
The Genetic Algorithm of GMSE
GMSE: an R package for generalised management strategy evaluation (Supporting

Information 1)
A. Bradley Duthie13, Jeremy J. Cusack1, Isabel L. Jones1, Jeroen Minderman1, Erlend B.

Nilsen2, Rocío A. Pozo1, O. Sarobidy Rakotonarivo1, Bram Van Moorter2, and Nils
Bunnefeld1

[1] Biological and Environmental Sciences, University of Stirling, Stirling, UK [2] Norwegian
Institute for Nature Research, Trondheim, Norway [3] alexander.duthie@stir.ac.uk

Extended introduction to the genetic algorithm applied in GMSE

Game theory is the formal study of strategic interactions, and can therefore be applied to modelling stakeholder
actions and addressing issues of cooperation and conflict in conservation (Lee, 2012; Kark et al., 2015; Adami
et al., 2016; Tilman et al., 2016; Redpath et al., 2018). In game-theoretic models, agents adopt strategies to
make decisions that maximise some type of payoff (e.g., utility, biological fitness). Agents are constrained in
their decision-making, and realised pay-offs depend on decisions made by other agents. In simple models, it is
often useful to assume that agents are perfectly rational decision-makers, then find optimal solutions for pay-off
maximisation mathematically. But models that permit even moderately complex decision-making strategies
or pay-off structures often include more possible strategies than are mathematically tractable (Hamblin, 2013).
In these models, genetic algorithms, which mimic the process of natural selection (mutation, recombination,
selection, reproduction), can find adaptive (i.e., practical, but not necessarily optimal) solutions for game
strategies (e.g., Balmann and Happe, 2000; Tu et al., 2000; Hamblin, 2013).

A genetic algorithm is called in the predefined GMSE manager and user models to simulate human decision
making. As of GMSE version 0.4.0.3, this includes one independent call to the genetic algorithm for each
decision-making agent in every GMSE time step. Therefore, one run of the genetic algorithm occurs to
simulate the manager’s policy-setting decisions in each time step (unless otherwise defined through non-default
manage_freq values greater than 1; e.g., see SI6), and one run occurs to simulate each individual user’s
action decisions in each time step (unless otherwise defined through non-default group_think = TRUE, in
which case one user makes decisions that all other users copy). Each run of the genetic algorithm mimics the
evolution by natural selection of a population of potential manager or user strategies over multiple iterations,
with the highest fitness strategy in the terminal iteration being selected as the one that the manager or user
decides to implement. For clarity, as in the main text, we use ‘time step’ to refer to a full GMSE cycle (in
which multiple genetic algorithms may be run) and ‘iteration’ to refer to a single, non-overlapping, generation
of potential strategies that evolve within a genetic algorithm (see Figure 1 of the main text). Below, we
explain the genetic algorithm in detail, as it occurs in GMSE v0.4.0.7 (future versions of GMSE might expand
upon this framework, and we highlight some of these potential avenues for expansion). We first explain the
key data structures used, then provide an overview of how a population of strategies is initialised, and the
subsequent processes of crossover, mutation, cost constraint, fitness evaluation, tournament selection, and
replacement. We then explain the fitness functions of managers and users in more detail.

Key data structures used

The focal data structure used for tracking manager and user decisions is a three dimensional array, which
we will call ACTION (also returned as user_array by gmse_apply; see SI7). Rows of ACTION correspond to
the entities affected by actions (resources, landscape properties, or potentially other agents), and columns
correspond either to properties of the affected entities, or to the actions potentially allocated to them. Each

1

mailto:alexander.duthie@stir.ac.uk
SI6.html
ms.html
SI7.html

layer of ACTION corresponds to a unique agent, the first of which is the manager; additional layers correspond
to users. Below shows an ACTION array for a GMSE model with one manager and two users.

