr(>[tl)

1.139097 0.2547782
1.021401 0.3071689
-1.180846 0.2377825
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Testing sex-adjusted association between qt and

Estimate Std. Error
-0.06807682 0.08455606
0.02760968 0.04102873
0.07124407 0.07228780

(Intercept)
sex
as.numeric(get (snpname) )

Testing sex-adjusted association between qt and

Estimate Std. Error
-0.225568672 0.07313030
0.01311497 0.04074702
0.21002414 0.06122367

(Intercept)
sex
as.numeric(get (snpname))

Testing sex-adjusted association between qt and

Estimate Std. Error
-0.02805887 0.06107457
0.02628396 0.04064009
0.03150834 0.04252005

(Intercept)
sex
as.numeric(get (snpname))

SNP snp8 :

t value
-0.8051087
0.6729354
0.9855614

SNP snp9 :

t value
-3.0847229
0.3218632
3.4304402

SNP snpl0 :

t value
-0.4594198
0.6467496
0.7410231

PrC>ltl)
0.4208378
0.5010541
0.3244491

Pr>ltl)
0.0020610506
0.7475848790
0.0006129721

Pr(>[tl)
0.6459747
0.5178563
0.4587525

Answer (Ex. 15) — SNPs 1, 4, 5 an 9 are significantly associated at nominal
P < 0.05. SNP 6 is only marginally significantly associated unde the general
genotypic model. Here is a testing script (no need to reproduce that, just check

the results):

> for (i in 1:10) {

+ snpname <- paste("snp", i, sep = "")
+
+ ":\n")

print(anova(lm(qt ~ get(snpname)), test

+
+ }

Testing association between qt and SNP snpl :
Analysis of Variance Table

Response: qt
Df
2
2371

Sum Sq Mean Sq F value Pr(>F)
7.8 3.8995 3.9845 0.01873
2320.4 0.9787

get (snpname)
Residuals

Signif. codes: O
Testing association between qt and SNP snp2 :
Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)
get (snpname) 1 0.18 0.18376 0.1841 0.6679
Residuals 2372 2367.23 0.99799

Testing association between qt and SNP snp3 :
Analysis of Variance Table

”Chisq”))

*

cat("\nTesting association between qt and SNP", snpname,

al¥**x3aAZ 0.001 aA¥**aAZ 0.01 aA¥*ahZ 0.05 aAY.aAZ 0.1 sAY 847 1
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Response: qt

Df Sum Sq Mean Sq F value Pr(>F)
get (snpname) 2 3.24 1.61986 1.658 0.1907
Residuals 2375 2320.41 0.97701

Testing association between qt and SNP snp4 :
Analysis of Variance Table

Response: qt
Df Sum Sq Mean Sq F value Pr(>F)

get (snpname) 2 7.68 3.8417 3.8628 0.02114 *

Residuals 2387 2373.94 0.9945

Signif. codes: 0 aA¥***3AZ 0.001 aA¥**aAZ 0.01 aAV*akZ 0.05 &AY.sAZ 0.1 aAY

Testing association between qt and SNP snpb :
Analysis of Variance Table

Response: qt
Df Sum Sq Mean Sq F value Pr(>F)

get (snpname) 2 6.48 3.2418 3.2798 0.03781 *

Residuals 2380 2352.48 0.9884

Signif. codes: O aA¥***3AZ 0.001 aA¥**aAZ 0.01 sAY*akZ 0.05 aA¥.sAZ 0.1 sAY

Testing association between qt and SNP snp6 :
Analysis of Variance Table

Response: qt
Df Sum Sq Mean Sq F value Pr(>F)

get (snpname) 2 5.49 2.74680 2.7808 0.06219 .

Residuals 2377 2347.91 0.98776

a
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Signif. codes: 0 &AY*x*aAZ 0.001 aAY**3AZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 &AY &AZ 1

Testing association between qt and SNP snp7 :
Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)
get (snpname) 2 4.02 2.01212 2.0368 0.1307
Residuals 2365 2336.31 0.98787

Testing association between qt and SNP snp8 :
Analysis of Variance Table

Response: qt
Df Sum Sq Mean Sq F value Pr(>F)
get (snpname) 2 1.38 0.68987 0.6924 0.5005
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Residuals 2368 2359.23 0.99630

Testing association between qt and SNP snp9 :
Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)
get (snpname) 2 15.6 7.8014 7.9982 0.0003453 **x
Residuals 2358 2300.0 0.9754

Signif. codes: 0 aA¥*xxaAZ 0.001 AY**3AZ 0.01 aAY*3AZ 0.05 aAY.aAZ 0.1 aAY akZ 1

Testing association between qt and SNP snpl0O :
Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)
get (snpname) 2 1.19 0.59456 0.6041 0.5467
Residuals 2381 2343.47 0.98424

Answer (Ex. 16) — For ’snpl’, though the data are compatible with either
additive, dominant or recessive model, the additive model provides best fit to
the data (largest p-value), while the recessive 'B’ model provide the wors fit
(almost significantly worse than the general model):

> table(snpl, as.numeric(snpl))

snpl 1 2 3
A/A 1287 0 0
A/B 0O 888 0
B/B 0 0 199

> table(snpl, (as.numeric(smpl) >= 2))

snpl FALSE TRUE
A/A 1287 0
A/B 0 888
B/B 0 199

> table(snpl, (as.numeric(smpl) >= 3))

snpl FALSE TRUE
A/A 1287 0
A/B 888 0
B/B 0 199

> model_gen <- 1lm(qt ~ snpl)
> summary (model_gen)

Call:
Im(formula = qt ~ snpl)

Residuals:
Min 1Q Median 3Q Max
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-3.52609 -0.66427 -0.01110 0.67648 3.54622

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -0.02846 0.02758 -1.032 0.3022
snplA/B 0.08200 0.04316 1.900 0.0575 .
snp1B/B 0.18644 0.07536 2.474 0.0134 =*

Signif. codes: 0 aA¥***3AZ 0.001 aA¥**3AZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 aAY &AZ 1

Residual standard error: 0.9893 on 2371 degrees of freedom

(126 observations deleted due to missingness)
Multiple R-squared: 0.00335, Adjusted R-squared: 0.002509
F-statistic: 3.985 on 2 and 2371 DF, p-value: 0.01873

> model_add <- 1lm(qt ~ as.numeric(snpl))

> model_dom <- 1lm(qt ~ I(as.numeric(snpl) >= 2))
> model_rec <- 1lm(qt ~ I(as.numeric(snpl) >= 3))
> anova(model_add, model_gen, test = "Chisq")

Analysis of Variance Table

Model 1: qt ~ as.numeric(snpl)
Model 2: qt ~ snpl
Res.Df RSS Df Sum of Sq P(>|Chil)
1 2372 2320.5
2 2371 2320.4 1 0.04886 0.8232

> anova(model_dom, model_gen, test = "Chisq")

Analysis of Variance Table

Model 1: gt ~ I(as.numeric(snpl) >= 2)
Model 2: qt ~ snpl

Res.Df RSS Df Sum of Sq P(>|Chil)
1 2372 2322.2
2 2371 2320.4 1 1.7733 0.1783

> anova(model_rec, model_gen, test = "Chisq")

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(snpl) >= 3)
Model 2: qt ~ snpl
Res.Df RSS Df Sum of Sq P(>|Chil)
1 2372 2324.0
2 2371 2320.4 1 3.5332 0.05743 .

Signif. codes: 0 &AY*x*aAZ 0.001 aAY**3AZ 0.01 aA¥*aAZ 0.05 aAY.aAZ 0.1 &AY &AZ 1
For SNPs 4, 5, 6, and 9 results are:

> for (i in c(4, 5, 6, 9)) {
+ snpname <- paste("snp", i, sep = "")
+ cat ("\nTesting SNP", snpname, ":\n")
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+ cursnp <- get(snpname)
+ model_gen <- 1m(qt ~ cursnp)
+ print (summary (model_gen))
+ model_add <- lm(qt ~ as.numeric(cursnp))
+ model_dom <- 1m(qt ~ I(as.numeric(cursmp) >= 2))
+ model_rec <- 1m(qt ~ I(as.numeric(cursnp) >= 3))
+ print (anova(model_add, model_gen, test = "Chisq"))
+ print (anova(model_dom, model_gen, test = "Chisq"))
+ print (anova(model_rec, model_gen, test = "Chisq"))
+ }
Testing SNP snp4 :
Call:
lm(formula = gt ~ cursnp)
Residuals:
Min 1Q Median 3Q Max

-3.431051 -0.663629 -0.001288 0.673698 3.548911

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.02132 0.02972 0.717 0.4733
cursnpA/A 0.02953 0.04423 0.668 0.5044
cursnpB/B -0.14481 0.06192 -2.339 0.0194 %

Signif. codes: 0 aA¥*xxaAZ 0.001 sAY**3AZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 aAY akZ 1

Residual standard error: 0.9973 on 2387 degrees of freedom

(110 observations deleted due to missingness)
Multiple R-squared: 0.003226, Adjusted R-squared: 0.002391
F-statistic: 3.863 on 2 and 2387 DF, p-value: 0.02114

Analysis of Variance Table

Model 1: gt ~ as.numeric(cursnp)
Model 2: gt ™ cursnp

Res.Df RSS Df Sum of Sq P(>|Chil)
1 2388 2375.7
2 2387 2373.9 1 1.7489 0.1848
Analysis of Variance Table

Model 1: gt ~ I(as.numeric(cursnp) >= 2)
Model 2: gt ~ cursnp
Res.Df RSS Df Sum of Sq P(>[Chil)
1 2388 2379.4
2 2387 2373.9 1 5.4391 0.01936 *
Signif. codes: 0 aA¥*xxaAZ 0.001 sAY**3AZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 aAY akZ 1
Analysis of Variance Table
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Model 1: qt ~ I(as.numeric(cursnp) >= 3)
Model 2: gt ~ cursnp
Res.Df RSS Df Sum of Sq P(>|Chil)
1 2388 2374.4
2 2387 2373.9 1  0.44342 0.5043

Testing SNP snpb :

Call:
Im(formula = gt ~ cursnp)

Residuals:
Min 1Q Median 3Q Max
-3.471890 -0.658925 -0.008447 0.662232 3.528480

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 0.01401 0.02878 0.487 0.626
cursnpA/A  -0.09667 0.05611 -1.723 0.085 .
cursnpB/B 0.05727 0.04607 1.243 0.214

Signif. codes: 0 &AY*x*aAZ 0.001 aAY**3AZ 0.01 aAY*aAZ 0.05 sAY.aAZ 0.1 &AY &AZ 1

Residual standard error: 0.9942 on 2380 degrees of freedom

(117 observations deleted due to missingness)
Multiple R-squared: 0.002749, Adjusted R-squared: 0.00191
F-statistic: 3.28 on 2 and 2380 DF, p-value: 0.03781

Analysis of Variance Table

Model 1: qt ~ as.numeric(cursnp)
Model 2: gt ~ cursnp

Res.Df RSS Df Sum of Sq P(>|Chil)
1 2381 2352.7
2 2380 2352.5 1  0.22152 0.6359
Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 2)
Model 2: gt ~ cursnp

Res.Df RSS Df Sum of Sq P(>IChil)
1 2381 2354.0
2 2380 2352.5 1 1.5273 0.2138
Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 3)
Model 2: gt ~ cursnp
Res.Df RSS Df Sum of Sq P(>|Chil)
1 2381 2355.4
2 2380 2352.5 1 2.9335 0.08494 .
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Signif. codes: 0 &AY*xxaAZ 0.001 aAY**3AZ 0.01 aAY+aAZ 0.05 aAY.aAZ 0.1 aAY &AZ 1
Testing SNP snp6 :

Call:
Im(formula = gt ~ cursnp)

Residuals:
Min 1Q Median 3Q Max
-3.478379 -0.675302 -0.006371 0.670261 3.532419

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.07617 0.05085 -1.498 0.1343
cursnpB/A 0.09417 0.05886 1.600 0.1097
cursnpB/B 0.14351 0.06096 2.354 0.0186 =*

Signif. codes: 0 &AY*xx&AZ 0.001 aAY**3AZ 0.01 aAY*aAZ 0.05 aAY.aAZ 0.1 &AY &AZ 1

Residual standard error: 0.9939 on 2377 degrees of freedom

(120 observations deleted due to missingness)
Multiple R-squared: 0.002334, Adjusted R-squared: 0.001495
F-statistic: 2.781 on 2 and 2377 DF, p-value: 0.06219

Analysis of Variance Table

Model 1: gt ~ as.numeric(cursnp)
Model 2: gt ~ cursnp

Res.Df RSS Df Sum of Sq P(>IChil)
1 2378 2348.2
2 2377 2347.9 1 0.27462 0.598
Analysis of Variance Table

Model 1: gt ~ I(as.numeric(cursnp) >= 2)
Model 2: gt ~ cursnp

Res.Df RSS Df Sum of Sq P(>|Chil)
1 2378 2349.1
2 2377 2347.9 1 1.1967 0.271
Analysis of Variance Table

Model 1: gt ~ I(as.numeric(cursnp) >= 3)
Model 2: gt ™ cursnp
Res.Df RSS Df Sum of Sq P(>|Chil)
1 2378 2350.4
2 2377 2347.9 1 2.5284 0.1096

Testing SNP snp9 :

Call:
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Im(formula = qt ~ cursnp)
Residuals:
Min 1Q Median 3Q

-3.548249 -0.667322 0.007404 0.654557

Coefficients:

Estimate Std. Error t value
(Intercept) -0.006298 0.021562 -0.292
cursnpA/B 0.162230 0.065729 2.468
cursnpB/B 1.002439 0.313057 3.202

Max
3.606057

PrC>ltl)
0.77026
0.01365 *
0.00138 **

73

Signif. codes: 0 &AY*x*aAZ 0.001 aAY**3AZ 0.01 aA¥*aAZ 0.05 aAY.aAZ 0.1 &AY &AZ 1

Residual standard error: 0.9876 on 2358 degrees of freedom

(139 observations deleted due to missingness)

Multiple R-squared: 0.006738,

Analysis of Variance Table

Model 1: qt ~ as.numeric(cursnp)
Model 2: gt ~ cursnp
Res.Df RSS Df Sum of Sq P(>|Chil)
1 2359 2303.9
2 2358 2300.0 1 3.9528 0.04411 =*

Signif. codes: 0 &A¥*x*aAZ 0.001 aAV**aAZ 0.01 aA¥*aAZ 0.05 aAY.

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 2)
Model 2: gt ~ cursnp

Res.Df RSS Df Sum of Sq P(>|Chil)
1 2359 2306.8

2 23568 2300.0 1 6.7911 0.008324 =*x

Adjusted R-squared: 0.005896
F-statistic: 7.998 on 2 and 2358 DF, p-value: 0.0003453
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Signif. codes: O &A¥***3AZ 0.001 aA¥**ahZ 0.01 aAV+aAZ 0.05 &AY.aAZ 0.1 aAY &AZ 1

Analysis of Variance Table

Model 1: gt ~ I(as.numeric(cursnp) >= 3)
Model 2: gt ~ cursnp
Res.Df RSS Df Sum of Sq P(>|Chil)
1 2359 2305.9
2 23568 2300.0 1 5.942 0.01358 =*

Signif. codes: O aA¥***3AZ 0.001 aA¥**3AZ 0.01 aAY+&AZ 0.05 ah¥.aAZ 0.1

a

AY

a
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Chapter 4

Introduction to GenABEL

In this section, you will become familiar with the GenABEL library, designed for
GWA analysis. Compared to genetics package, it provides specific facilities
for storage and manipulation of large amounts of data, very fast tests for GWA
analysis, and special functions to analyse and graphically present the results of
GWA analysis (thus "analysis of analysis”).

Start R and load GenABEL library using command

> library(GenABEL)

After that, load example data set using the command

> data(srdta)

4.1 General description of gwaa.data-class

The object you have loaded, srdta, belongs to the gwaa.data class. This is a
special class developed to facilitate GWA analysis.

In GWA analysis, different types of data are used. These include the pheno-
typic and genotypic data on the study participants and chromosome and location
of every SNP. For every SNP, it is desirable to know the details of coding (what
are alleles? — A, T, G, C? — and what is the strand — 4’ or ’-’, top’ or ’bot’?
— this coding is for).

One could attempt to store all phenotypes and genotypes together in a single
table, using, e.g. one row per study subject; than the columns will correspond
to study phenotypes and SNPs. For a typical GWA data set, this would lead
to a table of few thousands rows and few hundreds of thousands to millions of
columns. Such a format is generated when one downloads HapMap data for a
region. To store GWA data in such tables internally, within R, proves to be
inefficient. In GenABEL, special data class, gwaa.data-class is used to store
GWA data.

You may consider an object of gwaa.data-class as a ’black box’ from which
you can get specific data using specific functions. If you are interested in internal
structure of the gwaa.data-class, you can find the description in section
(Internal structure of gwaa.data-class).

(6]
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The data frame, which contains all phenotypic data in the study may be
accessed using the phdata function. Let us have a look at few first rows of the
phenotypic data frame of srdta:

> phdata(srdta)[1:5, ]

id sex age qtl qt2 qt3 bt

1 pl 143.4 -0.58 4.46 1.43 O
2 p2 148.2 0.80 6.32 3.90 1
3 p3 0237.9-0.52 3.26 5.05 1
4 p4 1 563.8 -1.55 888.00 3.76 1
5 pb 147.5 0.26 5.70 2.89 1

The rows of this data frame correspond to study subjects, and the columns
correspond to the variables. There are two default variables, which are always
present in phdata. The first of these is ”id”, which contains study subject
identification code. This identification code can be arbitrary character, numer,
or alphanumeric combination, but every person must be coded with an unique
ID. The second default variable is ”sex”, where males are coded with ones (”1”)
and females are coded with zero (707).

