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1 Introduction

The Gene Ontology (GO) has become one of the most widespread systems for systemat-
ically annotating gene products within the bioinformatics community and is developed
by the Gene Ontology Consortium (17). It is specifically intended for describing gene
products with a controlled and structured vocabulary. GO terms are part of a Directed
Acyclic Graph (DAG), covering three orthogonal taxonomies or ”aspects”: molecular
function, biological process and cellular component. Two different kinds of relationship
between GO terms exist: the ”is-a” relationship and the ”part-of” relationship. Providing
a standard vocabulary across any biological resources, the GO enables researchers to use
this information for automated data analysis.

The GOSim package (5) provides the researcher with various information theoretic
similarity concepts for GO terms (11; 12; 8; 7; 9; 3; 4). It additionally implements
different methods for computing functional similarities between gene products based on
the similarties between the associated GO terms. This can, for instances, be used for
clustering genes according to their biological function (16; 6) and thus may help to get
a better understanding of the biological aspects covered by a set of genes.

Since version 1.1 GOSim additionally offers the possibility of a GO enrichment anal-
ysis using the topGO package (1). Hence, GOSim acts now as an umbrella for different
analysis methods employing the GO structure.

2 Usage of GOSim

To elucidate the usage of GOSim we show an example workflow and explain the employed
similarity concepts. We create a character vector of Entrez gene IDs:

> library(GOSim)

> genes = c("207", "208", "596", "901", "780", "3169", "9518",

+ "2852", "26353", "8614", "7494")

Next we investigate the GO annotation within the current ontology (which is biological
process by default):
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> getGOInfo(genes)

2.1 Term Similarities

Let us examine the similarity of the GO terms for genes ”8614” and ”2852” in greater
detail:

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "Resnik", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.3044938 0.1635417 0.3130060 0.3616870

GO:0007267 0.3044938 1.0000000 0.1635417 0.3044938 0.3044938

GO:0007584 0.1635417 0.1635417 1.0000000 0.1635417 0.1635417

GO:0007165 0.3130060 0.3044938 0.1635417 1.0000000 0.3130060

GO:0007186 0.3616870 0.3044938 0.1635417 0.3130060 1.0000000

This calculates Resnik’s pairwise similarity between GO terms (11; 12):

sim(t, t′) = ICms(t, t
′) := max

t̂∈Pa(t,t′)
IC(t̂) (1)

Here Pa(t, t′) denotes the set of all common ancestors of GO terms t and t′, while IC(t)
denotes the information content of term t. It is defined as (e.g. (9))

IC(t̂) = − logP (t̂) (2)

i.e. as the negative logarithm of the probability of observing t̂. The information content
of each GO term is already precomputed for each ontology based on the empirical ob-
servation, how many times a specific GO term or any of its direct or indirect offsprings
appear in the annotation of the GO with gene products. The association between gene
products and GO identifiers is reported regularily by the NCBI and is incorporated into
GOSim via the GO package.

> data("ICsBPall")

> IC[c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186")]

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

5.327705 6.774727 9.416946 4.610626 5.684569

This loads the information contents of all GO terms within ”biological process”. Like-
wise, the data files ICsMFall and ICsCCall contain the information contents of all GO
terms within ”molecular function” and ”cellular component”. If only GO terms having
evidence codes ”IMP” (inferred from mutant phenotype), ”IGI”, (inferred from genetic
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interaction), ”IDA”(inferred from direct assay), ”IEP”(inferred from expression pattern)
or ”IPI” (inferred from physical interaction) are wanted, one can use the data files ICs-
BPIMP_IGI_IDA_IEP_IPI, ICsMFIMP_IGI_IDA_IEP_IPI and ICsCCIMP_IGI_IDA_IEP_IPI,
respectively. The information contents for GO terms filtered with respect to different
evidence codes must be calculated explicitely using the function calcICs. Please refer
to the manual pages for details.