, , Manager_Actions
##
Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull
Resource -2 1 0 0 1000.00000 0 0 0 0
Landscape -1 1 0 0 0.00000 0 0 0 0
Res_cost 1 1 0 0 92.97052 0 0 10 63
U1_cost 2 1 0 0 0.00000 0 0 0 0
U2_cost 3 1 0 0 0.00000 0 0 0 0
Castrate Feed Help_off None
Resource 0 0 0 0
Landscape 0 0 0 0
Res_cost 10 10 10 57
U1_cost 0 0 0 0
U2_cost 0 0 0 0
##
, , User_1_Actions
##
Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull Castrate
Resource -2 1 0 0 -1 0 0 0 15 0
Landscape -1 1 0 0 0 0 0 0 0 0
Res_cost 1 1 0 0 0 0 0 0 0 0
U1_cost 2 1 0 0 0 0 0 0 0 0
U2_cost 3 1 0 0 0 0 0 0 0 0
Feed Help_off None
Resource 0 0 0
Landscape 0 0 2
Res_cost 0 0 0
U1_cost 0 0 0
U2_cost 0 0 0
##
, , User_2_Actions
##
Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull Castrate
Resource -2 1 0 0 -1 0 0 0 15 0
Landscape -1 1 0 0 0 0 0 0 0 0
Res_cost 1 1 0 0 0 0 0 0 0 0
U1_cost 2 1 0 0 0 0 0 0 0 0
U2_cost 3 1 0 0 0 0 0 0 0 0
Feed Help_off None
Resource 0 0 0
Landscape 0 0 5
Res_cost 0 0 0
U1_cost 0 0 0
U2_cost 0 0 0

The above array holds all of the information on manager and user actions. The first seven columns contain
information about which entities are affected, and how they are affected. The first column Act identifies
the type of action being performed; a value of -2 defines a direct action to a resource (e.g., culling of the
resource), and a value of -1 defines direct action to a landscape (e.g., increasing yield). Positive values are
currently only meaningful for Manager_Actions, where a value of 1 defines an action setting a uniform cost
of users’ direct actions on resources (i.e., costs where Act = -2 for User_1_Actions and User_2_Actions).
All other values for Act are meaningless in GMSE 0.4.0.3, but might be expanded upon in future versions

2

to allow for modification of specific user costs enacted by managers (i.e., managers having different policies
for different users) or other users (e.g., users increasing the costs of other users’ actions due to conflict or
cooperation). We will therefore focus only on rows 1-3 of ACTION.

Columns 2-4 refer to resource or landscape types, but only Type_1 = 1, Type_2 = 0, and Type_3 = 0
are allowed in predefined GMSE v0.4.0.7 manager and user sub-models (i.e., only one type of resource is
permitted). Future versions might allow for different resource types (e.g., Type_1 might be used to designate
species, and Type_2 and Type_3 could designate stage or sex). Column 5 Util. of ACTION defines the utility
associated with the resource (where Act = -2) or landscape (where Act = -1). For managers, the target
resource abundance set with the GMSE argument manage_target is found in row 1 (1000 in ACTION above);
for users, the value in row 1 identifies whether resources are preferred to increase (if positive) or decrease (if
negative). Values of column 5 in row 2 similarly identify whether landscape cell output is preferred by users
to increase or decrease (managers do not currently have preferences for landscape output). Of special note is
row 3 for Manager_Actions, which defines the current manager’s utility for resources; that is, the adjustment
to resource abundance that the manager will attempt to make based on the manage_target and the most
recent estimate of resource abundance produced by the observation model (in the case of the above, resource
abundance is estimated at ca 907.03, so the manager will set policy in attempt to change the population
size by ca 92.97 resources). Column 6 U_land defines whether or not the utility attached to the resource or
landscape output depends on it being on a landscape cell that is owned by the acting user. Related, column
7 U_loc. defines whether or not actions can be performed only on a landscape cell that is owned by the
acting user. Hence values of columns 6 and 7 are binary, and affected by the land_ownership argument
in gmse and gmse_apply. Finally, columns 8-13 correspond to specific actions, either direct (where Act <
0) or indirect by setting policy (for row 3 of Manager_Actions where Act = 1). The last column 13 None
corresponds with no actions. See GMSE documentation for details about the effects of each action.