It is important to understand that this data frame is not supposed to be
directly modified by the user, as its structure is coupled to the structure of geno-
typic data. If at some point you need to manipulate (add/delete) the phenotypes
included in phdata, you need to use such GenABEL functions as add.phdata and
del.phdata (see section [1.2)).

The other part of an object of gwaa.data-class is gtdata, which contains
all GWA genetic information in an object of class snp.data class. It is not
supposed to be modified directly by user. The genotypic data can be accessed
through gtdata function, e.g.

> gtdata(srdta[1:10, 1:10])

@nids = 10
Onsnps = 10
Onbytes = 3

Q@idnames = pl p2 p3 p4 p5 p6 p7 p8 p9 pll

Osnpnames = rsl10 rs18 rs29 rs65 rs73 rsll4 rsi128 rs130 rs143 rsi150
@chromosome =1 111111111

@coding = 08 Ob Oc 03 04 03 Oc 04 08 Of

@strand = 01 01 02 01 01 01 02 01 01 01

@map = 2500 3500 5750 13500 14250 24500 27000 27250 31000 33250
@male =1101100100

QGgtps =

40 40 40 80 40 40 40 40 cO cO

40 40 00 00 40 40 40 cO 40 40

40 40 00 80 40 40 40 40 cO cO

As you can see, these data are of little direct use as these are stored in an internal
format — you need to coerce that to other data type if you want to manipulate
/ analyse these data using non-GenABEL functions (see section ?7).

The number of individuals described in an object of gwaa.data-class can
be accessed through nids function, e.g.
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> nids(srdta)

[1] 2500

and the number of SNPs using the nsnps function:
> nsnps (srdta)

[1] 833

The IDs of individuals included in the study can be accessd via idnames
function, for example IDs of the first 7 individuals in the study are

> idnames (srdta) [1:7]
[1] Ilplll ||p2|l l|p3|| ||p4l| |lp5 n ||p6|l l|p7||
The sex of the individuals can be accessed using the male function:

> male(srdta) [1:7]

pl p2 p3 p4 pb5 p6 p7
1 1.0 1 1 0 0

where males (heterogametic sex) are assigned with '1’ and a homogametic sex
(females) are assigned value ’0’.

Names of SNPs can be accessed using snpnames function; for example the
names of the first 10 SNPs in the srdta are

> snpnames (srdta) [1:10]

[1] "rs10" ‘"rs18" "rs29" ‘"rs65" "rs73" ‘"rsil4" "rs128" "rs130" "rs143"
[10] "rs150"

SNP annotation include (presented for the first 10 SNPs only):
e Chromosome:
> chromosome (srdta) [1:10]
[ I A R U L L UL L R
e Map position
> map(srdta) [1:10]

rsl0 rsi18 1rs29 1rs65 1rs73 rsi11l4 rs128 rs130 rsi143 rsib0
2500 3500 5750 13500 14250 24500 27000 27250 31000 33250

e Coding (where the second allele is the “effect” or "coded” one):

> coding(srdta) [1:10]

rs1l0 rs18 1rs29 1rs65 1rs73 rsll4 rs128 rs130 rs143 rsib0
IITGII IIGAII IIGTII IIATII IIAGII IIATII IIGTII IIAGII IITGII IICAII



78 CHAPTER 4. INTRODUCTION TO GENABEL

For every SNP, coding is presented with a pair of characters, for example
"AG”. For ’AG’ polymorphism, you may expect "AA”, "AG” and "GG”
genotypes to be found in population. The order (that is "AG” vs "GA”)
is important — the first allele reported is the one which will be used as a
reference in association analysis, and thus the effects are reported for the
second allele.

e Strand on which the coding is reported (+’, -’ or missing, 'u’):

> strand(srdta) [1:10]

rs1l0 rsi18 1rs29 1rs65 1rs73 rsi114 rsi128 rsi130 rs143 rsib0
Il+ll ll+ll n_n ll+ll Il+ll ll+ll n_n ||+Il Il+|l |l+ll

Summary:
e GenABEL uses special data class, gwaa.data-class, to store GWA data.

e To access the content of an object of gwaa.data-class, a number of
functions is used

Exercise 1. Exploring IDs in srdta

Explore srdta.
1. How many people are included in the study?
2. How many of these are males?
3. How many are females?

4. What is male proportion?

Exercise 2. Exploring SNPs in srdta
Explore SNPs contained in srdta using functions to access SNP names (snpnames)
and map (map) location

1. What are names of markers located after 2,490,000 b.p.?

2. Between 1,100,000 and 1,105,000 b.p.?

4.2 Accessing and modifying phenotypic data

As it was already mentioned, the object returned by phdata contains phenotypic
data and is an conventional data frame, wich obligatory includes ’id’ and ’sex’
variables, and ordered an a way that it couples to the genotypic data.

Being a data frame, phdata may be accessed using corresponding methods:

> phdata(srdta) [1:5, ]
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id sex age qtl qt2 qt3 bt

1 pl 143.4 -0.58 4.46 1.43 O
2 p2 1 48.2 0.80 6.32 3.90 1
3p3 037.9-0.52 3.26 5.05 1
4 p4 153.8-1.55888.00 3.76 1
5 pb 147.5 0.25 5.70 2.89 1
> class(phdata(srdta))

[1] "data.frame"

> phdata(srdta)[1:5, 2]

[11 11011

> phdata(srdta)[1:5, "sex"]
[1] 11011

> phdata(srdta)$sex[1:5]
[1J] 11011

The modification of the phenotypic data is performed using special meth-
ods, because of specific restrictions on phenotypic data frames. There are two
main functions which allow you to add (add.phdata) and delete (del.phdata)
phenotypes from phdata part of an object of gwaa.data-class.

For example, if you want to add a variable (say, square of age) computed
from the ’age’ variable of srdta

> phdata(srdta)[1:5, ]

id sex age qtl qt2 qt3 bt

1pl 143.4-0.58 4.46 1.43 0

2p2 148.2 0.80 6.323.90 1

3 p3 037.9-0.52 3.26 5.05 1

4p4 153.8-1.552888.003.76 1

5p5 147.5 0.25 5.70 2.89 1

> age2 <- phdata(srdta)$age”2

you need to use add.phdata function:

> srdta <- add.phdata(srdta, newph = age2, name = "age_squared")

> phdata(srdta)[1:5, ]

id sex age qtil qt2 qt3 bt age_squared

pl pl 143.4 -0.58 4.46 1.43 0 1883.56
p2 p2 148.2 0.80 6.323.90 1 2323.24
p3 p3 0 37.9 -0.52 3.26 5.05 1 1436.41
p4 p4 1 53.8 -1.55 888.00 3.76 1 2894.44
p5 p5 1 47.5 0.25 5.70 2.89 1 2256.25
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for them; pay attention only to the result):

vV VvV + Vv Vv

[

newvalues <- matrix(rnorm(3 * 5), 3, 5)
newdata <- data.frame(id = c("pl", "p2", "p7"), phl = 1, ph2
ph3 = 1, ph4 = 1, ph5 = 1)
newdatal[, c(2:6)] <- newvalues
newdata
id phl ph2 ph3 ph4 phb
pl -0.58686438 0.4784757 -0.6422318 1.2474982 1.164496
2 p2 -0.03834289 1.3596869 1.4900841 -1.1858307 2.617750

A\
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You can add more then one variable at once using the same function, how-
ever, in this case the second ('newph’) argument of the function should be a data
frame, which contains ’id’ variable specifing the IDs of individuals. Imagine we
have the data for individuals 'p1’, 'p2’ and 'p7’ (we will generate random data

These data can be added to phenotypic data with

id sex age qtl
pl pl 143.4 -0.58
p2 p2 148.2 0.80
p3 p3 0 37.9 -0.52
p4 p4 153.8-1.55 88
p5 pb 147.5 0.25
p6 p6 045.0 0.15
p7 p7 052.0 -0.56
p8 p8 1 42.5 NA
p9 p9 0 29.7 -2.26
pl0 pl0 0 45.8 -1.32
ph3 ph4
pl -0.6422318 1.2474982
p2 1.4900841 -1.1858307
p3 NA NA
p4 NA NA
p5 NA NA
p6 NA NA
p7 -0.5762889 -0.4607695
P8 NA NA
P9 NA NA
pl0 NA NA

w o

8.

W O ok b,

qt2
.46 1.43
.32 3.90
.26 5.05
00 3.76
.70 2.89
.65 1.87
.64 2.49
.77 2.68
.71 1.45
.26 0.85
phb
1.164496
2.617750
NA
NA
NA
NA
-0.534045
NA
NA
NA

srdta <- add.phdata(srdta, newdata)
phdata(srdta) [1:10, ]

0

OO, OO = =

qt3 bt age_squared

1883.56
2323.24
1436.41
2894 .44
2256.25
2025.00
2704.00
1806.25
882.09
2097.64

p7 -0.28676961 1.0147377 -0.5762889 -0.4607695 -0.534045

phl
-0.58686438
-0.03834289
NA

NA

NA

NA
-0.28676961
NA

NA

NA

ph2
0.4784757
1.3596869
NA

NA

NA

NA
1.0147377
NA

NA

NA

Finally, if you need, you can delete some phenotypes from the phdata using
del.phdata function. Let us delete the phenotypes we have just added:

> srdta <- del.phdata(srdta, c("age_squared", "phl", "ph2", "ph3",
th4", th5ll))
> phdata(srdta)[1:10, ]

+
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id sex age qtl qt2

el
w
o’
ot

pl pl 1 43.4 -0.58 4.46 1.43 O
p2 p2 148.2 0.80 6.323.90 1
p3 p3 0 37.9 -0.52 3.26 5.05 1
pd p4 153.8-1.55 888.00 3.76 1
p5 p5 147.5 0.25 5.70 2.89 1
p6 p6 0 45.0 0.15 4.65 1.87 0
p7 p7 0 52.0 -0.56 4.64 2.49 O
p8 p8 142.5 NA 5.77 2.68 1
p9 p9 0 29.7 -2.26 0.71 1.45 0
pl0 p10 0 45.8 -1.32 3.26 0.85 O
Summary:

e Phenotypic data contained in an object of gwaa.data-class can be ac-
cessed using phdata functions

e You can add phenotypes using add.phdata function

e You can delete phenotypes using del.phdata function

4.3 Sub-setting and coercing gwaa.data

It is possible to sub-set the object, which stores the GWA data in the manner
similar to that used for conventional R matrices and data frames. Very primi-
tively, you may think of an object of class gwaa.data as a matrix whose rows
correspond to study subjects and columns correspond to SNPs studied (though
the actual object is a way more complicated). For example, if we would like to
investigate what is the content of srdta for the first 5 people and 3 SNPs, we
can run

> ssubs <- srdtal[1:5, 1:3]
> class(ssubs)

[1] "gwaa.data"
attr(, "package")
[1] "GenABEL"

As you can see, by sub-setting we obtained a smaller object of gwaa.data-
class. The two major parts it contains are phenotypic data, which can be
accessed through phdata (discussed in section [4.2)):

> phdata(ssubs)

id sex age qtl qt2 qt3 bt
pl pl 143.4 -0.58 4.46 1.43 O
p2 p2 148.2 0.80 6.323.90 1
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p3 p3 0 37.9 -0.52 3.26 5.05 1
p4 p4 1 53.8 -1.55 888.00 3.76 1
p5 p5 147.5 0.25 5.70 2.89 1

and genotypc data, whcih can be accessed via gtdata function:

> gtdata(ssubs)

Onids = 5

Onsnps = 3

Onbytes = 2

Q@idnames = pl p2 p3 p4 pb
O@snpnames = rs10 rsi18 rs29
Ochromosome = 1 1 1
Q@coding = 08 Ob Oc
@strand = 01 01 02

@map = 2500 3500 5750
Omale = 11011

Ogtps =

40 40 40

40 40 00

whose content is not quite straightforward to read.
To get human-readable information, genotypic object should be coerced to
a regular R data type, e.g. character, using as.character() function:

> as.character(gtdata(ssubs))

rs1l0 rs18 1rs29
pl IIT/TII IIG/GII IIG/GII
p2 IIT/TII IIG/GII NA
p3 IIT/TII IIG/GII NA
p4 "T/T" "G/G" NA
p5 IIT/TII I|G/Al| IIG/GII

Other useful coercion is to "numeric”:
> as.numeric(gtdata(ssubs))

rs10 rsi18 rs29
pl 0 0 0

p2 0 0 NA
p3 0 0 NA
p4 0 0 NA
p5 0 1 0

Note that conversion to numeric happened according to the underlying geno-
type and the rules specified by SNP coding:

> coding(ssubs)

rs10 rs18 rs29
IITGII IIGAII IIGTII
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— the genotype, which is made of the ’first’ allele of the ’code’ is converted to
0, the heterozygote to '1” and a himozygote for the second allele is converted to
2.

For example, when coding is "GA”, as is for the rs18 (the second SNP),
homozygotes for the first allele, as specified by coding ("G”) are converted to
zeros (707), heterozygotes are converted to ones (”1”), and homozygotes for the
second allele ("A”) are converted to twos ("2”). Clearly, when numerically con-
verted data are used for association analysis, the effects will be estimated for
the second allele, while first will be used as a reference.

Genotypic data converted to standard R format can be used in any further
analysis.

Several useful genetic analysis libraries were developed for R. These include
genetics (analysis of linkage disequilibrium and many other useful functions)
and haplo.stats (analysis of association between traits and haplotypes). These
use there own genetic data formats.

One can translate GenABEL genetic data to the format used by “genetics”
library by as.genotype():

> as.genotype(gtdata(ssubs))

rsl0 rsi18 rs29
pl T/T G/G G/G
p2 T/T G/G <NA>
p3 T/T G/G <NA>
p4 T/T G/G <NA>
ps T/T G/A G/G

To translate GenABEL data to the format used by “haplo.stats” you can use
function as.hsgeno()

> as.hsgeno(gtdata(ssubs))

rs10.al rs10.a2 rsi18.al rsl18.a2 rs29.al rs29.a2

pl 1 1 1 1 1 1
p2 1 1 1 1 NA NA
p3 1 1 1 1 NA NA
p2 1 1 1 1 NA NA
p5 1 1 1 2 1 1

Actually, most users will not need the latter function, as GenABEL provides a
functional interface to "haplo.stats” (such GenABEL functions as scan.haplo()
and scan.haplo.2D()).

It is possible to select sub-sets of gwaa.data-class based not only on index
(e.g. first 10 people and SNP number 33), but also based on names.

For example, if we would like to retrieve phenotypic data on people with IDs
’pl41”, "p147” and "p2000”, we can use

> phdata(srdtalc("p141", "p147", "p2000"), 1)

id sex age qtl qt2 qt3 bt
pl4l p141 0 47.2 0.51 5.23 2.17
pld47 pl47 0 43.2 0.14 4.47 1.73
p2000 p2000 0 43.1 -1.53 2.78 2.70

= O O
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here, the first part of expression sub-sets srdta on selected IDs, and the sec-
ond tells which part of the retrieved sub-set we want to see. You can try
srdtalc("p141","p147","p2000"),], but be prepared to see long output, as
all information will be reported.

In similar manner, we can also select on SNP name. For example, if we are
interested to see information on SNPs "rs10” and "rs29” for above people, we
can run

> phdata(srdtalc("p141", "p147", "p2000"), c("rs10", "rs29")])

id sex age qtl qt2 qt3 bt
pl4l pl41 0 4 .51 5.23 2.17 O
pl47r pl47 0 43. .14 4.47 1.73 O
p2000 p2000 0 4 -1.53 2.78 2.70 1

0
0

> gtdata(srdtalc("p141", "p147", "p2000"), c("rs10", "rs29")])

@Onids = 3

Onsnps = 2

Onbytes = 1

Q@idnames = p141 p147 p2000
Osnpnames = rs10 rs29
Ochromosome = 1 1

@coding = 08 Oc

@strand = 01 02

@map = 2500 5750

Omale = 0 0 O

Ogtps
40 40

To see the actual genotypes for the above three people and two SNPs, use

> as.character(srdtal[c("p141", "p147", "p2000"), c("rs10", "rs29")])

rs10 rs29
p141 IIT/TII IIG/GII
p147 "T/T" IIG/GII
p2000 "T/G" "G/T"

or

> as.numeric(srdtalc("p141", "p147", "p2000"), c("rs10", "rs29")])

rs10 rs29
plél 0 0
pl47 0 0

p2000 1 1

Exercise 3. Exploring rs114
Explore genotypes for SNP "rs114”

1. What is the coding and which allele is the reference one?



4.4. EXPLORING GENETIC DATA 85

2. What is the frequency of non-reference (“effective”) allele in total sam-
ple?

3. What is the frequency of effective allele in male?

4. What is the frequency of effective allele in female?

5. What is the frequency of the reference allele in total sample, males and
females?

Summary:

e It is possible to obtain subsets of objects of gwaa.data-class and
snp.data-class using standard 2D sub-setting model [i,j], where i
corresponds to study subjects and j corresponds to SNPs.

e It is possible to provide ID and SNP names instead of indexes when sub-
setting an object of class gwaa.data-class.

e Function as.numeric() converts genotypic data from snp.data-class to
regular integer numbers, which can be used in analysis with R.

e Function as.character() converts genotypic data from snp.data-class
to character format.

e Function as.genotype() converts genotypic data from snp.data-class
to the format used by library genetics.

e Function as.hsgeno() converts genotypic data from snp.data-class to
the format used by library haplo.stats.