For the similarity computation in (Eq.: 1) normalized information contents are used,
which are obtained by dividing the raw information contents by its maximal value:

> IC[c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186")]/max(IC[IC != Inf])

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

0.3616870 0.4599224 0.6392973 0.3130060 0.3859138

To continue our example from above, let us also calculate Jiang and Conrath’s pair-
wise similarity between GO terms, which is the default, for compairson reasons (7):

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.7873782 0.3260990 0.9513190 0.9757733

GO:0007267 0.7873782 1.0000000 0.2278636 0.8360592 0.7631515

GO:0007584 0.3260990 0.2278636 1.0000000 0.3747800 0.3018723

GO:0007165 0.9513190 0.8360592 0.3747800 1.0000000 0.9270922

GO:0007186 0.9757733 0.7631515 0.3018723 0.9270922 1.0000000

Jiang and Conrath’s similarity measure is defined as

sim(t, t′) = 1−min(1, IC(t)− 2ICms(t, t
′) + IC(t′)) (3)

i.e. the similarity between t and t′ is 0, if their normalized distance is at least 1.
Likewise, we can also compute Lin’s pairwise similarity between GO terms (8):

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "Lin", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.7412131 0.3267617 0.9278472 0.9675940

GO:0007267 0.7412131 1.0000000 0.2975596 0.7878966 0.7199830

GO:0007584 0.3267617 0.2975596 1.0000000 0.3434655 0.3190400

GO:0007165 0.9278472 0.7878966 0.3434655 1.0000000 0.8956851

GO:0007186 0.9675940 0.7199830 0.3190400 0.8956851 1.0000000
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Figure 1: Example of a GO graph starting with leaves GO:0007166 and GO:0007267.

It is defined as:

sim(t, t′) =
2ICms(t, t

′)

IC(t) + IC(t′)
(4)

Resnik’s, Jiang-Conraths’s and Lin’s term similarities all refer to ICms(t, t
′), the

information content of the minimum subsumer of t and t′, i.e. of the lowest common an-
cestor in the hierarchy. For illustration let us plot the GO graph with leaves GO:0007166
and GO:0007267 and let us compute their minimum subsumer (see Fig. 1):

> library(Rgraphviz)

> G = getGOGraph(c("GO:0007166", "GO:0007267"))

> plot(G)

> getMinimumSubsumer("GO:0007166", "GO:0007267")

[1] "GO:0007154"

In contrast to the above defined similarity measures Couto et al. (4) introduced a
concept, which is not based on the minimum subsumer, but on the set of all disjunctive
common ancestors. Roughly speaking, the idea is not to consider the common ances-
tor having the highest information content only, but also others, if they are somehow
”separate” from each other, i.e. there is a path to t and t′ not passing any other of the
disjunctive common ancestors.
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> getDisjCommAnc("GO:0007166", "GO:0007267")

[1] "GO:0007154"

In this case the set of disjunctive common ancestors only consists of the minimum sub-
sumer, because any path from the other ancestors to GO:0007166 and GO:0007267 would
have to pass the minimum subsumer (see Fig. 1).

Based on the notion of disjunctive common ancestors Resnik’s similarity concept can
be extended by defining:

sim(t, t′) = ICshare(t, t
′) =

1

|DisjCommAnc|
∑

t∈DisjCommAnc

IC(t) (5)

Likewise, Jiang-Conraths’s and Lin’s measures can be extended as well by replacing
ICms(t, t

′) by ICshare(t, t
′).

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "CoutoResnik", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.3044938 0.1635417 0.3044938 0.3130060

GO:0007267 0.3044938 1.0000000 0.1635417 0.3044938 0.3044938

GO:0007584 0.1635417 0.1635417 1.0000000 0.1635417 0.1635417

GO:0007165 0.3044938 0.3044938 0.1635417 1.0000000 0.3044938

GO:0007186 0.3130060 0.3044938 0.1635417 0.3044938 1.0000000

Finally, it should be mentioned that also the depth and density enriched term simi-
larity by Couto et al. (3) has been integrated into GOSim:

> setEnrichmentFactors(alpha = 0.5, beta = 0.3)

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "CoutoEnriched", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.1450357 0.1478647 0.1098829 0.1377067

GO:0007267 0.1450357 1.0000000 0.1706526 0.1297457 0.1523684

GO:0007584 0.1478647 0.1706526 1.0000000 0.1338441 0.1544579

GO:0007165 0.1098829 0.1297457 0.1338441 1.0000000 0.1156220

GO:0007186 0.1377067 0.1523684 0.1544579 0.1156220 1.0000000

2.2 Functional Gene Similarities

The special strength of GOSim lies in the possibility not only to calculate similarities for
individual GO terms, but also for genes based on their complete GO anntation. Since
GOSim version 1.1 for this purpose four basic ideas have been implemented:
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1. Maximum and average pairwise GO term similarity

2. Average of best matching GO term similarities (14).

3. Computation of a so-called optimal assignment of terms from one gene to those of
another one (6).

4. Embedding of each gene into a feature space defined by the gene’s similarity to
certain prototype genes (16; 6). Within this feature space similarities naturally
arise as dot products between the feature vectors. These dot products can be
understood as so-called kernel functions (15), as used in e.g. Support Vector
Machines (2).

