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1 Introduction

The Gene Ontology (GO) has become one of the most widespread systems for systemat-
ically annotating gene products within the bioinformatics community and is developed
by the Gene Ontology Consortium (14). It is specifically intended for describing gene
products with a controlled and structured vocabulary. GO terms are part of a Directed
Acyclic Graph (DAG), covering three orthogonal taxonomies or ”aspects”: molecular
function, biological process and cellular component. Two different kinds of relationship
between GO terms exist: the ”is-a” relationship and the ”part-of” relationship. Providing
a standard vocabulary across any biological resources, the GO enables researchers to use
this information for automated data analysis.

The GOSim package provides the researcher with various information theoretic sim-
ilarity concepts for GO terms (9; 10; 6; 5; 7; 2; 3). It additionally implements different
methods for computing functional similarities between gene products based on the simi-
larties between the associated GO terms. This can, for instances, be used for clustering
genes according to their biological function (13; 4) and thus may help to get a better
understanding of the biological aspects covered by a set of genes.

2 Usage of GOSim

To elucidate the usage of GOSim we show an example workflow and explain the employed
similarity concepts. We create a character vector of Entrez gene IDs:

> library(GOSim)

> genes = c("207", "208", "596", "901", "780", "3169", "9518",

+ "2852", "26353", "8614", "7494")

Next we investigate the GO annotation within the current ontology (which is biological
process by default):

> getGOInfo(genes)

1



2.1 Term Similarities

Let us examine the similarity of the GO terms for genes ”8614” and ”2852” in greater
detail:

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "Resnik", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.3032191 0.3032191 0.3125535 0.3607165

GO:0007267 0.3032191 1.0000000 0.3032191 0.3032191 0.3032191

GO:0007584 0.3032191 0.3032191 1.0000000 0.3032191 0.3032191

GO:0007165 0.3125535 0.3032191 0.3032191 1.0000000 0.3125535

GO:0007186 0.3607165 0.3032191 0.3032191 0.3125535 1.0000000

This calculates Resnik’s pairwise similarity between GO terms (9; 10):

sim(t, t′) = ICms(t, t
′) := max

t̂∈Pa(t,t′)
IC(t̂) (1)

Here Pa(t, t′) denotes the set of all common ancestors of GO terms t and t′, while IC(t)
denotes the information content of term t. It is defined as (e.g. (7))

IC(t̂) = − log P (t̂) (2)

i.e. as the negative logarithm of the probability of observing t. The information content
of each GO term is already precomputed for each ontology based on the empirical ob-
servation, how many times a specific GO term or any of its direct or indirect offsprings
appear in the annotation of the GO with gene products. The association between gene
products and GO identifiers is reported regularily by the NCBI.

> data("ICsBPall")

> IC[c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186")]

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

5.238172 6.624280 9.867617 4.538770 5.607354

This loads the information contents of all GO terms within ”biological process”. Like-
wise, the data files ICsMFall and ICsCCall contain the information contents of all GO
terms within ”molecular function” and ”cellular component”. If only GO terms having
evidence codes ”IMP” (inferred from mutant phenotype), ”IGI”, (inferred from genetic
interaction), ”IDA”(inferred from direct assay), ”IEP”(inferred from expression pattern)
or ”IPI” (inferred from physical interaction) are wanted, one can use the data files ICs-
BPIMP_IGI_IDA_IEP_IPI, ICsMFIMP_IGI_IDA_IEP_IPI and ICsCCIMP_IGI_IDA_IEP_IPI,
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respectively. The information contents for GO terms filtered with respect to different
evidence codes must be calculated explicitely using the function calcICs. Please refer
to the manual pages for details.

For the similarity computation in (Eq.: 1) normalized information contents are used,
which are obtained by dividing the raw information contents by its maximal value:

> IC[c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186")]/max(IC[IC != Inf])

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

0.3607165 0.4561681 0.6795141 0.3125535 0.3861395

To continue our example from above, let us also calculate Jiang and Conrath’s pair-
wise similarity between GO terms, which is the default, for compairson reasons (5):

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.7895537 0.5662077 0.9518371 0.9745770

GO:0007267 0.7895537 1.0000000 0.4707560 0.8377166 0.7641307

GO:0007584 0.5662077 0.4707560 1.0000000 0.6143706 0.5407847

GO:0007165 0.9518371 0.8377166 0.6143706 1.0000000 0.9264140

GO:0007186 0.9745770 0.7641307 0.5407847 0.9264140 1.0000000

Jiang and Conrath’s similarity measure is defined as

sim(t, t′) = 1−min(1, IC(t)− 2ICms(t, t
′) + IC(t′)) (3)

i.e. the similarity between t and t′ is 0, if their normalized distance is at least 1.
Likewise, we can also compute Lin’s pairwise similarity between GO terms (6):

