
The GOSim package

Holger Fröhlich

January 14, 2010

1 Introduction

The Gene Ontology (GO) has become one of the most widespread systems for systemat-
ically annotating gene products within the bioinformatics community and is developed
by the Gene Ontology Consortium (22). It is specifically intended for describing gene
products with a controlled and structured vocabulary. GO terms are part of a Directed
Acyclic Graph (DAG), covering three orthogonal taxonomies or ”aspects”: molecular
function, biological process and cellular component. Two different kinds of relationship
between GO terms exist: the ”is-a” relationship and the ”part-of” relationship. Providing
a standard vocabulary across any biological resources, the GO enables researchers to use
this information for automated data analysis.

The GOSim package (6) provides the researcher with various information theoretic
similarity concepts for GO terms (16; 17; 11; 8; 12; 3; 4). Moreover, since version
1.1.5 GOSim contains several new similarity concepts, which are based on so-called
diffusion kernel techniques (9). Additionally GOSim implements different methods for
computing functional similarities between gene products based on the similarties between
the associated GO terms (21; 7; 19; 9; 5). This can, for instances, be used for clustering
genes according to their biological function (21; 7) and thus may help to get a better
understanding of the biological aspects covered by a set of genes.

Since version 1.1 GOSim additionally offers the possibility of a GO enrichment anal-
ysis using the topGO package (1). Hence, GOSim acts now as an umbrella for different
analysis methods employing the GO structure.

2 Usage of GOSim

To elucidate the usage of GOSim we show an example workflow and explain the employed
similarity concepts. We create a character vector of Entrez gene IDs, which we assume
to be from human:

> library(GOSim)

> genes = c("207", "208", "596", "901", "780", "3169", "9518",

+ "2852", "26353", "8614", "7494")

1

Next we investigate the GO annotation within the current ontology (which is biological
process by default):

> getGOInfo(genes)

2.1 Term Similarities

Let us examine the similarity of the GO terms for genes ”8614” and ”2852” in greater
detail:

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "Resnik", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 0.2862381 0.1850912 0.0000000 0.1974792 0.2862381

GO:0007267 0.1850912 0.3933669 0.0000000 0.1850912 0.1850912

GO:0007584 0.0000000 0.0000000 0.5993206 0.0000000 0.0000000

GO:0007165 0.1974792 0.1850912 0.0000000 0.1974792 0.1974792

GO:0007186 0.2862381 0.1850912 0.0000000 0.1974792 0.3466061

This calculates Resnik’s pairwise similarity between GO terms (16; 17):

sim(t, t′) = ICms(t, t
′) := max

t̂∈Pa(t,t′)
IC(t̂) (1)

Here Pa(t, t′) denotes the set of all common ancestors of GO terms t and t′, while IC(t)
denotes the information content of term t. It is defined as (e.g. (12))

IC(t̂) = − logP (t̂) (2)

i.e. as the negative logarithm of the probability of observing t̂. The information content
of each GO term is already precomputed for each ontology based on the empirical ob-
servation, how many times a specific GO term or any of its direct or indirect offsprings
appear in the annotation of the GO with gene products.

> data("ICsBPhumanall")

> IC[c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186")]

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

3.093797 4.251696 6.477741 2.134449 3.746283

This loads the information contents of all GO terms within ”biological process”. Likewise,
the data files ICsMFhumanall and ICsCChumanall contain the information contents of
all GO terms within ”molecular function” and ”cellular component” for human. Since

2

GOSim version 1.1.4.0 the information content of GO terms relies on the mapping of
Entrez gene IDs to GO terms provided by the libraries org.Dm.eg.db (fly), org.Hs.eg.db
(human), org.Mm.eg.db (mouse), org.Pf.plasmo.db (malaria), org.Rn.eg.db (rat) and
org.Sc.sgd.db (yeast). Additionally, it is possible to pass a user provided mapping via
the function setEvidenceLevel. Please refer to the manual pages for details. If only
GO terms having certain evidence codes should be considered, one must explicitely
calculate the corresponding information contents in the function calcICs. Again, more
information on this function can be found in the manual pages.