Constraints on the values that elements in the ACTION array can take are defined by a COST array (also
returned as manager_array by gmse_apply; see SI7) of dimensions identical to ACTION. Elements of COST
define how many units from the manager_budget or user_budget are needed to perform a single action; a
minimum_cost for actions is defined as an argument in GMSE (10 by default). All values in COST columns 1-7
are set to 100001, one higher than the highest possible manager_budget or user_budget, so neither managers
nor users can affect resource types or utilities. Columns 8-13 are also set to 10001, except where actions are
allowed. Maximum values of 100000 are independent of any other parameter value specified in GMSE (e.g.,
landscape dimensions). Below shows the COST array that corresponds to the above ACTION array.

, , Manager_Costs
##
Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull
Resource 100001 100001 100001 100001 100001 100001 100001 100001 100001
Landscape 100001 100001 100001 100001 100001 100001 100001 100001 100001
Res_cost 100001 100001 100001 100001 100001 100001 100001 100001 10
U1_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001
U2_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001
Castrate Feed Help_off None
Resource 100001 100001 100001 10
Landscape 100001 100001 100001 10
Res_cost 100001 100001 100001 10
U1_cost 100001 100001 100001 100001
U2_cost 100001 100001 100001 100001
##
, , User_1_Costs
##
Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull
Resource 100001 100001 100001 100001 100001 100001 100001 100001 63
Landscape 100001 100001 100001 100001 100001 100001 100001 100001 100001
Res_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001

3

https://cran.r-project.org/web/packages/GMSE/GMSE.pdf
SI7.html

U1_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001
U2_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001
Castrate Feed Help_off None
Resource 100001 100001 100001 10
Landscape 100001 100001 100001 10
Res_cost 100001 100001 100001 100001
U1_cost 100001 100001 100001 100001
U2_cost 100001 100001 100001 100001
##
, , User_2_Costs
##
Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull
Resource 100001 100001 100001 100001 100001 100001 100001 100001 63
Landscape 100001 100001 100001 100001 100001 100001 100001 100001 100001
Res_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001
U1_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001
U2_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001
Castrate Feed Help_off None
Resource 100001 100001 100001 10
Landscape 100001 100001 100001 10
Res_cost 100001 100001 100001 100001
U1_cost 100001 100001 100001 100001
U2_cost 100001 100001 100001 100001

Note that in default GMSE parameters, culling = TRUE, but all other actions are set to FALSE. Hence, the
Cull column 9 is the only column besides column 13 None in which cost is less than 100001. Manager’s
actions in ACTION directly affect the cost of users performing one of the five possible actions on resources
(columns 8-12). This can be verified in ACTION where the manager has set the cost of culling to 63 (row 3),
and the corresponding COST of resource culling is 63 for both users (row 1). The cost of the manager affecting
the cost of user actions is always set to the minimum_cost; here the default 10 is used. This minimum_cost
also defines cost values for None, in which the user or manager does nothing, as might occur if the manager
wants to permit culling and therefore does not want to invest any of their manager_budget to increasing the
cost of culling. Both ACTION and COST are updated in each time step unless manage_freq > 1, in which case
COST and Manager_Actions in ACTION are updated at the frequency defined.

General overview of key aspects of the genetic algorithm

The genetic algorithm updates a single layer of the ACTION array, which defines the decisions of a single agent
(either the manager or a user). The corresponding layer of the COST array remains unchanged, and serves
only to ensure that ACTION values do not exceed manager_budget or user_budget for managers and users,
respectively. The genetic algorithm proceeds by first initialising a large (but temporary) population of new
ACTION layers. In each iteration, these layers crossover and mutate, generating variation in potential agent
decisions; costs constrain this variation from exceeding a maximum budget, then the fitness of each layer is
evaluated based on how the layer is predicted to affect resources or landscape output to which the agent has
assigned some utility. A tournament is used to select high fitness layers, and these selected layers become the
new iteration of layers; iterations continue until a minimum number of iterations (ga_mingen) have passed
and a convergence criteria is satisfied such that the increase in mean fitness from the previous iteration is
below the threshold converge_crit (Figure 1 below).