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "Lin", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.7423794 0.5829845 0.9284641 0.9659600

GO:0007267 0.7423794 1.0000000 0.5339859 0.7888919 0.7199725

GO:0007584 0.5829845 0.5339859 1.0000000 0.6112872 0.5690764

GO:0007165 0.9284641 0.7888919 0.6112872 1.0000000 0.8946806

GO:0007186 0.9659600 0.7199725 0.5690764 0.8946806 1.0000000

It is defined as:

sim(t, t′) =
2ICms(t, t

′)

IC(t) + IC(t′)
(4)
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Figure 1: Example of a GO graph starting with leaves GO:0007166 and GO:0007267.

Resnik’s, Jiang-Conraths’s and Lin’s term similarities all refer to ICms(t, t
′), the

information content of the minimum subsumer of t and t′, i.e. of the lowest common an-
cestor in the hierarchy. For illustration let us plot the GO graph with leaves GO:0007166
and GO:0007267 and let us compute their minimum subsumer (see Fig. 1):

> library(Rgraphviz)

> G = getGOGraph(c("GO:0007166", "GO:0007267"))

> plot(G)

> getMinimumSubsumer("GO:0007166", "GO:0007267")

[1] "GO:0007154"

In contrast to the above defined similarity measures Couto et al. (3) introduced a
concept, which is not based on the minimum subsumer, but on the set of all disjunctive
common ancestors. Roughly speaking, the idea is not to consider the common ances-
tor having the highest information content only, but also others, if they are somehow
”separate” from each other, i.e. there is a path to t and t′ not passing any other of the
disjunctive common ancestors.

> getDisjCommAnc("GO:0007166", "GO:0007267")
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[1] "GO:0007154"

In this case the set of disjunctive common ancestors only consists of the minimum sub-
sumer, because any path from the other ancestors to GO:0007166 and GO:0007267 would
have to pass the minimum subsumer (see Fig. 1).

Based on the notion of disjunctive common ancestors Resnik’s similarity concept can
be extended by defining:

sim(t, t′) = ICshare(t, t
′) =

1

|DisjCommAnc|
∑

t∈DisjCommAnc

IC(t) (5)

Likewise, Jiang-Conraths’s and Lin’s measures can be extended as well by replacing
ICms(t, t

′) by ICshare(t, t
′).

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "CoutoResnik", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.3032191 0.232439 0.3032191 0.3125535

GO:0007267 0.3032191 1.0000000 0.232439 0.3032191 0.3032191

GO:0007584 0.2324390 0.2324390 1.000000 0.2324390 0.2324390

GO:0007165 0.3032191 0.3032191 0.232439 1.0000000 0.3032191

GO:0007186 0.3125535 0.3032191 0.232439 0.3032191 1.0000000

Finally, it should be mentioned that also the depth and density enriched term simi-
larity by Couto et al. (2) has been integrated into GOSim:

> setEnrichmentFactors(alpha = 0.5, beta = 0.3)

> getTermSim(c("GO:0007166", "GO:0007267", "GO:0007584", "GO:0007165",

+ "GO:0007186"), method = "CoutoEnriched", verbose = FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.1432437 0.1773106 0.1094850 0.1372757

GO:0007267 0.1432437 1.0000000 0.2056005 0.1282382 0.1507960

GO:0007584 0.1773106 0.2056005 1.0000000 0.1597738 0.1860186

GO:0007165 0.1094850 0.1282382 0.1597738 1.0000000 0.1154587

GO:0007186 0.1372757 0.1507960 0.1860186 0.1154587 1.0000000

2.2 Functional Gene Similarities

The special strength of GOSim lies in the possibility not only to calculate similarities
for individual GO terms, but also for genes based on their complete GO anntation. For
this purpose three basic ideas have been implemented:

1. Maximum and average pairwise GO term similarity
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2. Computation of a so-called optimal assignment of terms from one gene to those of
another one (4).

3. Embedding of each gene into a feature space defined by the gene’s similarity to
certain prototype genes (13; 4). Within this feature space similarities naturally
arise as dot products between the feature vectors. These dot products can be
understood as so-called kernel functions (12), as used in e.g. Support Vector
Machines (1).