4.4 Exploring genetic data

Implementation of function summary () to summarize genotypic part of gwaa.data-
class is very useful in genetic data exploration and quality control (QC). Let
us try application of this function to the ssubs:

> a <- summary (ssubs)

> a
$phdata
id sex age qtil
Length:5 Min. :0.0 Min. :37.90  Min. :-1.55
Class :character 1st Qu.:1.0 1st Qu.:43.40 1st Qu.:-0.58
Mode :character Median :1.0 Median :47.50 Median :-0.52
Mean :0.8 Mean :46.16 Mean :-0.32
3rd Qu.:1.0 3rd Qu.:48.20 3rd Qu.: 0.25
Max. :1.0 Max. :53.80 Max. : 0.80
qt2 qt3 bt

Min. : 3.26 Min. :1.430 Min. :0.0
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1st Qu.: 4.46 1st Qu.:2.890 1st Qu.:1.
Median : 5.70 Median :3.760 Median :1.
Mean :181.55 Mean :3.406 Mean :0.
3rd Qu.: 6.32 3rd Qu.:3.900 3rd Qu.:1.
Max. :888.00 Max. :5.050 Max. 0 1.
$gtdata
NoMeasured CallRate Q.2 P.11 P.12 P.22
rs10 5 1.0 0.0 5 0 0
rsi8 5 1.0 0.1 4 1 0
rs29 2 0.4 0.0 2 0 0
Chromosome
rs10 1
rsi8 1
rs29 1

O O 0w O o

Pexact
1

1

Fmax Plrt
0.0000000 1.0000000
1 -0.1111111 0.7386227
0.0000000 1.0000000

In the first section, the summary is generated for phenotypic data. In the
second section, summary is generated for genotypic data. In this section, NoMea-
sured refers to the number of genotypes scores, CallRate to the proportion of
these, Q.2 is the frequency of the 'B’ allele. The counts in three genotypic classes
are provided next. Pexact refers to exact P-value for the test of Hardy-Weinberg

equilibrium.

As you’ve seen above, an object of the class gwaa.data-class is sub-settable
in standard manner: [i,j], where i is an index of a study subject and j is an
index of a SNP. Importantly, i could be a list of indexes:

> vec <- which(phdata(srdta)$age >= 65)
> vec

[1] 64 122 186 206 207 286 385
[16] 632 649 673 701 779 799 981
[31] 1501 1565 1584 1673 1679 1782 1821
[46] 2268 2291 2384 2420 2453

> summary (gtdata(srdtalvec, 1:3]))

NoMeasured CallRate Q.2 P.11
rsl10 48 0.96 0.1354167 36
rsi8 a7 0.94 0.2765957 25
rs29 45 0.90 0.1555556 32
Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1

1
1

P.

386
008
832

12
11
18
12

492 514 525
1131 1186 1223
1866 1891 1953

P.22

11
40
11

.0

7
.0

Pexact
000000
245853
000000

536 545 565 613
1281 1383 1471 1489
2081 2085 2140 2224

Fmax
0.02131603
0.04298643

-0.01503759

This shows summary of first three genotypes for people with age greater then or
equal to 65 y.o. The same result may be achieved by sub-setting using a vector

of logical values:

> vec <- (phdata(srdta)$age >= 65)
> table(vec)



4.4. EXPLORING GENETIC DATA

vec
FALSE TRUE
2450 50

> summary (gtdata(srdtal[vec, 1:3]))

NoMeasured CallRate Q.2 P.11 P.12
rs10 48 0.96 0.1354167 36 11
rs18 47 0.94 0.2765957 25 18
rs29 45 0.90 0.1555556 32 12
Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1
or a list with IDs of study subjects:
> vecl <- idnames (srdta) [vec]
> vecl
[1] "p64" "pl22" "pl86" "p206" "p207"
[10] "p514" "pb25" "pb36" '"pb4b5" "pb565"
[19] "prO1"™ "p779" '"p799" "p981" "p1008"
[28] "p1383" "p1471" "p1489" "p1501" "p1565"
[37] "p1821" "p1832" "p1866" "p1891" "p1953"
[46] "p2268" "p2291" "p2384" "p2420" "p2453"
> summary (gtdata(srdtal[vecl, 1:3]))
NoMeasured CallRate Q.2 P.11 P.12
rs10 48 0.96 0.1354167 36 11
rs18 47 0.94 0.2765957 25 18
rs29 45 0.90 0.1555556 32 12
Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1

87

P.22 Pexact Fmax
1 1.0000000 0.02131603
4 0.7245853 0.04298643
1 1.0000000 -0.01503759

"p286" "p385" "p386" "p4g2"
"p613" "p632" "p649" "p673"
"p1131" "p1186" "p1223" "p1281"
"p1584" "p1673" "p1679" "p1782"
"p2081" "p2085" "p2140" "p2224"

P.22 Pexact Fmax
1 1.0000000 0.02131603
4 0.7245853 0.04298643
1 1.0000000 -0.01503759

Let us explore the object returned by summary function when applied to

snp.data class in more details:

> a <- summary(gtdata(srdtalvecl, 1:3]))

> class(a)

[1] "data.frame"

Thus, the object returned is a data.frame. Therefore it should have dimensions

and names:

> dim(a)

[1] 3 10
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> names (a)

[1] "NoMeasured" "CallRate" "Q.2" "P. 11" "p.12"
[6] "p.22" "Pexact" "Fmax" "Plrt" "Chromosome"

Indeed, we derived 8 characteristics ("NoMeasured”, "CallRate”, ”Q.2”, "P.11”,
"P.127, "P.22”, "Pexact”, "Chromosome”) for the first 3 SNPs.

Exercise 4. Testing HWE for 10 SNPs

Test if Hardy-Weinberg equilibrium holds for the first 10 SNPs
1. Total sample
2. In cases (bt is 1)
3. In controls (bt is 0)

Let us analyse the distribution of call rate in the whole study. For this, we
first need to obtain the vector of call rates:

> sumgt <- summary(gtdata(srdta))
> crate <- sumgt[, "CallRate"]

This vector may be presented by a histogram
> hist(crate)

which shows that most SNPs have call rate between 93 and 97% (figure [4.1)).

As next step, you would like to produce a summary table, showing how many
markers had call rate lower than, say, 93%, between 93 and 95%, between 95
and 99% and more than 99%. You can use catable() command for that:

> catable(crate, c(0.93, 0.95, 0.99))

X<=0.93 0.93<X<=0.95 0.95<X<=0.99 X>0.99
No 0 415.000 418.000 0
Prop 0 0.498 0.502 0

Similar procedure may be applied to see deviation from HWE:

> hwp <- sumgt[, "Pexact"]
> catable(hwp, c(0.05/nsnps(srdta), 0.01, 0.05, 0.1))

X<=6.00240096038415e-05 6.00240096038415e-05<X<=0.01 0.01<X<=0.05

No 2.000 7.000 23.000

Prop 0.002 0.008 0.028
0.05<X<=0.1 X>0.1

No 31.000 770.000

Prop 0.037 0.924

The first cut-off category will detect SNPs which are deviating from HWE
at the Bonferroni-corrected P-level.

However, for these data it will make more sense to table cumulative distri-
bution:

> catable(hwp, c(0.05/nsnps(srdta), 0.01, 0.05, 0.1), cum = T)
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Figure 4.1: Histogram of the call rate
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Figure 4.2: Histogram of the call rate

X<=6.00240096038415e-05 X<=0.01 X<=0.05 X<=0.1 all X
No 2.000 9.000 32.000 63.000 833
Prop 0.002 0.011 0.038 0.076 1

If you would like to investigate the minor allele frequency (MAF) distribu-
tion, the same logic would apply. First, derive MAF with

> afr <- sumgt[, "Q.2"]
> maf <- pmin(afr, (1 - afr))

Next, generate histograms for frequency and MAF:
> par(mfcol = c(2, 1))

> hist(afr)
> hist(maf)

(shown at the figure and then generate table describing frequency distribu-
tion:

> catable(afr, c(0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99))

X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 0.2<X<=0.5 0.5<X<=0.8
No 22.000 53.000 99.000 132.000 313.000 187.000
Prop 0.026 0.064 0.119 0.158 0.376 0.224

0.8<X<=0.9 0.9<X<=0.95 0.95<X<=0.99 X>0.99
No 18.000 8.00 1.000 0
Prop 0.022 0.01 0.001 0
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> catable(maf, c(0, 0.01, 0.05, 0.1, 0.2), cum = T)

X<=0 X<=0.01 X<=0.05 X<=0.1 X<=0.2 all X
No 0 22.000 76.000 183.00 333.0 833
Prop 0 0.026 0.091 0.22 0.4 1

Note that we used ”0” as the first category — this will give you the number
of monomorhic SNPs which we recommend to exclude from analysis.

Other function, perid.summary, produces summary SNP statistics per per-
son. Let us try producing this summary for the first 10 people:

> perid.summary(srdta[1:10, ])

NoMeasured NoPoly Hom E(Hom) Var F

pl 790 707 0.7987342 0.6600319 0.4048662 0.40798616 0

p2 792 714 0.7474747 0.6585152 0.5090002 0.26050805 0

p3 783 700 0.6206897 0.6618209 0.4332890 -0.12162558 0

p2 789 705 0.6070976 0.6601276 0.5251900 -0.15602916 0O

p5 790 707 0.6658228 0.6619821 0.5288936 0.01136232 0

p6 787 703 0.7662008 0.6622227 0.3770418 0.30783027 O

p7 794 709 0.6309824 0.6587669 0.4527349 -0.08142388 0

p8 793 711 0.7023960 0.6587232 0.5163296 0.12796887 0

p° 788 711 0.6675127 0.6573272 0.5599395 0.02972375 0

pl0 797 713 0.6587202 0.6614644 0.4889042 -0.00810600 O
Het

pl 0.2012658

p2 0.2525253

p3 0.3793103

p4d 0.3929024

p5 0.3341772

p6 0.2337992

p7 0.3690176

p8 0.2976040

p9 0.3324873

pl0 0.3412798

This table lists the number of genotypes scored for the person, call rate, and
heterozygosity. The outliers who have increased average heterozygosity may be
suggestive of contaminated DNA samples.

Let us analyse the distribution of heterozygosity:

> het <- perid.summary(srdta)$Het
> mean (het)

[1] 0.3309457
> catable(het, c(0.1, 0.25, 0.3, 0.35, 0.5))
X<=0.1 0.1<X<=0.25 0.25<X<=0.3 0.3<X<=0.35 0.35<X<=0.5 X>0.5

No 7.000 73.000 339.000 1281.000 800.00 0
Prop 0.003 0.029 0.136 0.512 0.32 0

CallPP

.9483794
.9507803
.9399760
.9471789
.9483794
.9447779
.9531813
.9519808
.9459784
.9667827
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Figure 4.3: Histogram of heterozygosity

> plot (het)

The resulting histogram is presented in figure It is easy to see that few
people have very low heterozygosity, but there are no outliers with extremely
high values.

In this section, we covered low-level functions summary and perid.summary.
Based on these, an upper-level genetic data quality control function, check .marker,
is based. That function will be covered in the next section.

Summary:

e When summary () function is applied to an gtdata subset of gwaa.data-
class, it return summary statistics for SNPs, including exact test for
Hardy-Weinberg equilibrium.

e When perid.summary() function is applied to an object of gwaa.data-
class (or gtdata part of it), it return per-person summary statistics,
including the call rate within this person and its’ heterozygosity.

Exercise 5. Characterizing call rate
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Characterise the distribution of call rates within study subjects and produce
a histogram. How many people have call rate below 93%?

4.5 Answers to exercises

Answer (Ex. 1) — Load the data with
> data(srdta)

Number of people:

> nids(srdta)

[1] 2500

Number of males:

> sum(male(srdta))

[1] 1275

Number of females:

> nids(srdta) - sum(male(srdta))

[1] 1225

.. or you could get the same answer like thisﬂ
> sum(male(srdta) == 0)

[1] 1225

The proportion of males can be computed using above results
> sum(male(srdta))/nids (srdta)

(1] 0.51

or by using mean () function:

> mean(male(srdta))

[1] 0.51

Answer (Ex. 2) — The names of markers located after 2,490,000 b.p. are

> vec <- (map(srdta) > 2490000)
> snpnames (srdta) [vec]

[1] "rs9273" "rs9277" "rs9279" "rs9283"
The names of markers located between 1,100,000 and 1,105,000 b.p. are:

> vec <- (map(srdta) > 1100000 & map(srdta) < 1105000)
> snpnames (srdta) [vec]

[1] "rs4180" "rs4186" "rs4187"

Answer (Ex. 3) — To learn what allele of "rs114” is the reference you need
to run

> coding(srdta) ["rs114"]

1 This is something covered later in the section (a3
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rsiild
WAT™

Here, the first ("A”) allele is the reference and thus the second ("T”) is the ef-
fective one. Remember that when using as.numeric function to convert the
genotypes to human-readable and R-operatable format, the homozygotes for
reference will be coded as 707, heterozygotes as ”1” and the non-reference (Vef-
fective”) homozygotes will be coded as 72
> table(as.character(gtdata(srdtal, "rs114"])), as.numeric(gtdata(srdtal,
+ "rs114"1)))
0 1 2

A/A 1868 0 0

A/T 0 491 0

T/T 0 0 34

To compute frequency of the effective allele of SNP "rs114” in total sample, you
can go two ways. First, we can try to take a sum of all "rs114” genotypes and
divide it by twice the number of people:

> a <- as.numeric(gtdata(srdtal, "rs114"]))

> sum(a)

[1] NA

This, however, returns NA, because some of the genotypes are missing. We can
deal with this problem by running sum() with the option na.rm=TRUE:

> sum(a, na.rm = T)

[1] 559

so the number of ’effect’ alleles is 559.

However, now we do not know what was the number of people for whom the
genotype was measured! — nids would return the total number of people, but
not the number of ones measured for "rs114”.

This problem can be dealt with through using is.na(A) function which returns

true when some element of A is not measured. Thus, the number of people with
measured genotype for "rs114” is

> nids(srdta)
[1] 2500

> nmeasured <- sum('is.na(a))
> nmeasured

[1] 2393

(note the ”!” before is.na, which means NOT, so we get these elements which
are not NA). The frequency of the ’effect’ allele thus is

> sum(a, na.rm = T)/(2 * nmeasured)
[1] 0.116799

An easier way would be to compute mean value of "rs114” with the mean (
,na.rm=TRUE) function and divide it by 2:

> mean(a, na.rm = T)/2

[1] 0.116799
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To compute frequency of the effective allele of "rs114” in males, you can use

> amale <- as.numeric(gtdata(srdta[male(srdta) == 1, "rs114"]))
> mean(amale, na.rm = T)/2

[1] 0.1164216
To compute frequency of the effective allele in females, you can use

> afemale <- as.numeric(gtdata(srdtal[male(srdta) == 0, "rs114"]))
> mean(afemale, na.rm = T)/2

[1] 0.1171942

The frequencies of the reference allele are computed very simply as one minus
the frequency of the effective allele:

> 1 - T)/2
[1] o.
> 1 -
[11 o.
> 1 -

(1] o.

mean(a, na.rm =
883201

mean (amale, na.rm = T)/2
8835784

T)/2

mean (afemale, na.rm =

8828058

Answer (Ex. 4) — To test for HWE in first 10 SNPs in total sample
> summary(gtdata(srdtal, 1:10]))

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact

rs10 2384 0.9536 0.13255034 1792 552 40 7.897327e-01 -0

rsi8 2385 0.9540 0.28029350 1232 969 184 7.608230e-01 -0

rs29 2374 0.9496 0.13774221 1763 568 43 7.955141e-01 -0

rs65 2378 0.9512 0.71972246 182 969 1227 6.475412e-01 -0

rs73 2385 0.9540 0.01341719 2331 44 10 1.792470e-12 O.

rslil4 2393 0.9572 0.11679900 1868 491 34 7.663683e-01 O.

rs128 2391 0.9564 0.02488499 2281 101 9 9.408599e-06 O.

rs130 2379 0.9516 0.69377890 222 1013 1144 9.615127e-01 -0

rs143 2377 0.9508 0.47728229 655 1175 547 6.512540e-01 O.

rs150 2369 0.9476 0.65998312 267 1077 1025 5.518478e-01 -0
Plrt Chromosome

rs10 7.355343e-01 1

rsl18 7.315304e-01 1

rs29 7.227853e-01 1

rs65 6.246577e-01 1

rs73 1.281239%e-12 1

rs114 7.894076e-01 1

rs128 1.000431e-05 1

rs130 9.168114e-01 1

rsl143 6.497695e-01 1

rs150 5.281254e-01 1

To test it in cases

> summary(gtdata(srdta[phdata(srdta)$bt == 1, 1:10]))

Fmax

.006880004
.007017332
.007241148
.010016746

303150234
005487764
129600629

.002140946

009313705

.012948436
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NoMeasured CallRate

rsl10 1197 0.9622186 0.13700919 888

rsi8 1189 0.9557878 0.28511354 605

rs29 1176 0.9453376 0.14285714 859

rs65 1185 0.9525723 0.72700422 83

rs73 1187 0.9541801 0.01053075 1167

rsll4d 1190 0.9565916 0.12184874 918

rs128 1183 0.9509646 0.02409129 1129

rs130 1188 0.9549839 0.68392256 117

rsi143 1192 0.9581994 0.48489933 320

rs150 1182 0.9501608 0.66624365 127
Plrt Chromosome

rsl10 3.871421e-01 1

rs18 7.052930e-01 1

rs29 2.214580e-01 1

rs65 4.348023e-01 1

rs73 2.423624e-08 1

rsl114 9.285104e-01 1

rs128 3.157174e-02 1

rs130 8.207476e-01 1

rs143 6.654994e-01 1

rs150 5.409408e-01 1

in controls

> summary (gtdata(srdta[phdata(srdta)$bt ==

NoMeasured CallRate Q.2 P.11

rs10 1177 0.9453815 0.12744265 897

rsi8 1185 0.9518072 0.27426160 623

rs29 1188 0.9542169 0.13215488 897

rs65 1183 0.9502008 0.71344041 98

rs73 1188 0.9542169 0.01641414 1154

rsi14 1192 0.9574297 0.11157718 941

rs128 1197 0.9614458 0.02589808 1141

rs130 1181 0.9485944 0.70491109 104

rsl143 1174 0.9429719 0.46805792 334

rs150 1176 0.9445783 0.65306122 139
Plrt Chromosome

rs10 8.178295e-01 1

rs18 8.683219e-01 1

rs29 5.737373e-01 1

rs65 9.031273e-01 1

rs73 5.537568e-06 1

rs114 9.627084e-01 1

rs128 7.552399e-05 1

rs130 8.710047e-01 1

rs143 8.326938e-01 1

rs150 7.424986e-01 1

SNPs '1s73’ and 'rs128’ are out of HWE (at p < 0.05) in total sample, and also

in cases and controls.
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Pexact

.635677e-01
.759191e-01
.832575e-01
.647357e-01
.988770e-08
.924018e-01
.747904e-02
.407527e-01
.848365e-01
.568363e-01

Pexact

.933317e-01
.418133e-01
.288436e-01
.871139e-01
.941219e-06
.846527e-01
.745807e-05
.887439e-01
.604122e-01
.968462e-01

O O O O O o o

Fmax

.024514202
.010949158
.034722222
.022595469
.393614304
.002606831
.083175674
.006569292
.012522119
.017756050

Fmax

.006751055
.004812165
.016525913
.003540522
.244001185
.001356081
.172107564
.004728114
.006165442
-0.

