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Fine-tuning simulation conditions using gmse_apply

Here we demonstrate how simulations in GMSE can be more fine-tuned to specific empirical situations
through the use of gmse_apply. To do this, we use the same scenario described in SI3; we first recreate the
basic scenario run in gmse using gmse_apply, and then build in additional modelling details including (1)
custom placement of user land, (2) parameterisation of individual user budgets, and (3) density-dependent
movement of resources. We emphasise that these simulations are provided only to demonstrate the use of
GMSE, and specifically to show the flexibility of the gmse_apply function, not to accurately recreate the
dynamics of a specific system or make management recommendations.

We reconsider the case of a protected waterfowl population that exploits agricultural land (e.g., Fox and
Madsen, 2017; Mason et al., 2017; Tulloch et al., 2017; Cusack et al., 2018). The manager attempts to keep
the watefowl at a target abundance, while users (farmers) attempt to maximise agricultural yield on the land
that they own. We again parameterise our model using demographic information from the Taiga Bean Goose
(Anser fabalis fabalis), as reported by Johnson et al. (2018) and AEWA (2016). Relevant parameter values
are listed in the table below.

Table 1: GMSE simulation parameter values inspired by Johnson
et al. (2018) and AEWA (2016)

Parameter Value Description
remove_pr 0.122 Goose density-independent mortality probability
lambda 0.275 Expected offspring production per time step
res_death_K 93870 Goose carrying capacity (on adult mortality)
RESOURCE_ini 35000 Initial goose abundance
manage_target 70000 Manager’s target goose abundance
res_death_type 3 Mortality (density and density-independent sources)

Additionally, we continue to use the following values for consistency, except in the case of stakeholders,
where we reduce the number of farmers to stakeholders = 8. This is done to for two reasons. First, it
speeds up simulations for the purpose of demonstration; second, it makes the presentation of our custom
landscape ownership easier to visualise (see below).

Table 2: Non-default GMSE parameter values chosen by authors

Parameter Value Description
manager_budget 10000 Manager’s budget for setting policy options
user_budget 10000 Users’ budgets for actions
public_land 0.4 Proportion of the landscape that is public
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Parameter Value Description
stakeholders 8 Number of stakeholders
land_ownership TRUE Users own landscape cells
res_consume 0.02 Landscape cell output consumed by a resource
observe_type 3 Observation model type (survey)
agent_view 1 Cells managers can see when conducting a survey

All other values are set to GMSE defaults, except where specifically noted otherwise.

Re-creating gmse simulations using gmse_apply

We now recreate the simulations in SI3, which were run using the gmse function, in gmse_apply. Doing
so requires us to first initialise simulations using one call of gmse_apply, then loop through multiple time
steps that again call gmse_apply; results of interest are recorded in a data frame (sim_sum_1). Following the
protocol introduced in SI2, we can call the initialising simulation sim_old, and use the code below to read in
the relevant parameter values.
sim_old <- gmse_apply(get_res = "Full", remove_pr = 0.122, lambda = 0.275,

res_death_K = 93870, RESOURCE_ini = 35000,
manage_target = 70000, res_death_type = 3,
manager_budget = 10000, user_budget = 100000,
public_land = 0.4, stakeholders = 8, res_consume = 0.02,
res_birth_K = 200000, land_ownership = TRUE,
observe_type = 3, agent_view = 1, converge_crit = 0.01,
ga_mingen = 200);

Note that the argument get_res = "Full" causes sim_old to retain all of the relevant data structures for
simulating a new time step and recording simulation results. This includes the key simulation output, which
is located in sim_old$basic_output, which is printed below.

## $resource_results
## [1] 34268
##
## $observation_results
## [1] 34268
##
## $manager_results
## resource_type scaring culling castration feeding help_offspring
## policy_1 1 NA 517 NA NA NA
##
## $user_results
## resource_type scaring culling castration feeding help_offspring
## Manager 1 NA 0 NA NA NA
## user_1 1 NA 187 NA NA NA
## user_2 1 NA 189 NA NA NA
## user_3 1 NA 187 NA NA NA
## user_4 1 NA 188 NA NA NA
## user_5 1 NA 187 NA NA NA
## user_6 1 NA 187 NA NA NA
## user_7 1 NA 188 NA NA NA
## user_8 1 NA 188 NA NA NA
## tend_crops kill_crops
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## Manager NA NA
## user_1 NA NA
## user_2 NA NA
## user_3 NA NA
## user_4 NA NA
## user_5 NA NA
## user_6 NA NA
## user_7 NA NA
## user_8 NA NA

We can then loop over 30 time steps to recreate the simulations from SI3. In these simulations, we are
specifically interested in the resource and observation outputs, as well as the manager policy and user actions
for culling, which we record below in the data frame sim_sum_1. The inclusion of the argument old_list
tells gmse_apply to use parameters and values from the list sim_old in the new time step.
sim_sum_1 <- matrix(data = NA, nrow = 30, ncol = 5);
for(time_step in 1:30){

sim_new <- gmse_apply(get_res = "Full", old_list = sim_old);
sim_sum_1[time_step, 1] <- time_step;
sim_sum_1[time_step, 2] <- sim_new$basic_output$resource_results[1];
sim_sum_1[time_step, 3] <- sim_new$basic_output$observation_results[1];
sim_sum_1[time_step, 4] <- sim_new$basic_output$manager_results[3];
sim_sum_1[time_step, 5] <- sum(sim_new$basic_output$user_results[,3]);
sim_old <- sim_new;