For the similarity computation in (Eq.: 1) normalized information contents are used,
which are obtained by dividing the raw information contents by its maximal value:

> IC[c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186")]/max(IC)

To continue our example from above, let us also calculate Jiang and Conrath’s pair-
wise similarity between GO terms, which is the default, for compairson reasons (8):

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 0.24891623 0.09203921 0.0000000 0.1463202 0.22517173

GO:0007267 0.09203921 0.32521888 0.0000000 0.1058657 0.08453053

GO:0007584 0.00000000 0.00000000 0.4508154 0.0000000 0.00000000

GO:0007165 0.14632024 0.10586565 0.0000000 0.1792028 0.13008555

GO:0007186 0.22517173 0.08453053 0.0000000 0.1300855 0.29291619

Jiang and Conrath’s similarity measure is defined as

sim(t, t′) = 1−min(1, IC(t)− 2ICms(t, t
′) + IC(t′)) (3)

i.e. the similarity between t and t′ is 0, if their normalized distance is at least 1.
Likewise, we can also compute Lin’s pairwise similarity between GO terms (11):

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "Lin", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.5447024 0 0.8165066 0.9046085

GO:0007267 0.5447024 1.0000000 0 0.6265295 0.5002649

GO:0007584 0.0000000 0.0000000 1 0.0000000 0.0000000

GO:0007165 0.8165066 0.6265295 0 1.0000000 0.7259126

GO:0007186 0.9046085 0.5002649 0 0.7259126 1.0000000

3

GO:0007166

GO:0007267

GO:0007154

GO:0007165

GO:0009987

GO:0008150

all

Figure 1: Example of a GO graph starting with leaves GO:0007166 and GO:0007267.

It is defined as:

sim(t, t′) =
2ICms(t, t

′)

IC(t) + IC(t′)
(4)

Resnik’s, Jiang-Conraths’s and Lin’s term similarities all refer to ICms(t, t
′), the

information content of the minimum subsumer of t and t′, i.e. of the lowest common an-
cestor in the hierarchy. For illustration let us plot the GO graph with leaves GO:0007166
and GO:0007267 and let us compute their minimum subsumer (see Fig. 1):

> library(igraph)

> G = getGOGraph(c("GO:0007166", "GO:0007267"))

> plot(igraph.from.graphNEL(G))

> getMinimumSubsumer("GO:0007166", "GO:0007267")

[1] "GO:0007154"

In contrast to the above defined similarity measures Couto et al. (4) introduced a
concept, which is not based on the minimum subsumer, but on the set of all disjunctive
common ancestors. Roughly speaking, the idea is not to consider the common ances-
tor having the highest information content only, but also others, if they are somehow
”separate” from each other, i.e. there is a path to t and t′ not passing any other of the
disjunctive common ancestors.

4

> getDisjCommAnc("GO:0007166", "GO:0007267")

[1] "GO:0007154" "GO:0009987"

In this case the set of disjunctive common ancestors only consists of the minimum sub-
sumer, because any path from the other ancestors to GO:0007166 and GO:0007267 would
have to pass the minimum subsumer (see Fig. 1).

Based on the notion of disjunctive common ancestors Resnik’s similarity concept can
be extended by defining:

sim(t, t′) = ICshare(t, t
′) =

1

|DisjCommAnc|
∑

t∈DisjCommAnc

IC(t) (5)

Likewise, Jiang-Conraths’s and Lin’s measures can be extended as well by replacing
ICms(t, t

′) by ICshare(t, t
′).

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "CoutoResnik", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 0.2862381 0.1143880 0.0000000 0.1161896 0.1974792

GO:0007267 0.1143880 0.3933669 0.0000000 0.1143880 0.1143880

GO:0007584 0.0000000 0.0000000 0.5993206 0.0000000 0.0000000

GO:0007165 0.1161896 0.1143880 0.0000000 0.1974792 0.1161896

GO:0007186 0.1974792 0.1143880 0.0000000 0.1161896 0.3466061

Finally, it should be mentioned that also the depth and density enriched term simi-
larity by Couto et al. (3) has been integrated into GOSim:

> setEnrichmentFactors(alpha = 0.5, beta = 0.3)

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "CoutoEnriched", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 0.08193225 0.09392804 NA 0.05378484 0.09574040