009574142
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Answer (Ex. 5) — To characterize ID call rate, you can run the following
commands:
> idsummary <- perid.summary (srdta)
> idsummary[1:5, ]

NoMeasured NoPoly Hom E (Hom) Var F CallPP
pl 790 790 0.7987342 0.6696986 0.5448255 0.39066007 0.9483794
p2 792 792 0.7474747 0.6685502 0.5390602 0.23811909 0.9507803
p3 783 783 0.6206897 0.6712102 0.4888671 -0.15365608 0.9399760
p2 789 789 0.6070976 0.6700900 0.4077382 -0.19093824 0.9471789
p5 790 790 0.6658228 0.6710232 0.4340010 -0.01580770 0.9483794

Het

pl 0.2012658
p2 0.2525253
p3 0.3793103
p4 0.3929024
p5 0.3341772

> idcall <- idsummary$Call
> idcall[1:5]

[1] 0.9483794 0.9507803 0.9399760 0.9471789 0.9483794
> catable(idcall, c(0.9, 0.93, 0.95, 0.98, 0.99))
X<=0.9 0.9<X<=0.93 0.93<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 13.000 1186.000
Prop 0 0.005 0.474
> table(idcall < 0.93)
FALSE TRUE

2487 13

1301.00 0 0
0.52 0 0

To produce a histogram of call rates, use hist (idcall)
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Chapter 5

Genome-wide assoclation
analysis

In the first parts of this section you will be guided through a GWA analysis of a
small data set. In the last part you will investigate a larger data set by yourself,
do a verification study and will answer the questions. All data sets used assume
a study in a relatively homogeneous population. Try to finish the first part in
the morning and the second part in the afternoon.

Though only few thousands of markers located at four small chromosomes
are used in the scan, we still going to call it Genome-Wide (GW), as the amount
of data we will use is approaches the amount to be expected in a real experiment.
However, because the regions are small, and the LD between SNPs is high, some
specific features (e.g. relatively high residual inflation, which occurs because
large proportion of SNPs are in LD with the reuly associated ones) are specific
features of this data set, which are not observed in true GWA studies.

Start R and load GenABEL library by typing

> library(GenABEL)
and load the data which we will use in this section by
> data(ge03d2ex)
Investigate the objects loaded by command
> 1s(0)
[1] "ge03d2ex"
The ge03d2ex is an object of the class gwaa.data:

> class(ge03d2ex)

[1] "gwaa.data"
attr(, "package")
[1] "GenABEL"

To check what are the names of variables in the phenotypic data frame, use

99
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> names (phdata (ge03d2ex))

Pkw
NA
052
205
NA

.141
.000
.965
.001

[1] llidll "SGX" I|age n llm2ll Ilheightll llweightll lldietll llbmill
We can attach this data frame to the R search path by
> attach(phdata(ge03d2ex))
5.1 Data descriptives and first round of GWA
analysis
Let us investigate what are the traits presented in the data frame loaded and
what are the characteristics of the distribution by using specific GenABEL func-
tion descriptive.trait:
> descriptives.trait (ge03d2ex)
No Mean SD
id 136 NA NA
sex 136 0.529 0.501
age 136 49.069 12.926
dm2 136 0.632 0.484
height 135 169.440 9.814
weight 135 87.397 25.510
diet 136 0.059 0.236
bmi 135 30.301 8.082
You can see that phenotypic frame contains the data on 136 people; the
data on sex, age, height, weight, diet and body mass index (BMI) are available.
Our trait of interest is dm2 (type 2 diabetes). Note that every single piece
of information in this data set is simulated; however, we tried to keep our
simulations in a way we think the control of T2D may work.
You can produce a summary for cases and controls separately and compare
distributions of the traits by
> descriptives.trait(ge03d2ex, by = dm2)
No (by.var=0) Mean SD No(by.var=1) Mean SD Pttt
id 50 NA NA 86 NA NA NA
sex 50 0.420 0.499 86 0.593 0.494 0.053 0.
age 50 47.038 13.971 86 50.250 12.206 0.179 0.
dm?2 50 NA NA 86 NA NA NA
height 49 167.671 8.586 86 170.448 10.362 0.097 0O
weight 49 76.534 17.441 86 93.587 27.337 0.000 O
diet 50 0.060 0.240 86 0.058 0.235 0.965 0O
bmi 49 27.304 6.463 86 32.008 8.441 0.000 O
Pexact
id NA
sex 0.074
age NA

dm2 NA
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height NA
weight NA
diet 1.000
bmi NA

Here, the by argument specifies the grouping variable. You can see that cases
and controls are different in weight, which is expected, as T2D is associated
with obesity.

Similarly, you can produce grand GW descriptives of the marker data by
using

> descriptives.marker (ge03d2ex)

$ Minor allele frequency distribution’

X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2
No  146.000 684.000 711.000 904.000 1555.000
Prop 0.036 0.171 0.178 0.226 0.389

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 46.000 71.000 125.000 275.000 4000

Prop 0.012 0.018 0.031 0.069 1

$ Distribution of porportion of successful genotypes (per person)’
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 1.000 0 0 135.000 0

Prop 0.007 0 0 0.993 0

$ Distribution of porportion of successful genotypes (per SNP)°
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 6.000 996.000 1177.000 1784.000

Prop 0.009 0.002 0.249 0.294 0.446

$ Mean heterozygosity for a SNP°
[1] 0.2582298

$ Standard deviation of the mean heterozygosity for a SNP’
[1] 0.1592255

$ Mean heterozygosity for a person’
[1] 0.2476507

$ Standard deviation of mean heterozygosity for a person’
[1] 0.04291038

It is of note that we can see inflation of the proportion of the tests for HWE
at particular threshold, as compared to the expected. This may indicate poor
genotyping quality and/or genetic stratification.

We can test the GW marker characteristics in controls by

> descriptives.marker(ge03d2ex, ids = (dm2 == 0))
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$ Minor allele frequency distribution’

X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2
No 233.000 676.000 671.000 898.000 1522.00
Prop 0.058 0.169 0.168 0.224 0.38

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 3.000 14.000 98.000 4000

Prop 0 0.001 0.003 0.024 1

$ ' Distribution of porportion of successful genotypes (per person)’
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 0 0 50 0

Prop 0 0 0 1 0

$ Distribution of porportion of successful genotypes (per SNP)®
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 49.000 1523.000 0 2391.000

Prop 0.009 0.012 0.381 0 0.598

$ Mean heterozygosity for a SNP°
[1] 0.2555009

$ Standard deviation of the mean heterozygosity for a SNP°
[1] 0.1618707

$ " Mean heterozygosity for a person’
[1] 0.2525720

$ Standard deviation of mean heterozygosity for a person’
[1] 0.04714886

Apparently, HWE distribution holds better in controls than in the total sample.

Let us check whether there are indications that deviation from HWE is due
to cases. At this stage we are only interested in HWE distribution table, and
therefore will ask to report the distrbution for cases (dm2==1) and report only
the table two:

> descriptives.marker (ge03d2ex, ids = (dm2 == 1))[2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 45.000 79.00 136.000 268.000 4000

Prop 0.011 0.02 0.034 0.067 1

and for the controls
> descriptives.marker(ge03d2ex, ids = (dm2 == 0))[2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 3.000 14.000 98.000 4000

Prop 0 0.001 0.003 0.024 1
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It seems that indeed excessive number of markers are out of HWE in cases.
If no laboratory procedure (e.g. DNA extraction, genotyping, calling) were done
for cases and controls separately, this may indicate possible genetic heterogeneity
specific for cases.

It may be interesting to plot a x2 —x? plot contrasting observed and expected
distributions for the test for HWE in cases. First, we need to compute summary
SNP statistics by

> s <- summary(gtdata(ge03d2ex[(dm2 == 1), 1))

Note the you have produced the summary for the gtdata slot of ge03d2ex;
this is the slot which actually contain all genetic data in special compressed
format.

You can see first 5 elements of this very long table by

> s[1:5, ]
NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact
rs7435137 84 0.9767442 0.52380952 17 46 21 0.510978370
rs7725697 85 0.9883721 0.01176471 83 2 0 1.000000000
rs664063 86 1.0000000 0.08720930 71 15 0 1.000000000
rs4670072 60 0.6976744 0.11666667 53 0 7 0.001701645
rs546570 84 0.9767442 0.89880952 1 15 68 1.000000000
Fmax Plrt Chromosome
rs7435137 -0.09772727 0.3699602726 1
rs7725697 -0.01190476 0.8773691192 3
rs664063 -0.09554140 0.2308999066 2
rs4670072 1.00000000 0.0002510899 X
rs546570 0.01830931 0.8693645189 2

Note that the column ’Pexact’ provides exact HWE test P-values we need. We
can extract these to a separate vector by

> pexcas <- s[, "Pexact"]

and do characterization using

> catable(pexcas, c(0.001, 0.01, 0.05, 0.1, 0.5), cumulative = TRUE)

X<=0.001 X<=0.01 X<=0.05 X<=0.1 X<=0.5 all X
No 79.00 136.000 268.000 390.000 1359.00 4000
Prop 0.02 0.034 0.067 0.098 0.34 1

Let us first try do GWA scan using the raw (before quality control) data. We
will use the score test, as implemented in the qtscore() funcrtion of GenABEL

for testing:

> an0 <- gtscore(dm2, ge03d2ex, trait = "binomial")

The first argument used describes the model; here it is rather simple — the
affection status, dm2, is supposed to depend on SNP genotype only.
You can see what objects are returned by this function by using

> names (an0)
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[1] "chi2.1df" "chi2.2df" "P1df" "p2df" "Pcldf"

[6] "Pc2df" "lambda" "effB" "effAB" "effBB"
[11] "N "snpnames" "idnames" "map" "chromosome"
[16] "formula" "family"

Here, P1df, P2df and Pc1df are most interesting; the first two are vectors of 1
and 2 d.f. P-values obtained in the GWA analysis, the last one is 1 d.f. P-value
corrected for inflation factor A (which is presented in lambda object).

Let us see if there is evidence for the inflation of the test statistics

> an0O$lambda
$estimate

[1] 1.029658

$se
[1] 0.0005343007

$iz0
[1] 1

$iz2
[1] 1

The estimate of A is 1.03, suggesting inflation of the test and some degree of
stratification.

The A is computed by regression in a Q-Q plot. Both estimation of A and
production of the x% — x2 plot can be done using the estlambda function:

> estlambda(an0$P1df)

$estimate
[1] 1.029658

$se
[1] 0.0005343007

The corresponding x? — x? plot is presented in Figure

The ’se’ produced by estlambda can not be used to test if inflation is significant

and make conclusions about presence of stratification.

We can also present the obtained results using the "Manhatten plot”, where
a SNP genomic position is on the X-axes and —logy( of the p-value is shown on
Y-axes:

> plot(an0)

The resulting plot is presented in the ﬁgure By default, —log;o(P —value) of
not corrected 1 d.f. test are presented; see help to figure out how this behaviour
can be changed.

We can also add the corrected P-values to the plot with
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Figure 5.1: x2 — x? plot for a GWA scan. Black line of slope 1: expected under
no inflation; Red line: fitted slope.

> add.plot(an0, df = "Pc1ldf", col

c("lightblue", "lightgreen"))

You can also generate a descriptive table for the "top” (as ranked by P-value)

results by

> descriptives.scan(an0)

rs1719133
rs2975760
rs7418878
rs5308595
rs4804634
rs3224311
rs26325

rs8835506
rs3925525
rs2521089

rs1719133
rs2975760
rs7418878
rs5308595

effAB
0.4004237
3.4545455
3.6051282
3.3171429

Chromosome Position

1

WNNWNEFE WERL, W

N
136
134
136
133
132
135
135
132
135
135

4495479
10518480
2808520
10543128
2807417
6009769
10617781
6010852
6008501
10487652
effBB

NNWOWOWWwWOo

effB

.33729339
.80380024
.08123060
.98254950
.43411456
.15831710
.09742793
.17720829
.98416931
.50239493

pa2df

0.0000000 0.0006333052
10.0000000 0.0011434877
4.8717949 0.0022642036

Inf 0.0045930101

Pi1df

.0002795623
.0002983731
.0009743183
.0010544366
.0011970132
.0013290907
.0013313876
.0015321522
.0019400358
.00205624092

Pcldf

.0003425105
.0003649107
.0011540593
.0012463049
.0014100096
.0015611949
.0015638203
.0017928676
.00225568582
.0023829357
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gtscore(dmz2, ge03d2ex, binomial)
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Figure 5.2: —log19(P —value) from the genome scan before QC procedure. Raw
analysis: darker circles; corrected analysis: lighter circles

rs4804634 0.5240642 0.1739130 0.0036964462
rs3224311 3.4151786 4.2500000 0.0029405999
rs26325 0.1097724 NA 0.0013313876
rs8835506 3.4903846 4.1250000 0.0031618340
rs3925525 3.2380952 4.1212121 0.0045554384
rs2521089 2.5717703 4.7727273 0.0069661425

Here you see top 10 results, sorted by P-value with 1 d.f. If you want to sort
by the corrected P-value, you can use descriptives.scan(an0,sort="Pcldf");
to see more then 10 (e.g. 25) top results, use descriptives.scan(an0,top=25).
You can combine all these options. Large part of results reports NA as effect
estimates and 9.99 as P-value for 2 d.f. test — for these markers only two out of
three possible genotypes were observed, and consequently 2 d.f. test could not
be performed.

Now let us apply qtscore() function with times argument, which tells it
to compute empirical GW (or experiment-wise) significance

> an0.e <- qtscore(dm2, ge03d2ex, times = 200, quiet = TRUE)

(you may skip the 'quiet=TRUE’ argument)

> descriptives.scan(an0.e, sort = "Pcldf")
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Chromosome Position N effB P1df Pcldf effAB
rs1719133 1 4495479 136 -0.2652064 0.405 0.480 -0.2080882
rs2975760 3 10518480 134 0.2340655 0.445 0.500 0.2755102
rs7418878 1 2808520 136 0.2089098 0.875 0.890 0.2807405
rsb5308595 3 10543128 133 0.2445516 0.885 0.905 0.2564832
rs4804634 1 2807417 132 -0.2050449 0.895 0.935 -0.1193830
rs3224311 2 6009769 135 0.2133633 0.925 0.945 0.2778634
rs26325 3 10617781 135 -0.4875367 0.925 0.945 -0.4875367
rs8835506 2 6010852 132 0.2112000 0.940 0.960 0.2796221
rs3925525 2 6008501 135 0.2057095 0.975 0.980 0.2660834
rs2521089 3 10487652 135 0.1775016 0.980 0.990 0.2254633
p2df
rs1719133 9.99
rs2975760 9.99
rs7418878 9.99
rs5308595 9.99
rs4804634 9.99
rs3224311 9.99
rs26325 9.99
rs8835506 9.99
rs3925525 9.99
rs2521089 9.99

None of the SNPs hits GW significance. If, actually, any did pass the thresh-
old, we could not trust the results, because the distribution of the HWE test
and presence of inflation factor for the association test statistics suggest that the
data may contain multiple errors (indeed they do). Therefore before association
analysis we need to do rigorous Quality Control (QC).

Note that at certain SNP, corrected P-values become equal to 1 — at this
point order is arbitrary because sorting could not be done.

Summary:

e The descriptives family of functions was developed to facilitate produc-
tion of tables which can be directly used in a manuscript — it is possible
to save the output as a file, which can be open by Excel or Word. See e.g.
help(descriptives.trait) for details.

e The inflation of test statistics compared to null (1 d.f.) may be estimated
with estlambda function.

5.2 Genetic data QC

The major genetic data QC function of GenABEL is check.marker (). We will try
to run it; the output is rather self-explaining. As it was detailed at the lecture,
in the first round of the QC we do not want to check for HWE. This can be
achieved by setting HWE P-value selection threshold to zero (p.level=0):

effBB

. 7375000
.4090909
.3268398
.4623656
.3845238
.3151515

NA

.3076923
.3074627
.3396072
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> qcl <- check.marker(ge03d2ex, p.level = 0)

Excluding people/markers with extremely low call rate...
4000 markers and 136 people in total

0 people excluded because of call rate < 0.1

6 markers excluded because of call rate < 0.1

Passed: 3994 markers and 136 people

Running sex chromosome checks...