4

Initialisation Crossover Mutation
Cost

constraint
Fitness

evaluation
Tournament

selection
Replacement

No
Termination?

Agent
decision Yes

Figure 1: Conceptual overview of the GMSE genetic algorithm

Initialisation

At the start of each genetic algorithm, a population of size ga_popsize is initialised (hereafter the POPULATION
array). This population is held in a 3D array of ga_popsize layers. Each layer includes an identical number
of rows and columns as in ACTION, and one layer defines a single ‘individual’ in the population. The first seven
columns of ACTION are replicated exactly for all individuals, and remain unchanged throughout the genetic
algorithm thereby preserving the information about which entities are affected by actions in a given row. The
remaining columns are either also replicated exactly as in ACTION (i.e., initialised to be the same decisions
as in a previous time step), or randomly seeded with values given the constraints of manager_budget or
user_budget (i.e., initialised to random decision making). The number of exact replicates initialised is set
using ga_seedrep (if ga_seedrep ≥ ga_popsize, then all individuals are seeded as replicates). After the
POPULATION of ga_popsize individuals is initialised, a loop simulating the adaptive evolution of POPULATION
in non-overlapping iterations begins (see Figure 1 above).

Crossover

A single iteration of the genetic algorithm begins with a uniform crossover (Hamblin, 2013), by which actions
of individuals in POPULATION are randomly swapped with some probability. To implement crossover, each
individual selects a partner, then exchanges corresponding array elements affecting agent actions (columns
8-13) with their partner at a fixed probability of ga_crossover.

Mutation

Following crossover, POPULATION array elements affecting agent actions (columns 8-13) mutate at a fixed
probability of ga_mutation. For each array element, a random uniform number u ∈ [0, 1] is sampled. If u is
greater than 1 - (0.5 * ga_mutation), then the value of the array element is increased by 1. If u is less
than 0.5 * ga_mutation, then the value of the array element is decreased by 1; when this decrease results
in a negative value, the mutated value is multiplied by -1 to be positive.

Cost constraint

Variation in manager or user actions generated by crossover and mutation might result in strategies that
exceed manager_budget or user_budget, respectively. Left unchecked, this over-budgeting could lead to
unnacceptably high fitness strategies, so strategies that are over budget following crossover and mutation
need to be brought back within budgetary constraints. To do this, the genetic algorithm first checks to see if
an individual in POPULATION is over budget. If so, then an action is randomly selected and removed, and

5

budget use is reassessed; this random removal of an action and subsequent budget reassessment continues
until the individual does not exceed their budget.

Fitness evaluation

Once all individuals in POPULATION are within budget, the fitness of each individual is assessed. Fitness
assessment works differently for managers versus users because managers need to consider the consequences of
their decisions on user actions, and how those actions will affect resource abundance. In contrast, user actions
need to consider the consequences of their decisions on resource abundance or landscape output. Individual
fitness is defined by a real number that increases with the degree to which an individual’s actions are predicted
to increase entities of positive utility and decrease entities of negative utility (recall that managers and users
assign resources or landscape output a utility value). Details for how fitness is calculated are provided below.

Tournament selection

After each individual in POPULATION is assigned a fitness, a tournament is used to select individuals. Tourna-
ment selection is an especially flexible, non-parametric method that samples a subset of individuals from
the total population and chooses the fittest of the subset for replacement (Hamblin, 2013). In GMSE,
tournament selection proceeds by randomly sampling ga_sampleK individuals from the total POPULATION
with replacement. The fitnesses of the subset of ga_sampleK individuals are compared, and the ga_chooseK
individuals of highest fitness are retained (if ga_sampleK ≥ ga_chooseK, then all ga_sampleK are chosen, but
this will prevent adaptive evolution and is therefore not recommended). Tournaments selecting ga_chooseK
individuals from random subsets of size ga_sampleK continue until a total of ga_popsize individuals are
retained.