}
colnames(sim_sum_1) <- c("Time", "Pop_size", "Pop_est", "Cull_cost",

"Cull_count");
print(sim_sum_1);

## Time Pop_size Pop_est Cull_cost Cull_count
## [1,] 1 32508 32508 798 983
## [2,] 2 32113 32113 933 842
## [3,] 3 32342 32342 982 801
## [4,] 4 33199 33199 1003 785
## [5,] 5 37150 37150 1002 785
## [6,] 6 38243 38243 994 792
## [7,] 7 39644 39644 1002 785
## [8,] 8 41276 41276 997 787
## [9,] 9 43198 43198 1009 778
## [10,] 10 45557 45557 1001 785
## [11,] 11 47920 47920 1001 785
## [12,] 12 50212 50212 982 801
## [13,] 13 52988 52988 997 786
## [14,] 14 55701 55701 1000 786
## [15,] 15 58673 58673 1002 785
## [16,] 16 61784 61784 996 788
## [17,] 17 65225 65225 983 801
## [18,] 18 68843 68843 1010 778
## [19,] 19 72816 72816 10 29122
## [20,] 20 46687 46687 1009 778
## [21,] 21 48928 48928 996 787
## [22,] 22 51222 51222 997 786
## [23,] 23 53715 53715 1003 785
## [24,] 24 56523 56523 992 793
## [25,] 25 59436 59436 1010 778
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## [26,] 26 62808 62808 1002 785
## [27,] 27 66315 66315 1003 785
## [28,] 28 70070 70070 10 29182
## [29,] 29 43585 43585 1008 778
## [30,] 30 45709 45709 997 788

The above output from sim_sum_1 shows the data frame that holds the information we were interested
in pulling out of our simulation results. All of this information was available under the list element
sim_new$basic_output, but other list elements of sim_new might also be useful to record. It is important
to remember that this example of gmse_apply is using the default resource, observation, manager, and
user sub-models. Custom sub-models could produce different outputs in sim_new (see SI2 for examples).
For default sub-models, there are some list elements that might be especially useful. These elements can
potentially be edited within the above loop to dynamically adjust simulations. For more explanation of built-in
GMSE data arrays, see SI7.

• sim_new$resource_array: A table holding all information on resources. Rows correspond to discrete
resources, and columns correspond to resource properties: (1) ID, (2-4) types (not currently in use),
(5) x-location, (6) y-location, (7) movement parameter, (8) time, (9) density independent mortality
parameter (remove_pr), (10) reproduction parameter (lambda), (11) offspring number, (12) age, (13-14)
observation columns, (15) consumption rate (res_consume), and (16-20) recorded experiences of user
actions (e.g., was the resource culled or scared?).

• sim_new$AGENTS: A table holding basic information on agents (manager and users). Rows correspond
to a unique agent, and columns correspond to agent properties: (1) ID, (2) type (0 for the manager, 1
for users), (3-4) additional type options not currently in use, (5-6), x and y locations (usually ignored),
(7) movement parameter (usually ignored), (8) time, (9) agent’s viewing ability in cells (agent_view),
(10) error parameter, (11-12) values for holding marks and tallies of resources, (13-15) values for holding
observations, (16) yield from landscape cells, (17) budget (manager_budget and user_budget).

• sim_new$observation_vector: Estimate of total resource number from the observation model
(observation_array also holds this information in a different way depending on observe_type)

• sim_new$LAND: The landscape on which interactions occur, which is stored as a 3D array with
land_dim_1 rows, land_dim_2 columns, and 3 layers. Layer 1 (sim_new$LAND[„1]) is not currently
used in default sub-models, but could be used to store values that affect resources and agents. Layer 2
(sim_new$LAND[„2]) stores crop yield from a cell, and layer 3 (sim_new$LAND[„3]) stores the owner of
the cell (value corresponds to the agent’s ID).

• sim_new$manage_vector: The cost of each action as set by the manager. For even more fine-tuning,
individual costs for the actions of each agent can be set for each user in sim_new$manager_array.

• sim_new$user_vector: The total number of actions performed by each user. A more detailed breakdown
of actions by individual users is held in sim_new$user_array.

Next, we show how to adjust the landscape to manually set land ownership in gmse_apply.