2.3 Maximum and Average Pairwise GO Term Similarity

The idea of the maximum pairwise GO term similarity is straight forward. Given two
genes g and g′ annotated with GO terms t1, ..., tn and t′1, ..., t

′
m we define the functional

similarity between between g and g′ as

simgene(g, g
′) = max

i = 1, , ..., n
j = 1, ...,m

sim(ti, t
′
j) (6)

where sim is some similarity measure to compare GO terms ti and t′j. Instead of com-
puting the maximum pairwise GO term similarity one may also take the average here.

To normalize the similarities later on, we can peform the transformation

simgene(g, g
′)← simgene(g, g

′)√
simgene(g, g)simgene(g′, g′)

(7)

The consequence will be a similarity of 1 for g with itself and between 0 and 1 for g with
any other gene. Another possibility is to use the Lin’s normalization (see Eq. 4)

simgene(g, g
′)← 2simgene(g, g

′)

simgene(g, g) + simgene(g′, g′)
(8)

2.4 Average of Best Matching GO Term Similarities

The idea of this approach (14) is to assign each GO term ti occuring in gene g to its best
matching partner t′πi in gene g′. Hence multiple GO terms from gene g can be assigned
to one GO term from gene g′. A similarity score is computed by taking the average
similarity of assigned GO terms. Since, however, genes can have an unequal number of
GO terms the result depends on whether GO terms of gene g are assigned to those of
gene g′ or vice versa. Hence, in (14) it was proposed to either take the maximum or the
average of both similarity scores. Both strategies are implemented in GOSim.

6



2.4.1 Optimal Assignment Gene Similarities

To elucidate the idea of the optimal assignment, consider the GO terms associated with
gene ”8614” on one hand and gene ”2852” on the other hand:

> getGOInfo(c("8614", "2852"))

$`8614`

$`8614`$`GO:0007166`

GOID: GO:0007166

Term: cell surface receptor linked signal transduction

Ontology: BP

Definition: Any series of molecular signals initiated by the binding of

an extracellular ligand to a receptor on the surface of the target

cell.

$`8614`$`GO:0007267`

GOID: GO:0007267

Term: cell-cell signaling

Ontology: BP

Definition: Any process that mediates the transfer of information from

one cell to another.

Synonym: cell-cell signalling

$`8614`$`GO:0007584`

GOID: GO:0007584

Term: response to nutrient

Ontology: BP

Definition: A change in state or activity of a cell or an organism (in

terms of movement, secretion, enzyme production, gene expression,

etc.) as a result of a nutrient stimulus.

Synonym: response to nutrients

Synonym: nutritional response pathway

$`2852`

$`2852`$`GO:0007165`

GOID: GO:0007165

Term: signal transduction

Ontology: BP

Definition: The cascade of processes by which a signal interacts with a

receptor, causing a change in the level or activity of a second

messenger or other downstream target, and ultimately effecting a
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change in the functioning of the cell.

Synonym: signaling

Synonym: signalling

$`2852`$`GO:0007186`

GOID: GO:0007186

Term: G-protein coupled receptor protein signaling pathway

Ontology: BP

Definition: The series of molecular signals generated as a consequence

of a G-protein coupled receptor binding to its physiological

ligand.

Synonym: G protein coupled receptor protein signaling pathway

Synonym: G protein coupled receptor protein signalling pathway

Synonym: G-protein coupled receptor protein signalling pathway

Synonym: G-protein-coupled receptor protein signaling pathway

Synonym: G-protein-coupled receptor protein signalling pathway

Synonym: GPCR protein signaling pathway

Synonym: GPCR protein signalling pathway

Given a similarity concept sim to compare individual GO terms, the idea is now to
assign each term of the gene having fewer annotation to exactly one term of the other
gene such that the overall similarity is maximized. Hence, in the optimal assignment
More formally optimal assignment problem can be stated as follows: Let π be some
permutation of either an n-subset of natural numbers {1, ...,m} or an m-subset of natural
numbers {1, ..., n} (this will be clear from context). Then we are looking for the quantity

simgene(g, g
′) =

{
maxπ

∑n
i=1 sim(ti, t

′
π(i)) if m > n

maxπ
∑m

j=1 sim(tπ(j), t
′
j) otherwise

(9)

The computation of (9) corresponds to the solution of the classical maximum weighted
bipartite matching (optimal assignment) problem in graph theory and can be carried out
in O(max(n,m)3) time (10). To prevent that larger lists of terms automatically achieve
a higher similarity we may further simgene divide 9 by max(m,n).