Replacement and termination

Once a new set of ga_popsize individuals is retained through tournament selection, these individuals replace
the previous POPULATION array. The genetic algorithm terminates if and only if a minimum number of
iterations has passed (ga_mingen) and a convergence criteria (converge_crit) is satisfied. The convergence
criteria checks the difference between the mean fitness of individuals in the new iteration versus the previous
iteration; if this difference is greater than converge_crit, then termination does not occur (this prevents
termination from occuring while fitness is still increasing, though it is usually fine to use the default GMSE
converge_crit = 0.1 and ga_mingen = 40, which nearly always terminates the genetic algorithm after 40
iterations having identified adaptive manager or user strategies). Due to the way in which fitness is calculated
(see below), in practice, converge_crit currently applies only to users. If termination conditions are not
satisfied, then the POPULATION of individuals begins a new iteration of crossover, mutation, cost constraint,
fitness evaluation, and tournament selection (Figure 1).

Detailed explanation of manager and user fitness functions

Here we explain how the fitnesses of candidate manager and user strategies in a POPULATION array (see
above) are calculated. We emphasise that the fitness functions used in GMSE v0.4.0.7 are intended to be
heuristic tools for identifying reasonable manager and user behaviours. In practice, our fitness functions
identify behaviours that are well-aligned with manager and user interests for harvesting or crop yield, but
they are not intended to identify optimal decisions. This practical, metaheuristic approach is consistent with
the objectives of management strategy evaluation (Bunnefeld et al., 2011), and is well-suited for the use
of genetic algorithms (Hamblin, 2013). Luke (2009) describes the metaheuristic approach more generally
(original emphasis retained):

6

Metaheuristics are applied to I know it when I see it problems. They’re algorithms used to find
answers to problems when you have very little to help you: you don’t know beforehand what
the optimal solution looks like, you don’t know how to go about finding it in a principled way,
you have very little heuristic information to go on, and brute-force search is out of the question
because the space is too large. But if you’re given a candidate solution to your problem, you can
test it and assess how good it is. That is, you know a good one when you see it.

Given the complexity of adaptive management and socio-ecological interactions, the above conditions for
applying the metaheuristic approach are clearly satisfied for manager and user decisions. With this in mind,
we now explain the details of manager and user fitness functions; that is, how GMSE assesses whether or not
a strategy is a good one.

Fitness function for managers

Individual fitness as calculated for managers (Fm
i) is affected by a manager’s utility for resources and

the projected change in resource abundance caused by the individual’s policy (i.e., the contents of their
POPULATION layer, specifically row 3; here again we use ‘individual’ to refer to one of ga_popsize discrete
strategies in POPULATION, which may be selected and reproduce within the genetic algorithm). Manager utility
for a resource (Um

res) is defined as the difference between manage_target and the estimation of population
abundance as produced by the GMSE observation model (see “Key data structures used” above, and SI7
for more information). Manager utility can therefore change in each GMSE time step as estimated resource
abundance changes; when the estimated resource abundance is greater than manage_target, Um

res is negative,
and when the estimated resource abundance is less than manage_target, Um

res is positive. To get the fitness
of individuals, first the change in resource abundance predicted by the individual’s policy (∆Ai) is calculated,
then the squared difference between ∆Ai and Um

res is calculated to obtain a utility deviation (Di) for the
individual i,

Di = (∆Ai − Um
res)2.

The value of Di increases as ∆Ai gets further from Um
res; i.e, Di is high when i sets a policy that is not

predicted to get closer to the manage_target abundance. Fitness is defined by first finding the maximum Di

value among all ga_popsize individuals (Dmax), then subtracting Di from this value for each individual,

Fm
i = Dmax −Di.