197 heterozygous X-linked male genotypes found

1 X-linked markers are likely to be autosomal (odds > 1000 )

2 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

9 people have intermediate inbreeding (0.2 > F > 0.8)

If these people/markers are removed, O heterozygous male genotypes are left
Passed: 3993 markers and 125 people

no X/Y/mtDNA-errors to fix

RUN 1

3993 markers and 125 people in total

324 (8.1142Y) markers excluded as having low (<2J) minor allele frequency
35 (0.876534%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

1 (0.8%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2764765 (s.e. 0.03787993)

3 (2.4%) people excluded because too high autosomal heterozygosity (FDR <1%)
Excluded people had HET >= 0.4877172

Mean IBS is 0.7707831 (s.e. 0.02141132), as based on 2000 autosomal markers
1 (0.8%) people excluded because of too high IBS (>=0.95)

In total, 3634 (91.00927%) markers passed all criteria

In total, 120 (96%) people passed all criteria

RUN 2

3634 markers and 120 people in total

77 (2.118877%) markers excluded as having low (<2.083333)) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2762048 (s.e. 0.01626525)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7689338 (s.e. 0.01871281), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 3557 (97.88112%) markers passed all criteria

In total, 120 (100%) people passed all criteria

RUN 3
3557 markers and 120 people in total
0 (0%) markers excluded as having low (<2.083333)) minor allele frequency
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0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2762048 (s.e. 0.01626525)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7685093 (s.e. 0.01896565), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 3557 (100%) markers passed all criteria

In total, 120 (100%) people passed all criteria

The computation of all pairwise proportion of alleles identical-by-state (IBS)
by ibs() function, which is also called by check.markers() may take quite some
time, which is proportional to the square of the number of subjects. This
is not a problem with the small number of people we use for this example
or when modern computers are used. However, the computers in the Nihes
computer room are very old. Therefore be prepared to wait for long time

when you will do a self-exercise with 1,000 people.

From the output you can see that QC starts with checking the data for SNPs
and people with extremely low call rate. Six markers are excluded from further
analysis due to very low call rate. Next, X-chromosomal errors are identified.
The function finds out that all errors (heterozygous male X-genotypes) are due
to two people with wrong sex assigned and one marker, which looks like an
autosomal one. This actually could be a marker from pseudoautosomal region,
which should have been arranged as a separate "autosome”.

Then, the procedure finds the markers with low call rate (< 0.95) across
people, markers with low MAF (by default, low MAF is defined as less than few
copies of the rare allele, see help for details); people with low call rate (< 0.95)
across SNPs, people with extreme heterozygosity (at FDR 0.01) and these who
have GW IBS > 0.95. These default parameters may be changed if you wish
(consult help).

Because some of the people fail to pass the tests, the data set is not guaran-
teed to be really “clean” after single iteration, e.g. some marker may not pass the
call threshold after we exclude few informative (but apparently wrong) people.
Therefore the QC is repeated iteratively until no further errors are found.

You can generate short summary of QC by marker and by person through

> summary(qcl)

$ Per-SNP fails statistics’
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 41 0 0 0 0
NoMAF NA 401 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 1

$ Per-person fails statistics’
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IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

IDnoCall 1 0 0 0 0 0 0
HetFail NA 3 0 0 0 0 0
IBSFail NA NA 1 0 0 0 0
isfemale NA NA NA 2 0 0 0
ismale NA NA NA NA 0 0 0
isXXY NA NA NA NA NA 0 0
otherSexErr NA NA NA NA NA NA 9

Note that the original data, ge03d2ex, are not modified during the proce-
dure; rather, check.markers () generate a list of markers and people which pass
or do not pass certain QC criteria. The objects returned by check.markers()
are:

> names (qc1)

[1] "nofreq" "nocall" "nohwe" "Xmrkfail" "hetfail"
[6] "idnocall" "ibsfail" "isfemale" "ismale" "otherSexErr"
[11] "snpok" "idok" "call"

The element idok provides the list of people who passed all QC criteria,
and snpok provides the list of SNPs which passed all criteria. You can easily
generate a new data set, which will consist only of these people and markers by

> datal <- ge03d2ex[qcl$idok, qcl$snpok]

If there are any residual sporadic X-errors (male heterozygosity), these can
be fixed (set to NA) by

> datal <- Xfix(datal)
no X/Y/mtDNA-errors to fix

Applying this function does not make any difference for the example data set,
but you will need to use it for the bigger data set.

At this point, we are ready to work with the new, cleaned, data set datal.
However, if we try

> length(dm2)
[1] 136

we can see that the original phenotypic data are attached to the search path
(there are only 120 people left in the ’clean’ data set). Therefore we need to
detach the data by

> detach(phdata(ge03d2ex))
and attach new data by
> attach(phdata(datal))

At this stage, let us check if the first round of QC improves the fit of genetic
data to HWE, which may have been violated due to by genotyping errors which
we hopefully (at least partly!) eliminated:
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> descriptives.marker(datal) [2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’

X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 43.000 60.000 120.000 236.000 3557
Prop 0.012 0.017 0.034 0.066 1

> descriptives.marker(datal[dm2 == 1, ])[2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’

X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 39.000 66.000 129.000 232.000 3557
Prop 0.011 0.019 0.036 0.065 1
> descriptives.marker(datal[dm2 == 0, ])[2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’

X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 0 1 12.000 74.000 3557
Prop 0 0 0.003 0.021 1

You can see that the fit to HWE improved, but cases are still have excess
number of markers out of HWE. This may be due to genetic sub-structure.

5.3 Finding genetic sub-structure

Now, we are ready for the second round of QC, detection of genetic outliers which
may contaminate our data. We will detect genetic outliers using a technique,
which resembles the one suggested by Price at al.

As a first step, we will compute a matrix of genomic kinship between all
pairs of people, using only autosomaﬂ markers by

> datal.gkin <- ibs(datal[, autosomal(datal)], weight = "freq")
You can see the 5x5 upper left sub-matrix by

> datal.gkin[1:5, 1:5]

id199 id300 1d403 id415

id666

id199 0.495143898 3244.00000000 3242.00000000 3230.00000000 3246.0000000
1d300 -0.012054007 0.49427241 3249.00000000 3238.00000000 3252.0000000
1d403 -0.011501378 -0.01220884 0.507156832 3235.00000000 3250.0000000
id415 -0.001783181 0.01400933  -0.02459910 0.53078286 3239.0000000
id666 -0.018705330 -0.02086684 0.02316841 -0.01913578 0.5312921

This step may take few minutes on large data sets or when using old com-

puters!

Lthe list of autosomal markers contained in data is returned by autosomla(data) function
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The numbers below the diagonal show genomic kinship (IBD), the numbers
on the diagonal correspond to 0.5 plus the genomic homozigosity, and the num-
bers above the diagonal tell how many SNPs were typed successfully for both
subjects (thus the IBD estimate is derived using this number of SNPs).

Second, we transform this matrix to a distance matrix using standard R
command

> datal.dist <- as.dist(0.5 - datal.gkin)
Finally, we perform Classical Multidimensional Scaling by
> datal.mds <- cmdscale(datal.dist)

by default, the first two principal components are computed and returned.

This may take few minutes on large data sets or when using old computers!

We can present the results graphically by
> plot(datal.mds)

The resulting plot is presented in figure Each point on the plot corre-
sponds to a person, and the 2D distances between points were fitted to be as
close as possible to these presented in the original IBS matrix. You can see that
study subjects clearly cluster in two groups.

You can identify the points belonging to clusters by

km <- kmeans(datal.mds, centers = 2, nstart = 1000)
cll <- names(which(km$cluster == 1))
cl2 <- names(which(km$cluster == 2))
if (length(cll) > length(cl2)) {
x <- cl2
cl2 <- cl1
cll <- x
}
cli

vV + + + + VvV Vv VvV

[1] "id2097" "id6954" "id2136" "id858"
> cl2

[1] "id199" "id300" "id403" "id415" "id666" "id689" "id765"

[9] "id908" "id980" "id994" "id1193" "id1423" "id1505" "id1737"
[17] "i1d2068" "id2094" "id2151" "id2317" "id2618" "id2842" "id2894"
[25] "id3354" "id3368" "id3641" "id3831" "id3983" "id4097" "id4380"
[33] "id4512" "id4552" "id4710" "id4717" "id4883" "id4904" "id4934"
[41] "id5014" "id5078" "id5274" "idb5275" "id5853" "id5926" "id5969"
[49] "id6é352" "id6501" "id6554" "id6663" "id6723" "id7499" "id7514"
[57] "id7598" "id7623" "id7949" "id8059" "id8128" "id8370" "id8400"
[65] "id8772" "id8880" "id8890" "id8957" "id8996" "id9082" "id9901"
[73] "id1857" "id2528" "id4862" "id9184" "idb5677" "id6407" "idb5472"

"1d830"

"id1841"
"id2985"
"id4395"
"id4961"
"1d6237"
"id7541"
"1d8433"
"id9930"
"id2135"
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Figure 5.3: Mapping samples on the space of the first two Principle Components
resulting from analysis of genomic kinship. Red dots identify genetic outliers

[81] "id8545" "id4333" "id1670" "id1536" "id6917" "id3917" "id9628" "id9635"

[89] "id4729" "id5190" "id6399" "id6062" "id620" "id1116" "id6486" "id41l"

[97] "idé77" "id9749" "id6428" "id7488" "id2924" "id5783" "id4096" "id903"
[105] "id9049" "id185" "id1002" "id362" "id9014" "id5044" "id2749" "id5437"
[113] "id4743" "id4185" "id8330" "id6934"

Four outliers are presented in the smaller cluster.

Now you will need to use the BIGGER cluster for to select study subjects.
‘Whether this will be cl1 or cl2 in you case, is totally random.

We can form a data set which is free from outliers by using only people from
the bigger cluster:

> data2 <- datallcl2, ]

After we dropped the outliers, we need to repeat QC using check .markers().
At this stage, we want to allow for HWE checks (we will use only controls and
exclude markers with FDR < 0.2):

> qc2 <- check.marker(data2, hweids = (phdata(data2)$dm2 == 0),
+ fdr = 0.2)
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Excluding people/markers with extremely low call rate...
3557 markers and 116 people in total

0 people excluded because of call rate < 0.1

0 markers excluded because of call rate < 0.1

Passed: 3557 markers and 116 people

Running sex chromosome checks...

0 heterozygous X-linked male genotypes found

0 X-linked markers are likely to be autosomal (odds > 1000 )

0 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

0 people have intermediate inbreeding (0.2 > F > 0.8)

If these people/markers are removed, O heterozygous male genotypes are left
Passed: 3557 markers and 116 people

no X/Y/mtDNA-errors to fix

RUN 1

3557 markers and 116 people in total

48 (1.349452),) markers excluded as having low (<2.155172%) minor allele frequency
2 (0.05622716%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (FDR <0.2)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2800572 (s.e. 0.01563784)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7684764 (s.e. 0.01278218), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 3507 (98.59432)) markers passed all criteria

In total, 116 (100%) people passed all criteria

RUN 2

3507 markers and 116 people in total

0 (0%) markers excluded as having low (<2.155172)) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (FDR <0.2)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2800572 (s.e. 0.01563784)

0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.7683106 (s.e. 0.01271932), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 3507 (100%) markers passed all criteria

In total, 116 (100%) people passed all criteria

> summary (qc2)

$ Per-SNP fails statistics’

NoCall NoMAF NoHWE Redundant Xsnpfail
NoCall 2 0 0 0 0
NoMAF NA 48 0 0 0
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NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 0

$ Per-person fails statistics’
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

IDnoCall 0 0 0 0 0 0 0
HetFail NA 0 0 0 0 0 0
IBSFail NA NA 0 0 0 0 0
isfemale NA NA NA 0 0 0 0
ismale NA NA NA NA 0 0 0
isXXY NA NA NA NA NA 0 0
otherSexErr NA NA NA NA NA NA 0

If the procedure did not run, check previous Note.

Indeed, in the updated data set few markers do not pass our QC criteria and
we need to drop a few markers. This is done by

> data2 <- data2[qc2$idok, qc2$snpok]

This is going to be our final analysis data set, therefore let us attach the phe-
notypic data to the search path, then we do not need to type phdata(data2)$. ..
to access dm2 status or other variables:

> detach(phdata(datal))
> attach(phdata(data2))

Before proceeding to GWA, let us check if complete QC improved the fit of
genetic data to HWE:

> descriptives.marker (data2) [2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 2.000 17.000 104.00 3507

Prop 0 0.001 0.005 0.03 1

> descriptives.marker(data2[phdata(data2)$dm2 == 1, ])[2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 1 16.000 72.000 3507

Prop 0 0 0.005 0.021 1

> descriptives.marker(data2[phdata(data2)$dm2 == 0, ])[2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 1 12.000 74.000 3507

Prop 0 0 0.003 0.021 1

You can see that now there is no excessive number of SNPs out of HWE in
the sample (total, or cases, or controls)
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5.4 GWA association analysis

Let us start again with descriptives of the phenotypic and marker data

> descriptives.trait(data2, by = dm2)

No (by.var=0)
id 44
sex 4 0
age 44 46
dm?2 44
height 43 168
weight 43 77
diet 4 0
bmi 43 27
Pexact
id NA
sex 0.121
age NA
dm2 NA
height NA
weight NA
diet 1.000
bmi NA

Mean

NA
ATT
.201

NA
.673
.582
.068
.404

14.

17.

SD No(by.var=1)

NA 72
.505 72
104 72

NA 72
.375 72
634 72
.255 72
L7779 72

Mean
NA
0.639
49.974
NA
171.116
95.474
0.056
32.443

SD

NA
0.484
12.621
NA
10.637
27.166
0.231
8.465

CHAPTER 5. GENOME-WIDE ASSOCIATION ANALYSIS

Ptt
NA

.093
.150

NA

.175
.000
.789
.001

You can see that relation to weight is maintained in this smaller, but hope-
fully cleaner, data set; moreover, relation to age becomes boundary significant.
If you check descriptives of markers (only HWE part shown)

> descriptives.marker (data2) [2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’

X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
17.000
0.005

No 0
Prop 0

2.000
0.001

104.00 3507
0.03 1

you can see that the problems with HWE are apparently fixed; we may guess
that these were caused by the Wahlund’s effect.
Run the score test on the cleaned data by

> data2.qt <- qtscore(dm2, data2, trait =

and check lambda

> data2.qt$lambda

$estimate
[1] 1.010838

$se
[1] 0.001416945

$iz0

"binomial")

O O O O

Pkw
NA

.089
.157

NA

.201
.000
.783
.001
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gtscore(dm2, data2, binomial)

—log;o(P - value)

Chromosome

Figure 5.4: —logio(CorrectedP — value) from the genome scan after the QC
procedure

[1] 1

$iz2
[1] 1

there is still some inflation, which is explained by the fact that we investigate
only few short chromosomes with high LD and few causative variants.
Produce the association analysis plot by

> plot(data2.qt, df = "Pcldf")

(figure [5.4).

Produce the scan summary by

> descriptives.scan(data2.qt, sort = "Pcldf")

Chromosome Position N effB P1df Pcildf
rs8835506 2 6010852 113 3.2759020 0.002323392 0.002453069
rs1719133 1 4495479 116 0.3594889 0.002417359 0.002551276
rs5162584 1 1458579 115 2.6560718 0.002449144 0.002584486
rs2975760 3 10518480 115 3.0388739 0.002718801 0.002866073
rs7504607 1 2704056 115 0.1687855 0.002725494 0.002873060
rs3925525 2 6008501 116 3.0470705 0.002964747 0.003122661
rs3224311 2 6009769 116 3.0470705 0.002964747 0.003122661

effAB

.85631469
.4053803
.0086957
.8181818
.1791045
.5185185
.5185185
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rs2521089
rs5308595
rs6685844

rs8835506
rs1719133
rs5162584
rs2975760
rs7504607
rs3925525
rs3224311
rs2521089
rs5308595
rs6685844

3.
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3 10487652 115 2.4950825 0.003522879 0.003704196 3.4615385
3 10543128 114 4.6004194 0.003711203 0.003900206 3.6821705
X 13238764 116 2.1938441 0.004097282 0.004301743 1.1818182

effBB pP2df
.903846 0.003871753
.000000 0.006452485
.600000 0.009944009
.000000 0.010396693
NA 0.002725494
.888889 0.005808123
.888889 0.005808123
.000000 0.005337814
Inf 0.014521460

166667 0.013896194

Comparison with the top 10 from the scan before QC shows that results
changed substantially with only few markers overlapping.
You can see similar results when accessing empirical GW significance:

> data2.qte <- gtscore(dm2, data2, times = 200, quiet = TRUE, trait = "binomial")

> descriptives.scan(data2.qte, sort = "Pcldf")

Chromosome Position N effB P1df Pcldf effAB
rs5162584 1 1458579 115 2.6560718 0.985 0.985 2.008696e+00
rs1719133 1 4495479 116 0.3594889 0.985 0.985 4.053803e-01
rs8835506 2 6010852 113 3.2759020 0.985 0.985 3.853147e+00
rs7504607 1 2704056 115 0.1687855 0.990 0.995 1.791045e-01
rs2975760 3 10518480 115 3.0388739 0.990 0.995 2.818182e+00
rs7435137 1 4259040 116 1.4904855 1.000 1.000 1.654545e+00
rs664063 2 7288020 116 0.5214564 1.000 1.000 5.950820e-01
rsb46570 2 6120257 115 0.5350741 1.000 1.000 3.000000e+16
rs7908680 1 2311762 113 2.5910943 1.000 1.000 2.545455e+00
rs166732 1 4716343 115 0.8163090 1.000 1.000 8.159204e-01

effBB P2df
rs5162584 5.600000e+00 1
rs1719133 0.000000e+00 1
rs8835506 3.903846e+00 1
rs7504607 NA 1
rs2975760 8.000000e+00 1
rs7435137 2.100000e+00 1
rs664063 0.000000e+00 1
rsb46570 1.475000e+16 1
rs7908680 NA 1
rs166732 NA 1

Again, none of the SNPs hits GW 5% significance. Still, you can see that
after QC top markers achieve somewhat "better” significance.