GO:0007267 0.09392804 0.15473753 NA 0.06856927 0.10896687

GO:0007584 NA NA 0.3591852 NA NA

GO:0007165 0.05378484 0.06856927 NA 0.03899802 0.06273313

GO:0007186 0.09574040 0.10896687 NA 0.06273313 0.12013577

Since version 1.1.5 GOSim contains several new similarity concepts, which are based
on so-called diffusion kernel techniques (9) rather than on the information theoretic ideas
presented before. For using these similarity measures it is necessary to pre-compute a
diffusion kernel on the Gene Ontology graph, e.g. via

5

> calc.diffusion.kernel(method = "diffKernelLLE")

The resulting kernel/similarity matrix is stored in a file called e.g. ’diffKernelLLEB-
Phumanall.rda’ (meaning local linear embedding diffusion kernel for ontology BP in
human using all evidence codes) in the current working directory. The file has then to
be moved to GOSim’s ’data’ directory. Please refer to the manual pages for more de-
tailed information. Once the kernel is created, it has to be loaded into the environment
first. Then similarities can be calculated:

> load.diffusion.kernel(method = "diffKernelLapl")

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "diffKernel", verbose = FALSE)

Since version 1.2 GOSim also contain Schlicker et al.’s and Li et al.’s GO term similar-
ity measures (19; 10), which are both an adaption of Lin’s similarity measure. Moreover,
the graph information content similarity by Pesquita et al. has been implemented (15).

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "relevance", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 0.24891623 0.09203921 0.0000000 0.1463202 0.22517173

GO:0007267 0.09203921 0.32521888 0.0000000 0.1058657 0.08453053

GO:0007584 0.00000000 0.00000000 0.4508154 0.0000000 0.00000000

GO:0007165 0.14632024 0.10586565 0.0000000 0.1792028 0.13008555

GO:0007186 0.22517173 0.08453053 0.0000000 0.1300855 0.29291619

2.2 Functional Gene Similarities

The special strength of GOSim lies in the possibility not only to calculate similarities for
individual GO terms, but also for genes based on their complete GO anntation. Since
GOSim version 1.1.5 for this purpose the following ideas have been implemented:

1. Maximum and average pairwise GO term similarity

2. Average of best matching GO term similarities (19).

3. Computation of a so-called optimal assignment of terms from one gene to those of
another one (7).

4. Similarity derived from Hausdorff distances between sets (5).

5. Embedding of each gene into a feature space: (21; 7) proposed to define feature
vectors by a gene’s maximum GO term similarity to certain prototype genes. More
simple (but probably also less accurate), (14) recently proposed to represent each

6

gene by a feature vector describing the presence/absence of all GO terms. The ab-
sence of each GO term is additionally weighted by its information content. Within
a feature space gene functional similarities naturally arise as dot products between
feature vectors. These dot products can be understood as so-called kernel func-
tions (20), as used in e.g. Support Vector Machines (2). Depending on the choice
of later normalization (see below) one can arrive at the cosine similarity (Eq.˜6),
at the Tanimoto coefficient (Eq.˜7) or at a measure similiar to Lin’s one (Eq.˜8,
Eq.˜4).

2.2.1 Normalization of Similarities

Often, people want to normalize similarities, e.g. on the interval [0, 1], for better inter-
pretation. To do so, we can perform the transformation

simgene(g, g
′)← simgene(g, g

′)√
simgene(g, g)simgene(g′, g′)

(6)

Provided simgene ≥ 0, the consequence will be a similarity of 1 for g with itself and
between 0 and 1 for g with any other gene. In case of a feature space embedding
this transformation is equivalent to computing the cosine similarity between two feature
vectors.

Another possibility is to use Lin’s normalization (see Eq. 4):

simgene(g, g
′)← 2simgene(g, g

′)

simgene(g, g) + simgene(g′, g′)
(7)

Furthermore, one can use a normalization in the spirit of the Tanimoto coefficient:

simgene(g, g
′)← simgene(g, g

′)

simgene(g, g) + simgene(g′, g′)− simgene(g, g′)
(8)

In case of a feature space embedding the transformation corresponds exactly to the
Tanimoto coefficient betweem two feature vectors.

We now give a more detailed overview over the different similarity concepts mentioned
above.

2.2.2 Maximum and Average Pairwise GO Term Similarity

The idea of the maximum pairwise GO term similarity is straight forward. Given two
genes g and g′ annotated with GO terms t1, ..., tn and t′1, ..., t

′
m we define the functional

similarity between between g and g′ as

simgene(g, g
′) = max

i = 1, , ..., n
j = 1, ...,m

sim(ti, t
′
j) (9)

where sim is some similarity measure to compare GO terms ti and t′j. Instead of com-
puting the maximum pairwise GO term similarity one may also take the average here.