We have explained how Um
res is calculated in the above section on key data structures. We now explain in

more detail how individuals in the genetic algorithm calculate how their actions will affect ∆Ai.

To predict change in resource abundance as a consequence of policy, an individual first needs to know the
total number of actions of all types j (e.g., scaring, culling, etc.) performed by users in the previous time
step (X•,j ; note that this value includes the increment manage_caution, with a default of manage_caution
= 1, to ensure that managers do not naïvely assume that users will not perform an action just because they
did not perform it in the previous time step), and the cost of performing each action (C•,j). This information
is collected from ACTION and COST arrays. The individual i then needs to predict how their policy (i.e., the
costs that they set for users to perform an action) will affect the new total number of each action j performed
(Xi,j). To do this, the individual assumes that total user actions performed under their policy will change in
proportion to that of the old policy, while also recognising that users have a maximum above which higher
costs set by the manager will have no effect. Interested readers might wish to examine the short new_act
function, which is summarised mathematically below; this function is called by the policy_to_counts
function in the genetic algorithm source file.

The manager first calculates how much total budget, as summed over all users, was devoted to an action by
multiplying the old per action cost C•,j by the total number of actions performed, X•,j . The manager then
divides this by the new cost Ci,j per action to calculate the new predicted number of actions,

7

SI7.html
https://github.com/bradduthie/gmse/blob/master/src/game.c#L452
https://github.com/bradduthie/gmse/blob/master/src/game.c#L482
https://github.com/bradduthie/gmse/blob/dev/src/game.c

Xi,j = X•,j × C•,j

Ci,j
.

Note again that if Ci,j = C•,j , then the total number of new predicted actions j will remain unchanged. If
Ci,j > C•,j , then the total number of new actions will decrease, and if Ci,j < C•,j , then the total number of
new actions will increase.

The predicted consequences of Xi,j for resource abundance differ for each possible action. For each action, no
consequence is predicted if the policy is not allowed by a simulation of GMSE (e.g., culling = FALSE). For
allowed actions, the parameter manager_sense (σ) modulates predicted consequences for abundance by some
factor; this is useful because not all actions attempted by users will be realised, and a value of σ = 1 tends to
slightly overestimate how much the actions attempted by users will actually translate to a change in resource
abundance. In practice, the default σ = 0.9 performs well. Allowed actions are predicted by managers to
have the following effects (again, we emphasise that whether or not these effects are realised will depend later
on the user model, to which the manager – by design – does not have access):

• scaring is assumed to be nonlethal and therefore have no effect on resource number (resources are
moved to a random cell on the landscape, as sampled from a uniform distribution such that movement
to any given cell is equally probable).

• culling decreases resource number by σ.
• castration decreases resource number by σλ, where λ is the GMSE argument lambda that defines the

baseline population growth rate of resources.
• feeding increases resource number by σλ.
• help_offspring increases resource number by σ.

Note that σ is included in all of the predicted actions above as a modulator for how strongly the manager
predicts users will respond to a change in manager policy (e.g., a value of 0 would predict no reaction on the
part of users to a change in policy, while a value of 1 would predict that an action would increase in exact
proportion to its decrease in cost).

The above effects cannot be altered directly in gmse or gmse_apply (though parameter values can of course be
changed using manager_sense and lambda arguments), but future versions of GMSE might include different
predicted effects to increase precision or allow for multiple resource types or different actions. The summation
of Xi,j for all actions defines the predicted change in resource abundance caused by the policy of an individual
i, ∆Ai.

Fitness function for users

The previous section described the fitness function applied when individual’s fitness was evaluated for
managers; here we explain a separate fitness function that is applied when individuals are instead evaluated
for users. Individual fitness as calculated for users (Fu

i) is affected by a user’s utility for resources (Uu
res) and

landscape output (Uu
land), and the predicted change in each caused by the user’s actions (∆Ai and ∆Li for

predicted change in resource abundance and summed values of the landscape cells owned by i, respectively).
Individual fitness is defined for users below,

Fu
i = ∆AiU

u
res + ∆LiU

u
land.