In our example, using Lin’s GO term similarity measure the following assignments
are found:

GO : 0007165 → GO : 0007267 (10)

GO : 0007186 → GO : 0007166 (11)

The resulting similarity matrix is:

> getGeneSim(c("8614", "2852"), similarity = "OA", similarityTerm = "Lin",

+ verbose = FALSE)
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8614 2852

8614 1.0000000 0.5851635

2852 0.5851635 1.0000000

Note the difference to a gene similarity that is just based on the maximum GO term
similarity and to a gene similarity that is based on the average of best matching GO
terms:

> getGeneSim(c("8614", "2852"), similarity = "max", similarityTerm = "Lin",

+ verbose = FALSE)

8614 2852

8614 1.000000 0.967594

2852 0.967594 1.000000

> getGeneSim(c("8614", "2852"), similarity = "funSimMax", similarityTerm = "Lin",

+ verbose = FALSE)

8614 2852

8614 1.0000000 0.9477206

2852 0.9477206 1.0000000

2.4.2 Feature Space Embedding of Gene Products

To calculate the feature vectors for each gene we can either define certain prototype genes
a priori or we use one of the heuristics implemented in the function selectPrototypes.
The default behavior is to select the 250 best annotated genes, i.e. which have been
annotated with GO terms most often:

> proto = selectPrototypes(verbose = FALSE)

We now calculate for each gene g feature vectors φ(g) by using their similarity to all
prototypes p1, ..., pn:

φ(g) = (sim′(g, p1), ..., sim
′(g, pn))T (12)

Here sim′ by default is the maximum pairwise GO term similarity. Alternatively, one
can use the optimal assignment similarity for sim′ as well. Both similarity measures can
by itself again be combined with arbitrary GO term similarity concepts. The default is
the Jiang-Conrath term similarity.

Because the feature vectors are very high-dimensional we usually perform a principal
component analysis (PCA) to project the data into a lower dimensional subspace:

> PHI = getGeneFeaturesPrototypes(genes, prototypes = proto, verbose = FALSE)
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Figure 2: Embedding of the genes into the feature space spanned by the first 2 principal
components

This uses the above define prototypes to calculate feature vectors and performs a
PCA afterwards. The number of principal components is chosen such that at least 95%
of the total variance in feature space can be explained (this is a relatively conservatve
criterion).

We can now plot our genes in the space spanned by the first 2 principal components
to get an impression of the relative ”position” of the genes to each other in the feature
space (see Fig. 2). The feature vectors are normalized to Euclidian norm 1 by default:

> x = seq(min(PHI$features[, 1]), max(PHI$features[, 1]), length.out = 100)

> y = seq(min(PHI$features[, 2]), max(PHI$features[, 2]), length.out = 100)

> plot(x, y, xlab = "principal component 1", ylab = "principal component 2",

+ type = "n")

> text(PHI$features[, 1], PHI$features[, 2], labels = genes)

Finally, we can directly calculate the similarities of the genes to each other, this time
using the Resnik’s GO term similarity concept. These similarities may then be used to
cluster genes with respect to their function:

> sim = getGeneSimPrototypes(genes, prototypes = proto, similarityTerm = "Resnik",

+ verbose = FALSE)

> h = hclust(as.dist(1 - sim$similarity), "ward")

> plot(h, xlab = "")
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Figure 3: Possible functional clustering of the genes using Ward’s method.

This produces a hierarchical clustering of all genes using Ward’s method (see Fig.
3).

It should be mentioned that up to now all similarity computations were performed
within the ontology ”biological process”. One could imagine to combine functional simi-
larities between gene products with regard to different taxonomies. An obvious way for
doing so would be to consider the sum of the respective similarities:

simtotal(g, g
′) = simOntology1(g, g

′) + simOntology2(g, g
′) (13)

Of course, one could also use a weighted averaging scheme here, if desired.

2.5 Cluster Evaluations

GOSim has the possibility to evaluate a given clustering of genes or terms by means of
their GO similarities. Supposed, based on other experiments (e.g. microarry), we have
decided to put genes ”8614”, ”9518”, ”780”, ”2852” in one group, genes ”3169”, ”207”,
”7494”, ”596” in a second and the rest in a third group. Then we can ask ourselves, how
similar these groups are with respect to their GO annotations:

> ev = evaluateClustering(c(2, 3, 2, 3, 1, 2, 1, 1, 3, 1, 2), sim$similarity)

> plot(ev$clustersil, main = "")

A good indiciation of the clustering qualitiy can be obtained by looking at the cluster
silhouettes (13) (see Fig. 4). This shows that clusters 1 and 2 are relatively homogenous
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Figure 4: Silhouette plot of a possible given grouping of genes.

with respect to the functional similarity of the genes contained in it, while the genes in
cluster 3 are more dissimilar.