In the last part, we will do several adjusted and stratified analyses. Only
empirical P-values will be estimated to make the story shorter. To adjust for
sex and age, we can
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> data2.qtae <- gtscore(dm2 ~ sex + age, data2, times = 200, quiet = T,
+ trait = "binomial")

> descriptives.scan(data2.qtae)

Chromosome Position N effB P1ldf Pcldf effAB
rs7504607 1 2704056 115 0.3250423 0.990 0.995 3.187671e-01
rs2398949 1 4828375 114 0.3990778 0.995 0.995 2.870179e-01
rs1719133 1 4495479 116 0.5031177 0.995 1.000 4.931182e-01
rs7435137 1 4259040 116 1.2491233 1.000 1.000 1.417357e+00
rs664063 2 7288020 116 0.6623001 1.000 1.000 7.238107e-01
rs546570 2 6120257 115 0.6419180 1.000 1.000 3.184347e+16
rs7908680 1 2311762 113 1.2870154 1.000 1.000 1.285580e+00
rs166732 1 4716343 115 0.9015843 1.000 1.000 9.013945e-01
rs4257079 1 3455895 116 1.0451532 1.000 1.000 1.045035e+00
rs5150804 2 7178160 115 1.0175054 1.000 1.000 8.133168e-01

effBB P2df
rs7504607 NA 1.00
rs2398949 3.525119e+00 0.72
rs1719133 1.994294e-01 1.00
rs7435137 1.506791e+00 1.00
rs664063 1.758215e-01 1.00
rsb546570 1.915610e+16 1.00
rs7908680 NA 1.00
rs166732 NA 1.00
rs4257079 NA 1.00
rsb150804 1.215965e+00 1.00

You can see that there is little difference between adjusted and unadjusted
analysis, but this is not always the case; adjustment may make your study much
more powerful when covariates explain a large proportion of environmental trait
variation.

Finally, let us do stratified (by BMI) analysis. We will contracts obese
(BMI > 30) cases to all controls.

> data2.qtse <- gtscore(dm2 ~ sex + age, data2, ids = ((bmi > 30 &

+ dm2 == 1) | dm2 == 0), times = 200, quiet = TRUE, trait = "binomial")
> descriptives.scan(data2.qtse, sort = "Pcldf")

Chromosome Position N effB P1ldf Pcildf effAB effBB P2df
rs2884479 X 13618173 81 0.4990377 0.690 0.690 0.2321935 0.3207294 0.65
rs794264 1 2534738 83 1.9081827 0.950 0.950 2.9220379 4.7634423 1.00
rs1891586 1 2297398 83 0.4821560 0.960 0.960 0.5794950 0.2654000 1.00
rsb67752 1 894274 83 2.0408128 0.960 0.960 1.7742015 5.4654902 1.00
rs7504607 1 2704056 83 0.1906795 0.975 0.975 0.2245269 NA 1.00
rs9178808 1 2536431 83 0.5133559 0.990 0.990 0.6521823 0.2146452 1.00
rs5032886 1 2537020 83 0.5133559 0.990 0.990 0.6521823 0.2146452 1.00
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rs8538767 X 13437421 82 1.9103066 0.995 0.995 1.8371933 3
rs7435137 1 4259040 83 1.2311075 1.000 1.000 1.3603427 1
rs664063 2 7288020 83 0.7467535 1.000 1.000 0.8381088 0O

Again, noting interesting at GW significance level. If we would have had
found something, naturally, we would not known if we mapped a T2D or obesity
gene (or a gene for obesity in presence of T2D, or the one for T2D in presence
of obesity).

At this point, you acquired the knowledge necessary for the self-exercise.
Please close R by q() command and proceed to the next section.

5.5 Genome-wide association analysis exercise

During the exercise, you will work with a larger data set (approximately 1,000
people and 7,000+ SNPs). You are to do complete three-round QC; perform
GWA analysis with dm2 as the outcome of interest and identify 10 SNPs which
you would like to take to the stage 2 (replication) scan. You will do replication
analysis using a confirmatory data set. If you did everything right, the SNPs
which you identified as significant or replicated will be located in know T2D
genes.

Please keep in mind that the data are simulated, and do not take your
findings too seriously!

Start R by going to "Start -> Programs -> R -> R-7.7.7”. Load GenABEL
library by

> library(GenABEL)

The two data sets we will use in this exercise are part of the GenABEL distri-
bution. The first one ("discovery” set) can be loaded by

> data(ge03d2)

Please move along the lines detailed in the guided exercise and try to answer
following questions:
Ex. 1 — How many cases and controls are presented in the original data set?
Ex. 2 — How many markers are presented in the original data set?

Ex. 3 — Is there evidence for inflation of the HWE test staistics?

Ex. 4 — Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor? Write down
the names of these SNPs for further comparison.

Ex. 5 — Perform first steps of the genetic data QC.
Ex. 6 — How many males are 'genetically’ females?
Ex. 7 — How many females are ’genetically’ males?
Ex. 8 — How many people are quessed to have "XXY’ genotype?

Ex. 9 — How many sporadic X errors do you still observe even when the
female male and non-X X-markers are removed? (do not forget to Xfix() these

.9266469 1.00
.5098791 1.00
.1572698 1.00
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Ex. 10 — How many "twin” DNAs did you discover?

Ex. 11 — Perform second step of QC.

Ex. 12 — How many genetic outliers did you discover?
Ex. 13 — How many cases and controls are presented in the data after QC?
Ex. 14 — How many markers are presented in the data after QC?

Ex. 15 — Is there evidence for inflation of the HWE test staistics?

Ex. 16 — Perform GWA analysis of the cleaned data, using assimptotic test
and plot the results. What is the estimate of A for the 1 d.f. test?

Ex. 17 — Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor?

Ex. 18 — Do these SNPs overlap much with the ones ranked at the top before
the QC? If not, what could be the reason?

Ex. 19 — Select 10 SNPs which you would like to follow-up. Say, you've se-
lected rs1646456, rs7950586, rsd785242, rsd435802, rs2847446, rs946364, rs299251,
rs2456488, rs1292700, and rs8183220. Make a vector of these SNPs with

> vecl2 <- c("rs1646456", "rs7950586", "rs4785242", "rs4435802",
+ "rs2847446", "rs946364", "rs299251", "rs2456488", "rs1292700",
+ "rs8183220")

Load the stage 2 (replicaton) data set by
> data(ge03d2c)

and select the subset of SNPs you need by
> confdat <- ge03d2c[, vecl2]

Analyse the confdat for association with dm2.

Ex. 20 — Given the two-stage design, and applying the puristic criteria spec-
ified in the lecture, for how many SNPs you can claim a significant finding?

Ex. 21 — Using the same criteria, for how many SNPs you can claim a repli-
cated finding?

Ex. 22 — If time permits, characterise the mode of inheritance of the signifi-
cant SNPs. You can convert data from GenABEL format to the format used by
dgc.genetics and genetics libraries by using as.genotype () function. Con-
sult help for details. Please do not attempt to convert more then few dozens
SNPs: the format of genetics is not compressed, which means conversion may
take long and your low-memory computer may even crash if you attempt to
convert the whole data set.

Ex. 23 — If time permits, do analysis with adjustment for covariates and
stratified analysis.
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Ex. 24 — If time permits, try to do first round of QC allowing for HWE
checks (assume FDR of 0.1 for total sample). In this case, can you still detect

stratification in the "cleaned” data?

5.6 Answers to exercises

Answer (Ex. 1) —:
> table(phdata(ge03d2) $dm2)

0 1
487 463

Answer (Ex. 2) —:
> nsnps (ge03d2)
[1] 7589

Answer (Ex. 3) — Yes:
> descriptives.marker (ge03d2) [2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’

X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 331.000 367.000 479.000 807.000 7589
Prop 0.044 0.048 0.063 0.106 1

Answer (Ex. 4) — :

> resO <- gtscore(dm2, data = ge03d2, times
+ trait = "binomial")

> ds <- descriptives.scan(res0)

> ds

Chromosome Position N effB
rs3845221 1 1874765 942 3.2495601
rs4015712 1 2137388 944 2.9654812
rs4266194 1 2250206 942 3.1037676
rs8284432 1 2300686 939 2.5585433
rs2784788 1 3030569 943 3.1078567
rs4804116 2 6129372 939 0.3321288
rs3632063 2 8572345 937 3.1676181
rs2601410 3 11525491 940 3.0914130
rs6934167 3 11813645 942 2.7780404
rs6933749 1 2936968 944 3.0964415

P2df
rs3845221 9.99

O OO OO OO O oo

200, quiet

P1df

.004975124
.004975124
.004975124
.004975124
.004975124
.004975124
.004975124
.004975124
.004975124
.005000000

TRUE,

Pcldf

O OO OO OO O oo

.460
.540
.410
.385
.460
.545
.460
.525
.400
.565

NDNDNNODNDNNDDNDS

effAB

.543326
.080526
.620075
.233559
.262911
.000000
.973396
.491943
.060807
.252336

effBB
Inf

Inf

Inf
23.77660
Inf
0.00000
Inf

Inf

Inf

Inf
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rs4015712 9.99
rs4266194 9.99
rs8284432 9.99
rs2784788 9.99
rs4804116 9.99
rs3632063 9.99
rs2601410 9.99
rs6934167 9.99
rs6933749 9.99

Thus, there are no genome-wide empirically significant results. The ’'top’ 10
SNPs are

> snpsO <- rownames (ds)
> snps0

[1] "rs3845221" "rs4015712" "rs4266194" "rs8284432" "rs2784788" "rs4804116"
[7] "rs3632063" "rs2601410" "rs6934167" "rs6933749"

(note that if empirical P is 1, the rank is assigned quite arbitrarily)

Answer (Ex. 5) — First step of QC

> gcl <- check.marker(ge03d2, call = 0.95, perid.call = 0.95, p.level = 0,
+ ibs.exclude = "both")

Excluding people/markers with extremely low call rate...
7589 markers and 950 people in total

0 people excluded because of call rate < 0.1

7 markers excluded because of call rate < 0.1

Passed: 7582 markers and 950 people

Running sex chromosome checks...

1934 heterozygous X-linked male genotypes found

2 X-linked markers are likely to be autosomal (odds > 1000 )

10 male are likely to be female (odds > 1000 )

6 female are likely to be male (odds > 1000 )

71 people have intermediate inbreeding (0.2 > F > 0.8)

If these people/markers are removed, 8 heterozygous male genotypes are left
. these will be considered missing in analysis.
. Use Xfix() to fix these problems.

Passed: 7580 markers and 863 people

. 8 X/Y/mtDNA ( 8 0 0 ) impossible heterozygotes and female Ys set as missing

RUN 1

7580 markers and 863 people in total

78 (1.029024%) markers excluded as having low (<0.2896871%) minor allele frequency
75 (0.9894467%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

4 (0.46349947,) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2557464 (s.e. 0.02141225)
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4 (0.4634994%) people excluded because too high autosomal heterozygosity (FDR <1%)
Excluded people had HET >= 0.4705019

Mean IBS is 0.7878084 (s.e. 0.01752976), as based on 2000 autosomal markers

8 (0.9269988%,) people excluded because of too high IBS (>=0.95)

In total, 7427 (97.98153}) markers passed all criteria

In total, 847 (98.146%) people passed all criteria

RUN 2

7427 markers and 847 people in total

45 (0.6058974%) markers excluded as having low (<0.2951594%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2562559 (s.e. 0.01507943)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7830611 (s.e. 0.01618059), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7382 (99.3941%) markers passed all criteria

In total, 847 (100%) people passed all criteria

RUN 3

7382 markers and 847 people in total

0 (0%) markers excluded as having low (<0.2951594%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2562559 (s.e. 0.01507943)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7859651 (s.e. 0.01550306), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7382 (100%) markers passed all criteria

In total, 847 (100%) people passed all criteria

> summary (qcl1)

$ Per-SNP fails statistics’
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 82 0 0 0 0
NoMAF NA 123 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 2

$ Per-person fails statistics’
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

IDnoCall 4 0 0 0 0 0 0
HetFail NA 4 0 0 0 0 0
IBSFail NA NA 8 0 0 0 0
isfemale NA NA NA 10 0 0 0
ismale NA NA NA NA 6 0 0
isXXY NA NA NA NA NA 0 0
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otherSexErr NA NA NA NA NA NA 71

> datal <- ge03d2[qc1$idok, qcl$snpok]
> datal <- Xfix(datal)

. 7 X/Y/mtDNA ( 7 0 O ) impossible heterozygotes and female Ys set as missing
> qc2 <- check.marker(datal, call = 0.95, perid.call = 0.95, p.level = 0)

Excluding people/markers with extremely low call rate...
7382 markers and 847 people in total

0 people excluded because of call rate < 0.1

0 markers excluded because of call rate < 0.1

Passed: 7382 markers and 847 people

Running sex chromosome checks...

0 heterozygous X-linked male genotypes found

0 X-linked markers are likely to be autosomal (odds > 1000 )

0 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

1 people have intermediate inbreeding (0.2 > F > 0.8)

If these people/markers are removed, O heterozygous male genotypes are left
Passed: 7382 markers and 846 people

no X/Y/mtDNA-errors to fix

RUN 1

7382 markers and 846 people in total

0 (0%) markers excluded as having low (<0.2955083%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2562520 (s.e. 0.01508794)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7845614 (s.e. 0.01642991), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7382 (100%) markers passed all criteria

In total, 846 (100%) people passed all criteria

> summary(qc2)

$ Per-SNP fails statistics’
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 0 0 0 0 0
NoMAF NA 0 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 0

$ Per-person fails statistics’

IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr
IDnoCall 0 0 0 0 0 0 0
HetFail NA 0 0 0 0 0 0
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IBSFail NA NA 0 0 0 0 0
isfemale NA NA NA 0 0 0 0
ismale NA NA NA NA 0 0 0
isXXY NA NA NA NA NA 0 0
otherSexErr NA NA NA NA NA NA 1
Answer (Ex. 6) — The list of genetic females who are coded as males is

> qcl$isfemale

[1] "id3374" "id6263" "id6835" "id8410" "id8509" "id8519" "id8542" "id2701"
[9] "id6494" "id3100"

Answer (Ex. 7) — The list of genetic males who are coded as females is
> gcl$ismale

[1] "id193" "id8475" "id2461" "id5669" "id7245" "id8301"

Answer (Ex. 8) — The number of "XXY” people is 0

Answer (Ex. 9) — Eight ’sporadic’ X-errors are left after removing people
with likely sex code errors (seven in the data set after first step of QC)

Answer (Ex. 10) — The list of IDs failing IBS checks ("twin’ DNAs) is

> qcl$ibsfail
[1] "id3368" "id9668" "idb437" "id956" "id386" "id660" "id2115" "id8370"

Answer (Ex. 11) — The second step of QC:

> datal.gkin <- ibs(datal[, autosomal(datal)], weight = "freq")
> datal.dist <- as.dist(0.5 - datal.gkin)

> datal.mds <- cmdscale(datal.dist)

> km <- kmeans(datal.mds, centers = 2, nstart = 1000)
> cl11 <- names(which(km$cluster == 1))

> c12 <- names (which(km$cluster == 2))

> if (length(cll) > length(cl2)) {

+ x <- cl2

+ cl2 <- cl1i

+ cll <- x

+ }

> cl1

[1] "id2097" "id2126" "id2878" "id3021" "id3176" "id4554" "id7436" "id7533"
[9] "id9396" "id9546" "id4021" "id2171" "id6954" "id2136" "id5056" "id1751"
[17] "id6626" "id2970" "id1300" "id8639" "id1729" "id9398" "id9904" "id858"
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> data2 <- datall[cl2, ]
> qc2 <- check.marker(data2, hweids = (phdata(data2)$dm2 == 0),
+ fdr = 0.2)

Excluding people/markers with extremely low call rate...
7382 markers and 823 people in total

0 people excluded because of call rate < 0.1

0 markers excluded because of call rate < 0.1

Passed: 7382 markers and 823 people

Running sex chromosome checks...