Note that Fu
i increases when ∆Ai and ∆Li are of the same sign as Uu

res and Uu
land, respectively. Further,

in GMSE v0.4.0.7, only one term of the equation is nonzero. When land_ownership = FALSE (default,
modelling users that harvest resources), Uu

res = −1 and Uu
land = 0, and when land_ownership = TRUE,

Uu
res = 0 and Uu

land = 100 (modelling farmers trying to increase crop yield). Hence users only have a single
objective of either decreasing resource abundance or increasing landscape output, though landscape output
might be increased indirectly by decreasing resource abundance if resource_consume is greater than zero.

8

User actions are predicted to affect resources in the following way:

• scaring decreases resource number by 1.
• culling decreases resource number by 1.
• castration decreases resource number by λ.
• feeding increases resource number by λ.
• help_offspring increases resource number by 1.

The number of each action performed is multiplied by its effect, and the sum of all these products is the
predicted ∆Ai,

∆Ai = (λ)Feeds+Helps− Scares− Culls− (λ)Castrations.

There are only two possible actions that users can take to directly affect landscape output, tending crops
(tend_crops) and killing crops (kill_crops). The increase in landscape output is modulated by the
parameter tend_crop_yld (φ). User actions are therefore predicted to have the following effects for one
landscape cell:

• tend_crops will increase landscape output by φ.
• kill_crops will decrease landscape output by 1 (since the output of a cell is 1 by default, this action

removes all output on a landscape cell).

Actions on resources can also have indirect effects on ∆Li when resources consume output on the landscape;
we define the value res_consume as r. The predicted ∆Li is then,

∆Li = (φ)Tends−Kills− r∆Ai.

That is, the change in landscape output equals the increase in output from tending crops, minus the number
of crops destroyed, minus the change in resource abundance times the effect that resource abundance has on
landscape output (note that if user actions decrease resource abundance, then this last term will be positive,
increasing landscape output).

Choosing genetic algorithm parameter values

Options for adjusting genetic algorithm parameter values in gmse and gmse_apply are shown below.

GMSE argument Default Description
ga_popsize 100 The number of individuals in the population temporarily

simulated during a single run of the genetic algorithm.
ga_mingen 40 The minimum number of iterations that a genetic

algorithm will run before settling on an agent’s strategy.
ga_seedrep 20 The number of individuas in the population to be

initiaised with the current agent’s strategy (e.g., from a
previous time step in the broader GMSE simulation), as
opposed to being initialised with random strategies.

ga_sampleK 20 For the tournament step of the genetic agorithm, how
many strategies are selected at random from the larger
population (with replacement) to be included a the
tournament.

ga_chooseK 2 Four the tournament step of the genetic agorithm, how
many strategies are selected as winners of the tournament,
to be included in the next iteration.

ga_mutation 0.1 The mutation rate of any action in an agent’s strategy

9

GMSE argument Default Description
ga_crossover 0.1 The crossover rate of any action in an agent’s strategy;

crossover events occur with a different randomly selected
strategy in the population.

ga_converge_crit 0.1 The percent increase in strategy fitness from one iteration
to the next below which the convergence criteria is
satisfied. Iterations wil continue as long as fitness increase
is above this convergence criteria.

group_think FALSE Whether or not all users (i.e., not including the manager)
have identical strategies. If TRUE, then one genetic
algorithm will be run and applied to all users.