7

2.2.3 Average of Best Matching GO Term Similarities

The idea of this approach (19) is to assign each GO term ti occuring in gene g to its best
matching partner t′πi in gene g′. Hence multiple GO terms from gene g can be assigned
to one GO term from gene g′. A similarity score is computed by taking the average
similarity of assigned GO terms. Since, however, genes can have an unequal number of
GO terms the result depends on whether GO terms of gene g are assigned to those of
gene g′ or vice versa. Hence, in (19) it was proposed to either take the maximum or the
average of both similarity scores. Both strategies are implemented in GOSim.

2.2.4 Optimal Assignment Gene Similarities

To elucidate the idea of the optimal assignment (7), consider the GO terms associated
with gene ”8614” on one hand and gene ”2852” on the other hand:

> getGOInfo(c("8614", "2852"))

8614 2852

go_id Character,3 Character,2

Term Character,3 Character,2

Definition Character,3 Character,2

IC Numeric,3 Numeric,2

Given a similarity concept sim to compare individual GO terms, the idea is now to assign
each term of the gene having fewer annotation to exactly one term of the other gene such
that the overall similarity is maximized. More formally the optimal assignment problem
can be stated as follows: Let π be some permutation of either an n-subset of natural
numbers {1, ...,m} or an m-subset of natural numbers {1, ..., n} (this will be clear from
context). Then we are looking for the quantity

simgene(g, g
′) =

{
maxπ

∑n
i=1 sim(ti, t

′
π(i)) if m > n

maxπ
∑m

j=1 sim(tπ(j), t
′
j) otherwise

(10)

The computation of (10) corresponds to the solution of the classical maximum weighted
bipartite matching (optimal assignment) problem in graph theory and can be carried out
in O(max(n,m)3) time (13). To prevent that larger lists of terms automatically achieve
a higher similarity we may further simgene divide 10 by max(m,n).

In our example, using Lin’s GO term similarity measure the following assignments
are found:

GO : 0007165 → GO : 0007267 (11)

GO : 0007186 → GO : 0007166 (12)

The resulting similarity matrix is:

8

> getGeneSim(c("8614", "2852"), similarity = "OA", similarityTerm = "Lin",

+ verbose = FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1.0000000 0.5103793

2852 0.5103793 1.0000000

Note the difference to a gene similarity that is just based on the maximum GO term
similarity and to a gene similarity that is based on the average of best matching GO
terms:

> getGeneSim(c("8614", "2852"), similarity = "max", similarityTerm = "Lin",

+ verbose = FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1.0000000 0.9046085

2852 0.9046085 1.0000000

> getGeneSim(c("8614", "2852"), similarity = "funSimMax", similarityTerm = "Lin",

+ verbose = FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1.0000000 0.8605575

2852 0.8605575 1.0000000

2.2.5 Gene Similarities In the Spirit of Hausdorff Metrics

Hausdorff metrics are a general concept for measuring distances between compact subsets
of a metric space. Let X and Y be the two sets of GO terms associated to genes g and
g′, and let d(t, t′) denote the distanc between GO terms t and t′. Then the Hausdorff
distance X and Y is defined as

dHausdorff (X, Y) = max{sup
t∈X

inf
t′∈Y

d(t, t′), sup
t′∈Y

inf
t∈X

d(t, t′)} (13)

Using Hausdorff metrics for measuring gene functional distances was proposed in (5).
We translate the idea to define a similarity measure between g and g′:

simgene(g, g
′) = min{ min

i=1,...,n
max

j=1,...,m
sim(ti, t

′
j), min

j=1,...,m
max
i=1,...,n

sim(ti, t
′
j)} (14)

> getGeneSim(c("8614", "2852"), similarity = "hausdorff", similarityTerm = "Lin",

+ verbose = FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1 0

2852 0 1

9

2.2.6 Feature Space Embedding of Gene Products

The Simple Approach (14) proposed to represent each gene by a feature vector
describing the presence/absence of all GO terms. The absence of each GO term is
additionally weighted by its information content. In the feature space similarities arise
as dot products. Hence, the similarity between two GO terms t and t′ is implicitly defined
as the product of their information content values, hence igoring the exact DAG structure
of the Gene Ontology as employed by the GO term similarity measures explained in the
beginning of this document.