0 heterozygous X-linked male genotypes found

0 X-linked markers are likely to be autosomal (odds > 1000 )

0 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

1 people have intermediate inbreeding (0.2 > F > 0.8)

If these people/markers are removed, O heterozygous male genotypes are left
Passed: 7382 markers and 822 people

no X/Y/mtDNA-errors to fix

RUN 1

7382 markers and 822 people in total

8 (0.1083717%) markers excluded as having low (<0.3041363%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (FDR <0.2)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2565572 (s.e. 0.01499587)

0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.79549 (s.e. 0.01127115), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7374 (99.89163},) markers passed all criteria

In total, 822 (100%) people passed all criteria

RUN 2

7374 markers and 822 people in total

0 (0%) markers excluded as having low (<0.3041363%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (FDR <0.2)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2565572 (s.e. 0.01499587)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7879041 (s.e. 0.01183922), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7374 (100%) markers passed all criteria

In total, 822 (100%) people passed all criteria

> summary(qc2)

$ Per-SNP fails statistics’
NoCall NoMAF NoHWE Redundant Xsnpfail
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NoCall 0 0 0
NoMAF NA 8 0
NoHWE NA NA 0
Redundant NA NA NA
Xsnpfail NA NA NA

$ Per-person fails statistics’

O O O O

NA

IDnoCall HetFail IBSFail isfemale

IDnoCall 0 0
HetFail NA 0
IBSFail NA NA
isfemale NA NA
ismale NA NA
isXXY NA NA
otherSexErr NA NA

0
0
0
NA
NA
NA
NA

> data2 <- data2[qc2$idok, qc2$snpok]

0
0
0
0
NA
NA
NA

Answer (Ex. 12) — The list of genetic outliers is

> cl1

O O O O O

ismale isXXY otherSexErr

0

O O O O

NA
NA

0

O O O O O

NA

= O O O O O O

[1] "id2097" "id2126" "id2878" "id3021" "id3176" "id4554" "id7436" "id7533"
[9] "id9396" "id9546" "id4021" "id2171" "id6954" "id2136" "id5056" "id1751"
[17] "id6626" "id2970" "id1300" "id8639" "id1729" "id9398" "id9904" "id858"

Answer (Ex. 13) —:
> table(phdata(data2)$dm2)

0 1
432 390

Answer (Ex. 14) —:
> nsnps(data2)
[1] 7374

Answer (Ex. 15) — No:
> descriptives.marker (data2) [2]

$ Cumulative distr. of number of SNPs out of HWE, at different alpha’

X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 2

Prop 0 0.001 0.009 0.043

Answer (Ex. 16) — :

> qts <- gtscore(dm2, data2, trait
> gqts$lam

5.000 64.000 317.000 7374

1

"binomial")
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$estimate
[1] 1.137274

$se
[1] 0.001172870

$iz0
[1] 1.127215

$iz2
[1] 1

Answer (Ex. 17) — :

> resl <- gtscore(dm2, data = data2, times = 200, quiet = TRUE,
+ trait = "binomial')

> dsl1 <- descriptives.scan(res1)

> dsi
Chromosome Position N effB P1df Pcildf effAB
rs7903146 1 1047389 816 0.4663716 0.004975124 0.005 0.5165064
rs289981 1 1043860 811 1.6327097 0.055000000 0.170 1.2487923
rs3436694 2 8921418 814 2.1270661 0.095000000 0.225 1.9805556
rs70099 2 8857747 812 2.3298762 0.135000000 0.280 2.1543408
rs7064741 1 1044233 814 0.6088646 0.215000000 0.480 0.5517814
rsb743183 1 648911 812 0.4432286 0.255000000 0.525 0.4007812
rs2343657 1 645412 813 2.1374905 0.325000000 0.615 0.6187500
rs2975760 3 10518480 817 1.5220224 0.355000000 0.675 1.1119884
rs3074653 2 8915495 815 1.7087204 0.520000000 0.775 1.5982435
rs8951659 1 642864 812 0.5065113 0.545000000 0.795 0.4521634
effBB P2df
rs7903146 0.1017361 0.010
rs289981 2.2939721 0.115
rs3436694 Inf 0.190
rs70099 Inf 0.280
rs7064741 0.4875283 0.335
rsb743183 0.6477273 0.340
rs2343657 1.5130058 0.430
rs2975760 3.6893705 0.040
rs3074653 4.0716418 0.900
rs8951659 0.9731343 0.455

There is a SNP which is empirically genome-wide significant in the data. To get
the list of 'top’ 10 SNPs:

> snpsl <- rownames (ds1)
> snpsli

[1] "rs7903146" "rs289981" "rs3436694" "rs70099" "rs7064741" "rsb5743183"
[7] "rs2343657" "rs2975760" "rs3074653" "rs8951659"
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Answer (Ex. 18) — There is little overlap between SNPs before and after
QC:
> snps0

[1] "rs3845221" "rs4015712" "rs4266194" "rs8284432" "rs2784788" "rs4804116"
[7] "rs3632063" "rs2601410" "rs6934167" "rs6933749"

> snpsi1

[1] "rs7903146" "rs289981" "rs3436694" "rs70099" "rs7064741" "rs5743183"
[7] "rs2343657" "rs2975760" "rs3074653" "rs8951659"

Answer (Ex. 19) —:

> data(ge03d2c)
> snps1

[1] "rs7903146" "rs289981" "rs3436694" "rs70099" "rs7064741" "rs5743183"
[7] "rs2343657" "rs2975760" "rs3074653" "rs8951659"

> confdat <- ge03d2c[, snps1]
> rep <- gtscore(dm2, confdat, times = 10000, quiet = TRUE)

> descriptives.scan(rep)

Chromosome Position N effB P1df Pcildf effAB
rs2975760 3 10518480 192 0.16759919 0.0176 0.5286 0.2363080345
rs7903146 1 1047389 191 -0.20235475 0.0401 0.6400 -0.2327637890
rs289981 1 1043860 193 0.13512064 0.1289 0.7859 0.0166666667
rs7064741 1 1044233 193 -0.13146201 0.1928 0.8642 -0.2232316677
rs3436694 2 8921418 193 0.17717855 0.2593 0.8924 0.1221340388
rs3074653 2 8915495 190 0.15567151 0.2856 0.8994 0.1088501292
rsb743183 1 648911 191 -0.09809264 0.8800 0.9964 -0.1142919106
rs8951659 1 642864 194 -0.07196030 0.9648 0.9995 -0.0761670762
rs70099 2 8857747 192 0.04474666 1.0000 1.0000 0.0002587992
rs2343657 1 645412 193 -0.01296176 1.0000 1.0000 -0.3809523810
effBB P2df
rs2975760 0.24878575 0.0221
rs7903146 -0.25359712 0.0859
rs289981 0.19727891 0.2085
rs7064741 -0.06719368 0.0815
rs3436694 0.58641975 0.4053
rs3074653 0.59722222 0.3610
rsb743183 -0.12578616 0.9951
rs8951659 -0.12121212 0.9999
rs70099 0.56547619 0.9974
rs2343657 -0.26556777 0.7644

Answer (Ex. 20) — Two-stage P-value is

> snpsi
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[1] "rs7903146" "rs289981" "rs3436694" "rs70099" "rs7064741" "rsb5743183"
[7] "rs2343657" "rs2975760" "rs3074653" "rs8951659"

> finres <- matrix(NA, 10, 3)

> colnames(finres) <- c("Stage 1", "Replication", "Combined")

> rownames (finres) <- snpsl

> for (i in 1:10) {

+ finres[i, 1] <- res1$Pc1df[which (snpnames(data2) == snps1[i])]
+ finres[i, 2] <- rep$P1df[which (snpnames (confdat) == snpsi[i])]
+ finres[i, 3] <- finres[i, 1] * finres[i, 2]
+ }

>

finres

Stage 1 Replication Combined

rs7903146 0.005 0.0401 0.0002005
rs289981 0.170 0.1289 0.0219130
rs3436694 0.225 0.2593 0.0583425
rs70099 0.280 1.0000 0.2800000
rs7064741 0.480 0.1928 0.0925440
rsb743183 0.525 0.8800 0.4620000
rs2343657 0.615 1.0000 0.6150000
rs2975760 0.675 0.0176 0.0118800
rs3074653 0.775 0.2856 0.2213400
rs8951659 0.795 0.9648 0.7670160
> for (i in 1:10) {
+ if (finres([i, 3] <= 0.05) {
+ print(c("-—————--- ", rownames(finres) [i], "----—-- ")
+ print (c(rownames (finres) [i], "stage 1:"))
+ ph <- phdata(data2)$dm2
+ gt <- as.numeric(data2[, rownames(finres)[i]])
+ print (summary (glm(ph ~ gt, family = binomial))$coef)
+ print (c(rownames (finres) [i], "stage 2:"))
+ ph <- phdata(confdat)$dm2
+ gt <- as.numeric(confdat[, rownames(finres)[i]])
+ print (summary(glm(ph ~ gt, family = binomial))$coef)
+ print (c(rownames (finres) [i], "Joint:"))
+ ph <- c(phdata(data2)$dm2, phdata(confdat)$dm2)
+ gt <- c(as.numeric(data2[, rownames(finres)[i]]), as.numeric(confdat/[,
+ rownames (finres) [i]]))
+ print (summary (glm(ph ~ gt, family = binomial))$coef)
+ }
+}
[1] "= " "rs7903146" "---———- "
[1] "rs7903146" "stage 1:"

Estimate Std. Error z value Pr(>lzl)
(Intercept) 0.1004150 0.08025465 1.251204 2.108599e-01
gt -0.7630117 0.15392190 -4.957136 7.154008e-07
[1] "rs7903146" "stage 2:"

Estimate Std. Error z value Pr(>lzl)

(Intercept) 0.001895645 0.1686559 0.01123972 0.991032189
gt -0.902521348 0.3296467 -2.73784449 0.006184331
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[1] "rs7903146" "Joint:"

Estimate Std. Error =z value Pr(>lzl)
(Intercept) 0.08187868 0.0724555 1.130055 2.584531e-01
gt -0.79004797 0.1394662 -5.664799 1.471974e-08

[1] [ " nyrs289981" nW_____

[1] "rs289981" "stage 1:"

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.7918682 0.1736335 -4.560573 5.101414e-06
gt 0.4981392 0.1125441 4.426170 9.592110e-06
[1] "rs289981" "stage 2:"

Estimate Std. Error z value Pr(>lzl)
(Intercept) -1.0644645 0.383275 -2.777287 0.005481483
gt 0.5699411 0.241041 2.364499 0.018054487
[1] "rs289981" "Joint:"

Estimate Std. Error z value Pr(>lzl)
(Intercept) -0.8378836 0.1580303 -5.302043 1.145138e-07
gt 0.5079593 0.1018453 4.987556 6.114795e-07
[1] "==——memo " "rs2975760" "-———-—-- "
[1] "rs2975760" "stage 1:"

Estimate Std. Error z value Pr(>lzl)
(Intercept) -0.3167722 0.09060954 -3.496014 0.0004722637
gt 0.4227167 0.10882703 3.884299 0.0001026257
[1] "rs2975760" "stage 2:"

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.5969939 0.1928321 -3.095926 0.001961992
gt 0.6942268 0.2323045 2.988435 0.002804103
[1] "rs2975760" "Joint:"

Estimate Std. Error z value Pr(>lzl)
(Intercept) -0.3687369 0.08189494 -4.502561 6.713952e-06
gt 0.4727400 0.09845053 4.801802 1.572438e-06

> sigsnps <- rownames(finres) [finres[, "Combined"] <= 0.05]
> sigsnps
[1] "rs7903146" "rs289981"

At the first glance, SNPs

rs7903146

may be claimed significant because joint p-values is < 0.05 and the effects are
consistent. Generally, a more thorough simulation experiment should be per-
formed.

"rs2975760"

Answer (Ex. 21) — SNP "rs7903146” had empirical p-value < 0.05 at both
stages, and very strong joint significance. It can be claimed as replicated.

You can check if any of the SNPs you have identified as significant or replicated
are the ones which were simulated to be associated with dm2 by using the com-
mand show.ncbi(c("snpnamel","snpname2","snpname3")) where snpnameX
stands for the name of your identified SNP. The "true” SNPs can be found on
NCBI and some are located in known T2D genes (just because we used these
names to name the ’significant” ones).



Chapter 6

G WA analysis in presence
of stratification: theory

In genetic association studies, we look for association between a genetic poly-
morphism and the value of a trait of interest. The best scenario — the one we
always hope for — is that the observed association results from causation, that
is the polymorphism studied is functionally involved in the control of the trait.
However, association has no direction, and making causal inference in epidemi-
ology in general and in genetic epidemiology in particular is usually not possible
based on statistical analysis only.

In fact, most associations observed in genetic studies are due to a confounder
—an (unobserved) factor which is associated with both the genetic polymorphism
and the trait analysed. Presence of such factor leads to induced, “secondary”
correlation between the trait and the polymorphism; if we would have controlled
for that factor in the association model, the relation between the polymorphism
and the trait would have gone.

There are two major types of confounders leading to induced correlation in
genetic association studies. One type is “good” confounding of association by
the real, unobserved functional variant, which is, as a rule, not present on the
SNP array, but is in linkage disequilibrium (LD) with typed SNP. Under this
scenario, the functional variant is associated with the trait because of causative
relation; at the same time it is associated with a typed polymorphism located
nearby because of LD. This confounding induces secondary correlation between
the typed polymorphism and the trait, making localistion of the true functional
polymorphism (LD mapping) possible.

Other major type of confounding observed in genetic association studies is
confounding by population (sub)structure. Let us consider a study in which sub-
jects come from two distantly related populations, say Chinese and European.
Due to genetic drift, these two populations will have very different frequencies
at many loci throughout the genome. At the same time, these two populations
are different phenotypically (prevalence of different disease, mean value of quan-
titative traita) due to accumulated genetic and cultural differences. Therefore
any of these traits will show association with multiple genomic loci. While some
of these associations may be genuine genetic associations in a sense that ei-
ther the polymorphisms themselves, or the polymorphisms close by are causally
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involved, most of these associations will be genetically false positives — noise as-
sociations generated by strong genetic and phenotypic divergence between the
two populations.

The scenario described above is extreme and indeed it is hard to imagine a
genetic asociation study in which two very distinct populations are so blintly
mixed and analysed not taking this mixture into account. However, a more
subtle scenario where several slighly genetically different populations are mixed
in the same study is frequently the case and a matter of concern in GWA studies.

In this chapter, we will define what is genetic structure, and how it can be
quantified (section ; what are the effects of genetic structure on the standard
association tests (section and specific association tests which take possible
genetic structure into account (section [6.3)).

6.1 Genetic structure of populations

A major unit of genetic structure is a genetic population. Different definitions
of genetic population are available, for example Wikipedia defines population
(biol.)| as "the collection of inter-breeding organisms of a particular species”. The
genetics of populations is | "the study of the allele frequency distribution and
change under the influence of ...evolutionary processes”. In the framework of
population genetics, the main characteristics of interest of a group of individuals
are their genotypes, frequencies of alleles in this group, and the dynamics of
these distributions in time. While the units of interest of population genetics
are alleles, the units of evolutionary processes are acting upon are organisms.
Therefore a definition of a genetic population should be based on the chance
that different alleles, present in the individuals in question can mix together; if
such chance is zero, we may consider such groups as different populations, each
described by its own genotypic and allelic frequencies and their dynamic. Based
on these considerations, a genetic population may be defined a in the following
way:

Two indwviduals, I1 and I, belong to the same population if (a) the prob-
ability that they would have an offspring in common is greater then zero and
(b) this probability is much higher than the probability of Iy and Iy having an
offspring in common with some individual I3, which is said to belong to other
genetic population.

Here, to have an offspring in common does not imply having a direct off-
spring, but rather a common descendant in a number of generations.

However, in gene discovery in general and GWA studies in particular we are
usually not interested in future dinamics of alleles and genotypes distributions.
What is the matter of concern in genetic association studies is potential common
ancestry — that is that individuals may share common ancestors and thus share
in common the alleles, which are exact copies of the same ancestral allele. Such
alleles are called "identical-by-descent”, or IBD for short. If the chance of IBD is
high, this reflects high degree of genetic relationship. As a rule, relatives share
many features, both environmental and genetic, which may lead to confounding.

Genetic relationship between a pair of individuals is quantified using the
“coefficient of kinship”, which measures that chance that gametes, sampled at
random from these individuals, are IBD.


http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Population_genetics
http://en.wikipedia.org/wiki/Population_genetics
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Thus for the purposes of gene-discovery we can define genetic population use
retrospective terms and based on the concept of IBD:

Two individuals, Iy and I3, belong to the same genetic population if (a)
their genetic relationship, measured with the coefficient of kinship, is greater
then zero and (b) their kinship is much higher than kinship between them and
some indiwidual I3, which is said to belong to other genetic population.

One can see that this definition is quantitative and rather flexible (if not
to say arbitrary): what we call a "population” depends on the choice of the
threshold for the "much-higher” probability. Actually, what you define as "the
same” genetic population depends in large part on the scope aims of your study.
In human genetics literature you may find references to a particular genetically
isolated population, population of some country (e.g. ”German population”,
"population of United Kingdom”), European, Caucasoid or even general hu-
man population. Defining a population is about deciding on some probability
threshold.

In genetic association studies, it is frequently assumed that study partici-
pants are "unrelated” and "come from the same genetic population”. Here, "un-
related” means, that while study participants come from the same population
(so, there is non-zero kinship between them!), this kinship is so low that it has
very little effect on the statistical testing procedures used to study association
between genes and phenotypes.

In the following sections we will consider the effects of population structure
on the istribution of genotypes in a study population. We will start with as-
sumption of zero kinship between study participants, which would allow us to
formulate Hary-Weinberg principle (section . In effect, there is no such
thing as zero kinship between any two organisms, however, when kinship is very
low, the effects of kinship on genotypic distribution are minimal, as we will see
in section The effects of substructure — that is when study sample consist
of several genetic populations — onto genotypic distribution will be considered
in section [6.1.3] Finally, we will generalize the obtained results for the case
of arbitrary structures and will see what are the effects of kinship onto joint
distribution of genotypes and phenotypes in section ?77.

6.1.1 Hardy-Weinberg equilibrium

To describe genetic structure of populations we will use rather simplistic model
approximating genetic processes in natural populations. Firstly, we will assume
that the population under consideration has infinitely large size, which implies
that we can work in terms of probabilities, and no random process take place.
Secondly, we accept non-overlapping

generation = gametic pool = generation

model. This model assumes that a set of individuals contributes gametes to
genetic pool, and dies out. The gametes are sampled randomly from this pool
in pairs to form individuals of the second generation. The selection acts on indi-
viduals, while mutation occurs when the gametic pool is formed. The key point
of this model is the abstract of gametic pool: if you use that, you do not need to
consider all pair-wise mating between male and female individuals; you rather
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consider some abstract infinitely large pool, where gametes are contributed to
with the frequency proportional to that in previous generation. Interestingly,
this rather artificial construct has a great potential to describe the phenomena
we indeed observe in nature.

In this section, we will derive Hardy-Weinberg low (this analog of the Mendel’s
low for populations). The question to be answered is, if some alleles at some
locus segregate according to Mendel’s lows and aggregate totally at random,
what would be genotypic distribution in a population?

Let us consider two alleles, wild type normal allele (N) and a mutant (D),
segregating at some locus in the population and apply the "generation = gametic
pool = generation” model. Let us denote the ferquency of the D allele in the
gametic pool as ¢, and the frequency of the other allele, N, as p = 1 — gq.
Gametes containing alleles N and D are sampled at random to form diploid
individuals of the next generation. The probability to sample a "N” gamete is
p, and the probability that the second sampled gamete is also "N” is also p.
According to the rule, which states that joint probability of two independent
events is a product of their probabilities, the probability to sample "N” and "N”
is p-p = p?. In the same manner, the probability to sample ”D” and then ”D”
is ¢ - ¢ = ¢>. The probability to sample first the mutant and then normal allele
is q - p, the same is the probability to sample ”D” first and ”/N” second. In most
situations, we do not (and can not) distinguish heterozygous genotypes DN and
N D and refer to both of them as "N D”. In this notation, frequency of ND will
beg-p+p-q=2-p-q. Thus, we have computed the genotypic distribution
for a population formed from a gametic pool in which the frequency of D allele
was q.