2.6 GO Enrichment Analysis

Since version 1.1 GOSim also offers the possibility of a GO enrichemnt analysis. Suppose,
we may now want to get a clearer picture of the genes involved in cluster 1. For this
purpose we use the topGO tool (1).

> gomap <- get("gomap", env = GOSimEnv)

> allgenes = unique(c(sample(names(gomap), 1000), genes))

> analyzeCluster(c("8614", "9518", "780", "2852"), allgenes)

Building most specific GOs ..... ( 877 GO terms found. )

Build GO DAG topology .......... ( 2016 GO terms and 3474 relations. )

Annotating nodes ............... ( 802 genes annotated to the GO terms. )

-- Elim Algorithm --

the algorithm is scoring 34 nontrivial nodes

parameters:
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test statistic: Fisher test

cutOff: 0.01

Level 8: 2 nodes to be scored (0 eliminated genes)

Level 7: 3 nodes to be scored (2 eliminated genes)

Level 6: 5 nodes to be scored (2 eliminated genes)

Level 5: 5 nodes to be scored (2 eliminated genes)

Level 4: 7 nodes to be scored (90 eliminated genes)

Level 3: 7 nodes to be scored (102 eliminated genes)

Level 2: 4 nodes to be scored (102 eliminated genes)

Level 1: 1 nodes to be scored (102 eliminated genes)

$GOTerms

$GOTerms$`GO:0007179`

GOID: GO:0007179

Term: transforming growth factor beta receptor signaling pathway

Ontology: BP

Definition: The series of molecular signals generated as a consequence

of a transforming growth factor beta receptor binding to one of its

physiological ligands.

Synonym: TGF-beta receptor signaling pathway

Synonym: TGF-beta receptor signalling pathway

Synonym: TGFbeta receptor signaling pathway

Synonym: TGFbeta receptor signalling pathway

Synonym: transforming growth factor beta receptor signalling pathway

$GOTerms$`GO:0007267`

GOID: GO:0007267

Term: cell-cell signaling

Ontology: BP

Definition: Any process that mediates the transfer of information from

one cell to another.

Synonym: cell-cell signalling

$GOTerms$`GO:0007166`

GOID: GO:0007166
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Term: cell surface receptor linked signal transduction

Ontology: BP

Definition: Any series of molecular signals initiated by the binding of

an extracellular ligand to a receptor on the surface of the target

cell.

$p.values

GO:0007179 GO:0007267 GO:0007166

0.009956382 0.002782346 0.001290805

$genes

$genes$`GO:0007179`

[1] "114249" "9518"

$genes$`GO:0007267`

[1] "14602" "18015" "18417" "21410" "24947" "25360" "2645" "294292"

[9] "29483" "30819" "41491" "42499" "4340" "51552" "57463" "6647"

[17] "8614" "9518"

$genes$`GO:0007166`

[1] "100137117" "114249" "12267" "14063" "14602" "16160"

[7] "16169" "170457" "171334" "172689" "18015" "18101"

[13] "182197" "18330" "18358" "187358" "188146" "189895"

[19] "191562" "19214" "19664" "20218" "207" "20849"

[25] "21415" "24947" "25360" "257938" "258019" "258020"

[31] "258065" "258160" "258218" "258309" "258328" "258487"

[37] "258488" "258504" "258801" "258972" "258980" "258984"

[43] "259953" "26108" "2784" "282821" "2852" "288850"

[49] "289175" "292609" "293075" "293327" "294197" "29555"

[55] "300639" "309574" "315571" "343171" "353181" "364054"

[61] "366802" "3680" "4015" "404310" "405075" "405098"

[67] "405123" "405281" "405352" "405362" "40975" "43803"

[73] "501735" "50964" "53836" "54140" "563556" "57250"

[79] "64106" "64270" "666118" "682325" "691791" "7041"

[85] "780" "84050" "8483" "8614" "8915" "9518"

The result shows that the four genes are mainly involved in cell-cell signaling, in an
enzyme linked receptor protein signaling pathway and in the response to nutrient.
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