> getGeneSim(c("8614", "2852"), similarity = "dot", method = "Tanimoto",

+ verbose = FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1.0000000 0.1131520

2852 0.1131520 1.0000000

This will calculate the Tanimoto coefficient between feature vectors as a similarity mea-
sure. It is possible to retrieve the feature vectors via:

> features = getGeneFeatures(c("8614", "2852"))

Embeddings via GO Term Similarities to Prototype Genes This approach is
due to (21; 7). The idea is to define a feature vector for each gene by its pairwise GO term
similarity to certain prototype genes, i.e. the prototype genes form a (nonorthogonal)
basis, and each gene is defined relative to this basis. The prototype genes can eithed
be defined a priori or one can use one of the heuristics implemented in the function
selectPrototypes. The default behavior is to select the 250 best annotated genes, i.e.
which have been annotated with GO terms most often:

> proto = selectPrototypes(verbose = FALSE)

We now calculate for each gene g feature vectors φ(g) by using their similarity to all
prototypes p1, ..., pn:

φ(g) = (sim′(g, p1), ..., sim
′(g, pn))T (15)

Here sim′ by default is the maximum pairwise GO term similarity. Alternatively, one
can use other similarity measures for sim′ as well. These similarity measures can by
itself again be combined with arbitrary GO term similarity concepts. The default is the
Jiang-Conrath term similarity.

Because the feature vectors are very high-dimensional we usually perform a principal
component analysis (PCA) to project the data into a lower dimensional subspace:

> PHI = getGeneFeaturesPrototypes(genes, prototypes = proto, verbose = FALSE)

10

−0.85 −0.80 −0.75 −0.70

−
0.

50
−

0.
45

−
0.

40
−

0.
35

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

207

208

596
901

780

3169

9518
2852

26353

8614

7494

Figure 2: Embedding of the genes into the feature space spanned by the first 2 principal
components

This uses the above define prototypes to calculate feature vectors and performs a
PCA afterwards. The number of principal components is chosen such that at least 95%
of the total variance in feature space can be explained (this is a relatively conservatve
criterion).

We can now plot our genes in the space spanned by the first 2 principal components
to get an impression of the relative ”position” of the genes to each other in the feature
space (see Fig. 2). The feature vectors are normalized to Euclidian norm 1 by default:

> x = seq(min(PHI$features[, 1]), max(PHI$features[, 1]), length.out = 100)

> y = seq(min(PHI$features[, 2]), max(PHI$features[, 2]), length.out = 100)

> plot(x, y, xlab = "principal component 1", ylab = "principal component 2",

+ type = "n")

> text(PHI$features[, 1], PHI$features[, 2], labels = genes)

Finally, we can directly calculate the similarities of the genes to each other, this time
using the Resnik’s GO term similarity concept. These similarities may then be used to
cluster genes with respect to their function:

> sim = getGeneSimPrototypes(genes, prototypes = proto, similarityTerm = "Resnik",

+ verbose = FALSE)

> h = hclust(as.dist(1 - sim$similarity), "ward")

> plot(h, xlab = "")

11

86
14

95
18

78
0

28
52

90
1

20
8

26
35

3

59
6

31
69

20
7

74
94

0.
00

0.
02

0.
04

0.
06

Cluster Dendrogram

hclust (*, "ward")

H
ei

gh
t

Figure 3: Possible functional clustering of the genes using Ward’s method.

This produces a hierarchical clustering of all genes using Ward’s method (see Fig.
3).

2.2.7 Combination of Similarities from Different Ontologies

It should be mentioned that up to now all similarity computations were performed within
the ontology ”biological process”. One could imagine to combine functional similarities
between gene products with regard to different taxonomies. An obvious way for doing
so would be to consider the sum of the respective similarities:

simtotal(g, g
′) = simOntology1(g, g

′) + simOntology2(g, g
′) (16)

Of course, one could also use a weighted averaging scheme here, if desired.