To obtain the next generation, the next gametic pool is generated. The
frequency of D in the nect gametic pool is ¢% + % -2.p-q. Here, ¢ is the
probability that a gamete-contributing individual has genotype DD; 2 -p - q
is the probability that a gamete-contributing individual is ND, and % is the
probability that ND individual contributes D allele (only half of the gametes
contributed by individuals with N D genotype are D); see Figure m Thus the
freqeuncy of D in the gametic pool is ¢ + % ‘2-p-gq=¢q-(q+p) =q— exactly
the same as it was in previous gametic pool.

Thus, if assumptions of random segregation and aggregation hold, the ex-
pected frequency of NN, ND and DD genotypes are stable over generations
and can be related to the allelic frequencies using the follwoing relation

P(NN) =(1—-q)- (1-gq) = p?,
P(ND) =q-(1-q¢)+(1-q)-q =2-p-q, (6.1)
P(DD) =gq-q = ¢

which is known as Hardy-Weinberg equlibrium (HWE) point.

There are many reasons, in which random segregation and aggregation, and,
consequently, Hardy-Weinberg equilibrium, are violated. It is very important
to realize that, especially if the study participants are believed to come from
the same genetic population, most of the times when deviation from HWE is
detected, this deviation is due to technical reasons, i.e. genotyping error. There-
fore testing for HWE is a part of the genotypic quality control procedure in most
studies. Only when the possibility of technical errors is eliminated, other pos-
sible explanations may be considered. In a case when deviation from HWE can
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Individuals
P(DD) P(DN) P(NN)

NN N

P(D) P(N)=1-P(D)
Alleles

Figure 6.1: Genotypic and allelic frequency distribution in a population; ¢ =
P(D) = P(DD) + % - P(DN).

not be explained by technical reasons, the most frequent explanation would be
that the sample tested is composed of representatives of different genetic pop-
ulations, or more subtle genetic structure. However, unless study participants
represent a mixture of very distinct genetic populations — the chances of which
coming unnoticed are low — the efffects of genetic structure on HWE are difficult
to detect, at least for any single marker, as you will see in the next sections.

6.1.2 Inbreeding

Inbreeding is preferential breeding between (close) relatives. An extreme ex-
ample of inbreeding is a selfing, a breeding system, observed in some plants.
The inbreeding is not uncommon in animal and human populations. Here, the
main reason for inbreeding are usually geographical (e.g. mice live in very small
interbred colonies — dems — which are usually established by few mice and are
quite separated from other dems) or cultural (e.g. noble families of Europe).

Clearly, such preferential breeding between relatives violates the assumption
of random aggregation, underling Hardy-Weinberg principle. Relatives are likely
to share the same alleles, inherited from common ancestors. Therefore their
progeny has an increased chance of being autozygous — that is to inherit a copy
of exactly the same ancestral allele from both parents. An autozygous genotype
is always homozygous, therefore inbreeding should increase the frequency of
homozygous, and decrease the frequency of heterozygous, genotypes.

Inbreeding is quantified by the coefficient of inbreeding, which is defined as
the probability of autozygosity. This coefficient may characterize an individual,
or a population in general, in which case this is expectation that a random
individual from the population is autozygous at a random locus. The coefficient
of inbreeding is closely related to the coefficient of kinship, defined earlier for a
pair of individuals as the probability that two alleles sampled at random from
these individuals, are IBD. It is easy to see that the coefficient of inbreeding for
a person is the same as the kinship between its parents.
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Figure 6.2: Inbred family structure (A) and probability of individual "G” being
autozygous for the "Red” ancestral allele

Let us compute the inbreeding coefficient for the person J depicted at figure
[6:2] Jis a child of G and H, who are cousins. J could be autozygous at for
example "red” allele of founder grand-grand-parent A, which could have been
transmitted through the meioses A = D, D = G, and G = J, and also
through the path A = E, E = H, and H = J (Figure B). What is the
chance for J to be autozygous for the "red” allele? The probability that this
particular founder allele is transmitted to D is 1/2, the same is the probability
that the allele is transmitted from D to G, and the probability that the allele is
transmitted from G to J. Thus the probability that the "red” allele is transmitted
from A to Jis 1/2-1/2-1/2 =1/23 = 1/8. The same is the chance that that
allele is transmitted from A to E to H to J, therefore the probability that J
would be autozygous for the red allele is 1/23 - 1/23 = 1/2° = 1/64. However,
we are interested in autozygosity for any founder allele; and there are four such
alleles ("red”, "green”, "yellow” and ”blue”, figure B). For any of these the
probability of autozygosity is the same, thus the total probability of autozygosity
for Jis4-1/64=1/2* =1/16.

Now we shall estimate the expected genotypic probability distribution for a
person characterized with some arbitrary coefficient of inbreeding, F' — or for a
population in which average inbreeding is F'. Consider a locus with two alleles,
A and B, with frequency of B denoted as ¢, and frequency of A as p =1 — gq.
If the person is autozygous for some founder allele, the founder allele may be
either A, leading to autozygous genotype AA, or the founder allele may be B,
leading to genotype BB. The chance that the founder allele is A is p, and the
chance that the founder allele is B is g. If the person is not autozygous, then the
expected genotypic frequencies follow HWE. Thus, the probability of genotype
AAis (1 — F)-p?+ F - p, where the first term corresponds to probability that
the person is AA given it is not inbred (p?), multiplied by the probability that
it is not inbred (1 — F'), and the second term corresponds to probability that a
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Figure 6.3: Genotypic probability distribution for a locus with 50% frequency
of the B allele; black bar, no inbreeding; red, F' = 0.001; green, F' = 0.01; blue,
F=0.05

person is AA given it is inbred (p), multiplied by the probability that the person
is inbred (F'). This computations can be easily done for all genotypic classes
leading to the expression for HWE under inbreeding.

P(AA) =(1—-F)-p>+F-p =p’+p-q-F
P(AB) =(1-F)-2-p-q+F-0 =2-p-q-(1—-F) (6.2)
P(BB) =(1—f)-¢*+F-q =¢+p-qF

How much is inbreeding expected to modify genotypic distribution in human
populations? The levels of inbreeding observed in human genetically isolated
populations typically vary between 0.001 (low inbreeding) to 0.05 (relatively
high), see[PARDO et al|(2005)); RUDAN et al|(2003). The genotypic distribution
for ¢ = 0.5 and different values of the inbreeding coefficient is shown at the figure
0. O

What is the power to detect deviation from HWE due to inbreeding? For
that, we need to estimate the expectation of the x? statistics (the non-centrality
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parameter, NCP) used to test for HWE. The test for HWE is performed using
standard formula

2 (0; — Ey)?
T? = Z 7 (6.3)
where summation is performed over all classes (genotypes); O; is the count
observed in i-th class, and E; is the count expected under the null hypothesis
(HWE). Under the null hypothesis, this test statistic is distributed as y? with
number of degrees of freedom equal to the number of genotypes minus the
number of alleles.

Thus the expectation of this test statistic for some ¢, F', and N (sample size)
is

E[T?] = (N(q2+p[i1]F)qu2)2 (N2pq(1;[§)*N2pq)2 + (N(p2+1;3F2)*Np2)2
3 p
_ (N]]\DI?F) + & 2Nqu) + (Npqu)
:Np2F2+2Npq % +Nq2F (6.4)
= NF*(p* +2pq + ¢%)
=N.F?

Interestingly, the non-centrality parameter does not depend on the allelic
frequency. Given the non-centrality parameter, it is easy to compute the power
to detect deviation from HWE for any given F'. For example, to achieve the
power of > 0.8 at o = 0.05, for a test with one degree of freedom the non-
centrality parameter should be > 7.85. T hus if F' = 0.05, to have 80% power,
N - F2 7 85 __ 785 __
3140 people

Thus, even in populations with strong inbreeding, rather large sample sizes
are required to detect the effects of inbreeding on HWE at a particular locus,
even at relatively weak significance level of 5%.

While the chance that deviation from HWE due to inbreeding will be sta-
tistically significant is relatively small, inbreeding may have clear effects on the
results of HWE testing in GWA study. Basically, if testing is performed at
a threshold corresponding to nominal significance «, a proportion of markers
which show significant deviation will be larger than «. Clearly, how large this
proportion will be depends on the inbreeding and on size of the study — expec-
tation of T2 is a function of both N an F. A proportion of markers showing
significant deviation form HWE at different values of inbreeding, sample size,
and nominal significance threshold, is shown in table While deviation of
this proportion from nominal one is minimal at large a’s and small sample sizes
and coeflicients of inbreeding, it may be 10-fold and even 100-fold higher than
the nominal level at reasonable values of N and F' for smaller thresholds.

~0.0025

6.1.3 Mixture of genetic populations: Wahlund’s effect

Consider the following artificial example. Imagine that recruitment of study
participants occurs at a hospital, which serves two equally size villagec(V; and
(V2); however, the villages are very distinct because of cultural reasons, and
most marriages occur within a village. Thus these two villages represent two
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Table 6.1: Expected proportion of markers deviating from HWE in a sample of
N people coming from a population with average inbreeding F. Proportion of
markers is shown for particular test statistic threshold, corresponding to nominal
significance a.

(6%
N F 0.05 1072 5-1078
0.001  0.0501 1.008 - 10~ 1% 5.077-1078
1,000 0.005 0.0529  1.205-10~* 7.025-1078
0.010  0.0615  1.885-10~* 14.503 - 108
0.001  0.0511 1.081- 107 5.784-1078
10,000  0.005  0.0790  3.544-10~* 36.991- 108
0.010  0.1701  19.231-10~*  426.745-10~8

Table 6.2: Genotypic proportions in a mixed population
Village %Sample p(A) P(AA) P(AB) P(BB)

%1 50 0.9 0.81 0.18 0.01

Vs 50 0.2 0.04 0.32 0.64
Observed

Pooled 100 0.55  0.425 0.25 0.325
Expected

0.30 0.50 0.20
Difference

0.125 —0.250 0.125

genetically distinct populations. Let us consider a locus with two alleles, A and
B. The frequency of A is 0.9 in V; and it is 0.2 in V5. In each population,
marriages occur at random, and HWE holds for the locus. What genotypic
distribution is expected in a sample ascertained in the hospital, which represents
a 1 : 1 mixture of the two populations?

The expected gentypic proportions are presented in table[6.2] First, assum-
ing that HWE holds for each of the populations, we can compute genotypic
proportions within these (rows 1 and 2 of table . If our sample represents
a 1 : 1 mixture of these populations, then the frequency of some genotype is
also 1 : 1 mixture of the respective frequencies. For example, frequency of AA
genotype would be % + % = 0.425, and so on. The frequency of the A allele
in pooled sample will be 0.425 + % = 0.55. Based on this frequency we would
expect genotypic frequency distribution of 0.3, 0.5 and 0.2, for AA, AB, and
BB, respectively. As you can see the observed distribution has much higher
frequencies of homozygous genotypes — excess of homozygotes.

It is notable, that the differences between the observed homozygotes fre-
quencies and these expected under HWE are both 0.125, and, consequently, the
observed heterozygosity is less than that expected by 0.125 - 2 = 0.25.

The phenomenon of deviation from HWE due to the fact that considered
population consist of two sub-populations, is known as[’"Wahlund’s effect”, after
the scientist who has first considered and quantified genotypic distribution under
such model WAHLUND| (1928)).

Such marked differences between observed and expected under HWE are


http://en.wikipedia.org/wiki/Wahlund_effect
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Table 6.3: Genotypic proportions of PPAR~y Prol2Ala genotype in a mixed
population

Ethnics %Sample p(Pro) P(Pro/Pro) P(Pro/Ala) P(Ala/Ala)
Caucasian 50 0.85 0.7225 0.2550 0.0225
Afro-American 50 0.99 0.9801 0.0198 0.0.001
Observed
Pooled 100 0.92 0.8513 0.1374 0.0113
Expected
0.8464 0.1472 0.0064
Difference
0.0049 —0.0098 0.0049

very easily detected; for the above example, a sample of ~ 35 people is enough
to reject the hypothesis of HWE (power > 80% at o = 0.05).

However, the differences we can see in real life are not so marked. For
example, the common Pro allele at position 12 of the peroxisome proliferator-
activated receptor gamma is associated with increased risk for type 2 diabetes.
The frequency of the Pro allele is about 85% in European populations and
Caucasian-Americans, about 97% in Japan and 99% in African-American (see
table 1 from [RUiz-NARVAAEZ (2005)). Table shows hypothetical observed
and expected genotypic proportions in a sample composed of 50% Caucasians
and 50% African-American.

You can see that observed distribution and the one expected under HWE are
very similar; only a sample as large as 1,800 people would allow detection of the
deviation from HWE (power > 80% at o = 0.05). The situation is similar for
most genes observed in real life — while the frequencies may be (or may be not)
very different for populations, which diverged long time ago, for relatively close
populations expected frequency differences are small and large sample sizes are
required to detect deviation from HWE due to Wahlund’s effect at a particular
fixed locus.

Let us summarize, what genotypic proportions are expected in a sample,
which is a mixture of two populations. Let each population is in HWE, and
the frequency of the B allele is ¢; in population one and ¢y in population two.
Let the proportion of individuals coming from population one is m in the mixed
population, and consequently the proportion of individuals from population two
is (1 — m). The allelic frequencies, and genotypic distributions in the original
and mixed populations are presented in tale

The frequency of the B allele in the mixed population is just the weighted
average of the allelic frequencies in the two populations, § = m-q; + (1 —m) - ¢o.
Let us denote the frequency of the A allele as p = 1 —q. It can be demonstrated
that the genotypic frequency distribution in the mixed sample is the function of
the frequency of allele B in the sample, g, and "disequilibrium” parameter D:

P(AA) =p*+D-q-Fq
P(AB) =2-p-q-(1—Fy) (6.5)
P(BB) =@ +Dp-q- Fy
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Table 6.4: Expected genotypic proportions in a mixed population; Fy; is defined

by equation
Population  Prop. p(B) P(AA) P(AB) P(BB)
Py m Q1 I 2y a
Py (1—m) q2 P 2p2q2 %
Observed
Pooled 1.0 7 =mq mp? 2mp1qa mq?
+(1—=m)qe; +(1—m)pd; +2(1 —m)paga;  +(1—m)g3
Expected
P’ 2pq 7
Difference
ZTqut 72p7qut mFst
where
oL (1—=m)- (g1 — g)* (6.6)

pP-q

You can see that equation [6.5] expressing the genotypic frequencies distri-
bution under Wahlund’s effect, is remarkably similar (actually, is specifically
re-written in a form similar) to the equation expressing the genotypic pro-
portions under the effects of inbreeding. Again, the reason is that Fy; (as well
as F' of equation is easily estimated from the data as the ratio between
the observed and expected variances of the genotypic distributions. Then the
expected non-centrality parameter for the test of HWE is simply N - F2, where
N is the sample size. Therefore our results concerning the proportion of tests
expected to pass a particular significance threshold when genome-wide data are
analyzed (table hold, with replacement of F' with F;.

We can compute that the values of F;, corresponding to the population
mixtures presented in tables and are 0.49 and 0.067, respectively, which
gives us a shortcut to estimate the sample size required to detect deviation from
HWE due to Wahlund’s effect (at o = 0.05 and power 80%): N > 7.85/0.492 ~
32 and N > 7.85/0.067% ~ 1771.

A typical value of F; for European populations is about 0.002 (up to 0.023NELIS
et al.|(2009)); very large sample sizes are required to detect deviation from HWE
at any given locus at such small Fy;’s. However, the effects onto the proportion
of markers failing to pass HWE test in GWA may be visibly inflated (table .

6.2 Effects of population structure on standard
tests for association

6.2.1 Standard tests for genetic association

Standard tests for association between genes and a binary trait are the test
for allele frequency difference between cases and controls, and the Armitage’s
trend test for proportions (that the proportion of cases changes across genotypic
groups). For quantitative traits, one of the standard tests is the score test for
association, which is closely related — even equivalent — to the Armitage’s trend
test.
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Table 6.5: Counts of cases and controls with different genotypes

Genotype
Status AA AB BB Total
Case 0 r1 ro R
Control ) $1 S9 S
Total no ny N9 N

Table 6.6: Counts of alleles in cases and controls

Status A B Total
Case 2-r9+7 r+2-1r9 2 R
Control 280+ 81 s14+2- 59 2.5
Total 2-ng+ny nL+2-ns 2-N

We will start with presenting the study data as 2x3 table, where the rows cor-
respond to the case/control status and columns correspond to genotypic groups,
and the cells contain counts of events (table . For example, rq is the number
of cases with genotype AA, sq is the number of controls with genotype AA and
SO on.

This table can be re-arranged in a 2x2 allelic table, presented in table
Each cell of this table contains the counts of alleles present in cases and controls,
e.g. total number of A alleles in cases is 27 (twice the number of cases who are
homozygous for the A allele) plus the number of A alleles present in heterozygous
cases (r1).

Based on these tables, we can test if the allelic frequency is different between
the cases and controls, using standard x? test, formulated as

2 (0; — E;)?
T Z Z (6.7)
where summation is performed over all cells (defined by combination of geno-
type/allele and phenotype); O; is the count observed in i-th class, and F; is
the count expected under the null hypothesis (equal frequencies in cases and
controls). Under the null hypothesis, this test statistic is distributed as y? with
number of degrees of freedom equal to the number of independent classes.

The null hypothesis assumes that the frequency of the A allele is the same in
both cases and controls, and is equal to the frequency for A in the total sample:
p= 2%0% Thus the expected count of A in cases is 2- R -p, and the expected
count of B alleles is 2+ R - (1 — p). Similarly, for cases, the expected count of A
is 2.5 - p, and the expected count of B is 2-5 - (1 —p).

Now, for the table we can r