2.3 Maximum and Average Pairwise GO Term Similarity

The idea of the maximum pairwise GO term similarity is straight forward. Given two
genes g and g′ annotated with GO terms t1, ..., tn and t′1, ..., t

′
m we define the functional

similarity between between g and g′ as

simgene(g, g′) = max
i = 1, , ..., n
j = 1, ...,m

sim(ti, t
′
j) (6)

where sim is some similarity measure to compare GO terms ti and t′j. The resulting
value is then further normalized to account for an unequal number of GO terms for both
genes:

simgene(g, g′)← simgene(g, g′)√
simgene(g, g)simgene(g′, g′)

(7)

Instead of computing the maximum pairwise GO term similarity one may also take the
average here.

2.3.1 Optimal Assignment Gene Similarities

To elucidate the idea of the optimal assignment, consider the GO terms associated with
gene ”8614” on one hand and gene ”2852” on the other hand:

> getGOInfo(c("8614", "2852"))

$`8614`

$`8614`$`GO:0007166`

GOID = GO:0007166

Term = cell surface receptor linked signal transduction

Definition = Any series of molecular signals initiated by the binding

of an extracellular ligand to a receptor on the surface of the

target cell.
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Ontology = BP

$`8614`$`GO:0007267`

GOID = GO:0007267

Term = cell-cell signaling

Synonym = cell-cell signalling

Definition = Any process that mediates the transfer of information from

one cell to another.

Ontology = BP

$`8614`$`GO:0007584`

GOID = GO:0007584

Term = response to nutrient

Synonym = response to nutrients

Synonym = nutritional response pathway

Definition = A change in state or activity of a cell or an organism (in

terms of movement, secretion, enzyme production, gene expression,

etc.) as a result of a nutrient stimulus.

Ontology = BP

$`2852`

$`2852`$`GO:0007165`

GOID = GO:0007165

Term = signal transduction

Synonym = signaling

Synonym = signalling

Synonym = activation of MAPK during sporulation (sensu Fungi)

Synonym = activation of MAPK during sporulation (sensu Saccharomyces)
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Synonym = activation of MAPKK during sporulation (sensu Fungi)

Synonym = activation of MAPKK during sporulation (sensu Saccharomyces)

Synonym = activation of MAPKKK during sporulation (sensu Fungi)

Synonym = activation of MAPKKK during sporulation (sensu Saccharomyces)

Synonym = inactivation of MAPK during sporulation (sensu Fungi)

Synonym = inactivation of MAPK during sporulation (sensu Saccharomyces)

Synonym = MAPKKK cascade during sporulation (sensu Fungi)

Synonym = MAPKKK cascade during sporulation (sensu Saccharomyces)

Definition = The cascade of processes by which a signal interacts with

a receptor, causing a change in the level or activity of a second

messenger or other downstream target, and ultimately effecting a

change in the functioning of the cell.

Ontology = BP

$`2852`$`GO:0007186`

GOID = GO:0007186

Term = G-protein coupled receptor protein signaling pathway

Synonym = G protein coupled receptor protein signaling pathway

Synonym = G protein coupled receptor protein signalling pathway

Synonym = G-protein coupled receptor protein signalling pathway

Synonym = G-protein-coupled receptor protein signaling pathway

Synonym = G-protein-coupled receptor protein signalling pathway

Synonym = GPCR protein signaling pathway

Synonym = GPCR protein signalling pathway

Definition = The series of molecular signals generated as a consequence

of a G-protein coupled receptor binding to its physiological

ligand.

Ontology = BP

Given a similarity concept sim to compare individual GO terms, the idea is now to
assign each term of the gene having fewer annotation to exactly one term of the other
gene such that the overall similarity is maximized. More formally this can be stated as
follows: Let π be some permutation of either an n-subset of natural numbers {1, ...,m}
or an m-subset of natural numbers {1, ..., n} (this will be clear from context). Then we
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are looking for the quantity

simgene(g, g′) =

{
maxπ

∑n
i=1 sim(ti, t

′
π(i)) if m > n

maxπ

∑m
j=1 sim(tπ(j), t

′
j) otherwise

(8)

The computation of (8) corresponds to the solution of the classical maximum weighted
bipartite matching (optimal assignment) problem in graph theory and can be carried out
in O(max(n, m)3) time (8). To prevent that larger lists of terms automatically achieve
a higher similarity we should further normalize simgene according to (Eq. 7)

In our example, using Lin’s GO term similarity measure the following assignments
are found:

GO : 0007165 → GO : 0007267 (9)

GO : 0007186 → GO : 0007166 (10)

The resulting similarity matrix is:

> getGeneSim(c("8614", "2852"), similarity = "OA", similarityTerm = "Lin",

+ verbose = FALSE)

8614 2852

8614 1.0000000 0.7164153

2852 0.7164153 1.0000000

Note the difference to a gene similarity that is just based on the maximum GO term
similarity:

> getGeneSim(c("8614", "2852"), similarity = "max", similarityTerm = "Lin",

+ verbose = FALSE)

8614 2852

8614 1.00000 0.96596

2852 0.96596 1.00000

2.3.2 Feature Space Embedding of Gene Products

To calculate the feature vectors for each gene we can either define certain prototype genes
a priori or we use one of the heuristics implemented in the function selectPrototypes.
The default behavior is to select the 250 best annotated genes, i.e. which have been
annotated with GO terms most often:

> proto = selectPrototypes(verbose = FALSE)
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We now calculate for each gene g feature vectors φ(g) by using their similarity to all
prototypes p1, ..., pn:

φ(g) = (sim′(g, p1), ..., sim
′(g, pn))T (11)

Here sim′ by default is the maximum pairwise GO term similarity. Alternatively, one
can use the optimal assignment similarity for sim′ as well. Both similarity measures can
by itself again be combined with arbitrary GO term similarity concepts. The default is
the Jiang-Conrath term similarity.

Because the feature vectors are very high-dimensional we usually perform a principal
component analysis (PCA) to project the data into a lower dimensional subspace:

> PHI = getGeneFeaturesPrototypes(genes, prototypes = proto, verbose = FALSE)

This uses the above define prototypes to calculate feature vectors and performs a
PCA afterwards. The number of principal components is chosen such that at least 95%
of the total variance in feature space can be explained (this is a relatively conservatve
criterion).

We can now plot our genes in the space spanned by the first 2 principal components
to get an impression of the relative ”position” of the genes to each other in the feature
space (see Fig. 2). The feature vectors are normalized to Euclidian norm 1 by default:

> x = seq(min(PHI$features[, 1]), max(PHI$features[, 1]), length.out = 100)

> y = seq(min(PHI$features[, 2]), max(PHI$features[, 2]), length.out = 100)

> plot(x, y, xlab = "principal component 1", ylab = "principal component 2",

+ type = "n")

> text(PHI$features[, 1], PHI$features[, 2], labels = genes)

Finally, we can directly calculate the similarities of the genes to each other, this time
using the Resnik’s GO term similarity concept. These similarities may then be used to
cluster genes with respect to their function:

> sim = getGeneSimPrototypes(genes, prototypes = proto, similarityTerm = "Resnik",

+ verbose = FALSE)

> h = hclust(as.dist(1 - sim$similarity), "ward")

> plot(h, xlab = "")

This produces a hierarchical clustering of all genes using Ward’s method (see Fig.
3).

It should be mentioned that up to now all similarity computations were performed
within the ontology ”biological process”. One could imagine to combine functional simi-
larities between gene products with regard to different taxonomies. An obvious way for
doing so would be to consider the sum of the respective similarities:

simtotal(g, g′) = simOntology1(g, g′) + simOntology2(g, g′) (12)

Of course, one could also use a weighted averaging scheme here, if desired.
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Figure 2: Embedding of the genes into the feature space spanned by the first 2 principal
components
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Figure 3: Possible functional clustering of the genes using Ward’s method.
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Figure 4: Silhouette plot of a possible given grouping of genes.

2.4 Cluster Evaluations

GOSim has the possibility to evaluate a given clustering of genes or terms by means of
their GO similarities. Supposed, based on other experiments (e.g. microarry), we have
decided to put genes ”8614”, ”9518”, ”780”, ”2852” in one group, genes ”3169”, ”207”,
”7494”, ”596” in a second and the rest in a third group. Then we can ask ourselves, how
similar these groups are with respect to their GO annotations:

> ev = evaluateClustering(c(2, 3, 2, 3, 1, 2, 1, 1, 3, 1, 2), sim$similarity)

> plot(ev$clustersil, main = "")

A good indiciation of the clustering qualitiy can be obtained by looking at the cluster
silhouettes (11) (see Fig. 4). This shows that clusters 1 and 2 are relatively homogenous
with respect to the functional similarity of the genes contained in it, while the genes in
cluster 3 are more dissimilar.
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