2.3 Cluster Evaluations

GOSim has the possibility to evaluate a given clustering of genes or terms by means of
their GO similarities. Supposed, based on other experiments (e.g. microarry), we have
decided to put genes ”8614”, ”9518”, ”780”, ”2852” in one group, genes ”3169”, ”207”,
”7494”, ”596” in a second and the rest in a third group. Then we can ask ourselves, how
similar these groups are with respect to their GO annotations:

> ev = evaluateClustering(c(2, 3, 2, 3, 1, 2, 1, 1, 3, 1, 2), sim$similarity)

> plot(ev$clustersil, main = "")

12

11

10

9

8

7

6

5

4

3

2

1

Silhouette width si

−0.5 0.0 0.5 1.0

Average silhouette width : 0.33

n = 11 3 clusters Cj

j : nj | avei∈∈Cj si

1 : 4 | 0.42

2 : 4 | 0.83

3 : 3 | −0.46

Figure 4: Silhouette plot of a possible given grouping of genes.

A good indiciation of the clustering qualitiy can be obtained by looking at the cluster
silhouettes (18) (see Fig. 4). This shows that clusters 1 and 2 are relatively homogenous
with respect to the functional similarity of the genes contained in it, while the genes in
cluster 3 are more dissimilar.

2.4 GO Enrichment Analysis

Since version 1.1 GOSim also offers the possibility of a GO enrichemnt analysis. Suppose,
we may now want to get a clearer picture of the genes involved in cluster 1. For this
purpose we use the topGO tool (1).

> gomap <- get("gomap", env = GOSimEnv)

> allgenes = unique(c(sample(names(gomap), 1000), genes))

> GOenrichment(c("8614", "9518", "780", "2852"), allgenes)

Building most specific GOs (1144 GO terms found.)

Build GO DAG topology (2914 GO terms and 5933 relations.)

Annotating nodes (809 genes annotated to the GO terms.)

-- Elim Algorithm --

13

the algorithm is scoring 38 nontrivial nodes

parameters:

test statistic: Fisher test

cutOff: 0.01

Level 9: 2 nodes to be scored (0 eliminated genes)

Level 8: 3 nodes to be scored (0 eliminated genes)

Level 7: 3 nodes to be scored (0 eliminated genes)

Level 6: 4 nodes to be scored (0 eliminated genes)

Level 5: 6 nodes to be scored (101 eliminated genes)

Level 4: 6 nodes to be scored (101 eliminated genes)

Level 3: 8 nodes to be scored (101 eliminated genes)

Level 2: 5 nodes to be scored (101 eliminated genes)

Level 1: 1 nodes to be scored (101 eliminated genes)

$GOTerms

go_id Term

15456 GO:0007166 cell surface receptor linked signal transduction

Definition

15456 Any series of molecular signals initiated by the binding of an extracellular ligand to a receptor on the surface of the target cell.

$p.values

GO:0007166

0.0002304699

$genes

$genes$`GO:0007166`

[1] "10203" "10343" "10580" "10603" "10637" "10887" "116535" "119774"

[9] "120065" "120066" "1232" "168620" "1855" "1856" "186" "1889"

[17] "1950" "2041" "2046" "207" "208" "2155" "219428" "2249"

[25] "2260" "23235" "2331" "23529" "2566" "2570" "2587" "26211"

[33] "26219" "26494" "26497" "26658" "26689" "2693" "27239" "2842"

[41] "2852" "2893" "2931" "29767" "2984" "3175" "3352" "3354"

[49] "3355" "341418" "342372" "343406" "3667" "374" "3824" "3856"

[57] "390059" "390061" "390093" "390432" "392309" "399491" "401190" "401992"

14

[65] "4091" "43847" "440153" "4615" "4792" "4914" "4986" "50852"

[73] "50964" "51135" "51554" "5159" "54764" "5494" "5739" "655"

[81] "7049" "7070" "7323" "780" "799" "80243" "81300" "81309"

[89] "83550" "8503" "8526" "8614" "8737" "8823" "9209" "9241"

[97] "93" "9370" "9463" "9518" "9934"

References

[1] Adrian Alexa, Jörg Rahnenführer, and Thomas Lengauer. Improved scoring of
functional groups from gene expression data by decorrelating GO graph structure.
Bioinformatics, 22(13):1600 – 1607, 2006.

[2] C.˜Cortes and V.˜Vapnik. Support vector networks. Machine Learning, 20:273 –
297, 1995.

[3] F.˜Couto, M.˜Silva, and P.˜Coutinho. Implementation of a Functional Semantic
Similarity Measure between Gene-Products. Technical Report DI/FCUL TR 03–29,
Department of Informatics, University of Lisbon, 2003.