Given the heuristic goals of the genetic algorithm to mimic the goal-oriented behaviour of agents, default
parameters are typically sufficient for agent decision making. Key parameters can be adjusted if more
precision in decision making is desired, but these adjustments will come at a cost of simulation efficiency. For
example, increasing ga_popsize or ga_mingen, or decreasing ga_converge_crit, might fine tune strategies
more effectively, but this will cause the genetic algorithm to take longer every time that it is run, ultimately
slowing down GMSE simulations. Alternativey, setting group_think = TRUE will greatly speed up GMSE
simulations when many users are being simulated, but this comes at the cost of among-user variation in
decision making. Overall, we recommend first using default values in the genetic algorithm before exploring
how other parameter value options affect simulation dynamics; for a more general discussion about selecting
parameter values in genetic algorithms, see Hamblin (2013).

Future development of fitness functions

The fitness functions defined above are useful heuristics for simulating manager and user decision-making in
a way that produces realistic, I know it when I see it, strategies. Future versions of GMSE might improve
upon these heuristics to generate more accurate or more realistic models of human decision making. Such
improvements could incorporate additional information such as memory of actions from multiple past time
steps, or a continually updated estimate for how actions are predicted to affect resource abundance or landscape
output in a simulation (e.g., through a dynamic manager_sense). Alternatively, future improvements could
usefully incorporate knowledge of human decision making collected from empirical observation of human
behaviour during conservation conflicts. While such possibilities could be useful for future GMSE modelling,
repeated simulations demonstrate the ability of the current GMSE genetic algorithm to find adaptive strategies
for managers attempting to keep resources at target abundance, and users attempting to maximise their
harvests or crop yields. It is therefore useful as a tool for modelling manager and user decisions in a generalised
management strategy evaluation framework.

References
Adami, C., Schossau, J., and Hintze, A. (2016). Evolutionary game theory using agent-based methods.
Physics of Life Reviews, 19:1–26.

Balmann, A. and Happe, K. (2000). Applying parallel genetic algorithms to economic problems: The case of
agricultural land markets. In IIFET Conference “Microbehavior and Macroresults”. Proceedings., Corvallis,
Oregon, USA.

Bunnefeld, N., Hoshino, E., and Milner-Gulland, E. J. (2011). Management strategy evaluation: A powerful
tool for conservation? Trends in Ecology and Evolution, 26(9):441–447.

Hamblin, S. (2013). On the practical usage of genetic algorithms in ecology and evolution. Methods in Ecology
and Evolution, 4(2):184–194.

10

Kark, S., Tulloch, A., Gordon, A., Mazor, T., Bunnefeld, N., and Levin, N. (2015). Cross-boundary
collaboration: Key to the conservation puzzle. Current Opinion in Environmental Sustainability, 12:12–24.

Lee, C. S. (2012). Multi-objective game-theory models for conflict analysis in reservoir watershed management.
Chemosphere, 87(6):608–613.

Luke, S. (2009). Essentials of Metaheuristics. Lulu. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

Redpath, S. M., Keane, A., Andrén, H., Baynham-Herd, Z., Bunnefeld, N., Duthie, A. B., Frank, J., Garcia,
C. A., Månsson, J., Nilsson, L., Pollard, C. R. J., Rakotonarivo, O. S., Salk, C. F., and Travers, H. (2018).
Games as Tools to Address Conservation Conflicts. Trends in Ecology and Evolution, 33(6):415–426.

Tilman, A. R., Watson, J. R., and Levin, S. (2016). Maintaining cooperation in social-ecological systems:.
Theoretical Ecology.

Tu, M. T., Wolff, E., and Lamersdorf, W. (2000). Genetic algorithms for automated negotiations: a FSM-
based application approach. Proceedings 11th International Workshop on Database and Expert Systems
Applications, pages 1029–1033.

11

	Extended introduction to the genetic algorithm applied in GMSE
	Key data structures used
	General overview of key aspects of the genetic algorithm
	Initialisation
	Crossover
	Mutation
	Cost constraint
	Fitness evaluation
	Tournament selection
	Replacement and termination

	Detailed explanation of manager and user fitness functions
	Fitness function for managers
	Fitness function for users
	Choosing genetic algorithm parameter values
	Future development of fitness functions