[4] F.˜Couto, M.˜Silva, and P.˜Coutinho. Semantic Similarity over the Gene Ontol-
ogy: Family Correlation and Selecting Disjunctive Ancestors. In Conference in
Information and Knowledge Management, 2005.

[5] Angela del Pozo, Florencio Pazos, and Alfonso Valencia. Defining functional dis-
tances over gene ontology. BMC Bioinformatics, 9:50, 2008.

[6] H.˜Fröhlich, N.˜Speer, A.˜Poustka, and T.˜Beissbarth. GOSim - An R-Package for
Computation of Information Theoretic GO Similarities Between Terms and Gene
Products. BMC Bioinformatics, 8:166, 2007.

[7] H.˜Fröhlich, N.˜Speer, and A.˜Zell. Kernel based functional gene grouping. In
Proc. Int. Joint Conf. Neural Networks, pages 6886 – 6891, 2006.

[8] J.˜Jiang and D.˜Conrath. Semantic similarity based on corpus statistics and lexical
taxonomy. In Proceedings of the International Conference on Research in Compu-
tational Linguistics, Taiwan, 1998.

[9] Gilad Lerman and Boris˜E Shakhnovich. Defining functional distance using man-
ifold embeddings of gene ontology annotations. Proc Natl Acad Sci U S A,
104(27):11334–11339, Jul 2007.

[10] B.˜Li, J.˜Wang, A.˜Feltus, J.˜Zhou, and F.˜Luo. Effectively integrating informa-
tion content and structural relationship to improve the go-based similarity measure
between proteins. BMC Bioinformatics, 2009. in press.

15

[11] D.˜Lin. An information-theoretic definition of similarity. In Morgan Kaufmann,
editor, Proceedings of the 15th International Conference on Machine Learning, vol-
ume˜1, pages 296–304, San Francisco, CA, 1998.

[12] P.W. Lord, R.D. Stevens, A.˜Brass, and C.A. Goble. Semantic similarity measures
as tools for exploring the gene ontology. In Proceedings of the Pacific Symposium
on Biocomputing, pages 601–612, 2003.

[13] K.˜Mehlhorn and S.˜Näher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

[14] Meeta Mistry and Paul Pavlidis. Gene ontology term overlap as a measure of gene
functional similarity. BMC Bioinformatics, 9:327, 2008.

[15] C.˜Pesquita, D.˜Faria, H.˜Bastos, A.˜Falcao, and F.˜Couto. Evaluating go-based
semantic similarity measures. In Proc. 10th Annual Bio-Ontologies Meeting 2007,
volume 2007, pages 37 – 40, 2007.

[16] P.˜Resnik. Using information content to evaluate semantic similarity in a taxonomy.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence,
volume˜1, pages 448–453, Montreal, 1995.

[17] P.˜Resnik. Semantic similarity in a taxonomy: An information-based measure and
its application to problems of ambigiguity in natural language. Journal of Artificial
Intelligence Research, 11:95–130, 1999.

[18] P.J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comp. and Applied Mathematics, 20:53–65, 1987.

[19] Andreas Schlicker, Francisco˜S Domingues, Jörg Rahnenführer, and Thomas
Lengauer. A new measure for functional similarity of gene products based on Gene
Ontology. BMC Bioinformatics, 7:302, 2006.

[20] B.˜Schölkopf and A.˜J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

[21] N.˜Speer, H.˜Fröhlich, C.˜Spieth, and A.˜Zell. Functional grouping of genes using
spectral clustering and gene ontology. In Proc. Int. Joint Conf. Neural Networks,
pages 298 – 303, 2005.

[22] The Gene Ontology Consortium. The gene ontology (GO) database and informatics
resource. Nucleic Acids Research, 32:D258–D261, 2004.

16

	Introduction
	Usage of GOSim
	Term Similarities
	Functional Gene Similarities
	Normalization of Similarities
	Maximum and Average Pairwise GO Term Similarity
	Average of Best Matching GO Term Similarities
	Optimal Assignment Gene Similarities
	Gene Similarities In the Spirit of Hausdorff Metrics
	Feature Space Embedding of Gene Products
	Combination of Similarities from Different Ontologies

	Cluster Evaluations
	GO Enrichment Analysis