1. Custom placement of user land

By default, all farmers in GMSE are allocated the same number of landscape cells, which are simply placed
in order of the farmer’s ID. Public land is produced by placing landscape cells that are technically owned by
the manager, and therefore have landscape cell values of 1. The image below shows this landscape for the
eight farmers from sim_old.
image(x = sim_old$LAND[,,3], col = topo.colors(9), xaxt = "n", yaxt = "n");

We can change the ownership of cells by manipulating sim_old$LAND[„3]. First we initialise a new sim_old
below.
sim_old <- gmse_apply(get_res = "Full", remove_pr = 0.122, lambda = 0.275,

res_d4eath_K = 93870, RESOURCE_ini = 35000,
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Figure 1: Default position of land ownership by farmers.

manage_target = 70000, res_death_type = 3,
manager_budget = 10000, user_budget = 10000,
public_land = 0.4, stakeholders = 8, res_consume = 0.02,
res_birth_K = 200000, land_ownership = TRUE,
observe_type = 3, agent_view = 1, converge_crit = 0.01,
ga_mingen = 200);

Because we have not specified landscape dimensions in the above, the landscape reverts to the default size of
100 by 100 cells. We can then manually assign landscape cells to the eight farmers, whose IDs range from 2-9
(ID value 1 is the manager). Below we do this to make eight different sized farms.
sim_old$LAND[1:20, 1:20, 3] <- 2;
sim_old$LAND[1:20, 21:40, 3] <- 3;
sim_old$LAND[1:20, 41:60, 3] <- 4;
sim_old$LAND[1:20, 61:80, 3] <- 5;
sim_old$LAND[1:20, 81:100, 3] <- 6;
sim_old$LAND[21:40, 1:50, 3] <- 7;
sim_old$LAND[21:40, 51:100, 3] <- 8;
sim_old$LAND[41:60, 1:100, 3] <- 9;
sim_old$LAND[61:100, 1:100, 3] <- 1; # Public land
image(x = sim_old$LAND[,,3], col = topo.colors(9), xaxt = "n", yaxt = "n");

The above image shows the modified landscape stored in sim_old, which can now be incorporated into
simulations using gmse_apply. We can think of all the plots on the left side of the landscape as farms of
various sizes, while the blue area of the landscape on the right is public land.

2. Parameterisation of individual user budgets

Perhaps we want to assume that farmers have different budgets, which are correlated in some way to the
number of landscape cells that they own. Custom user budgets can be set by manipulating sim_old$AGENTS,
the last column of which (column 17) holds the budget for each user. Agent IDs (as stored on the landscape
above) correspond to rows of sim_old$AGENTS, so individual budgets can be directly input as desired. We
can do this manually (e.g., sim_old$AGENTS[2, 17] <- 4000), or, alternatively, if farmer budget positively
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Figure 2: Land ownership by farmers as customised in gmse_apply.

correlates to landscape owned, we can use a loop to input values as below.
for(ID in 2:9){

cells_owned <- sum(sim_old$LAND[,,3] == ID);
sim_old$AGENTS[ID, 17] <- 10 * cells_owned;

}

The number of cells owned by the manager (1) and each farmer (2-8) is therefore listed in the table below.

ID 1 2 3 4 5 6 7 8 9
Budget 10000 4000 4000 4000 4000 4000 10000 10000 20000

As with sim_old$LAND values, changes to sim_old$AGENTS will be retained in simulations looped through
gmse_apply.

3. Density-dependent movement of resources

Lastly, we consider a more nuanced change to simulations, in which the rules for movement of resources
are modified to account for density-dependence. Assume that geese tend to avoid aggregating, such that if
a goose is located on the same cell as too many other geese, then it will move at the start of a time step.
Programming this movement rule can be accomplished by creating a new function to apply to the resource
data array sim_old$resource_array. Below, a custom function is defined that causes a goose to move up
to 5 cells in any direction if it finds itself on a cell with more than 10 other geese. As with default GMSE
simulations, movement is based on a torus landscape (where no landscape edge exists, so that if resources
move off of one side of the landscape they appear on the opposite side).
avoid_aggregation <- function(goose_table, land_dim_1 = 100, land_dim_2 = 100){

goose_number <- dim(goose_table)[1] # How many geese are there?
for(goose in 1:goose_number){ # Loop through all rows of geese

x_loc <- goose_table[goose, 5];
y_loc <- goose_table[goose, 6];
shared <- sum(goose_table[,5] == x_loc & goose_table[,6] == y_loc);
if(shared > 10){

new_x <- x_loc + sample(x = -5:5, size = 1);
new_y <- y_loc + sample(x = -5:5, size = 1);
if(new_x < 0){ # The 'if' statements below apply the torus

new_x <- land_dim_1 + new_x;
}
if(new_x >= land_dim_1){

new_x <- new_x - land_dim_1;
}
if(new_y < 0){

new_y <- land_dim_2 + new_x;
}
if(new_y >= land_dim_2){

new_y <- new_y - land_dim_2;
}
goose_table[goose, 5] <- new_x;
goose_table[goose, 6] <- new_y;

}
}
return(goose_table);

}
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With the above function written, we can apply the new movement rule along with our custom farm placement
and custom farmer budgets to the simulation of goose population dynamics.

Simulation with custom farms, budgets, and goose movement

Below shows an example of gmse_apply with custom landscapes, farmer budgets, and density-dependent
goose movement rules.
# First initialise a simulation
sim_old <- gmse_apply(get_res = "Full", remove_pr = 0.122, lambda = 0.275,

res_death_K = 93870, RESOURCE_ini = 35000,
manage_target = 70000, res_death_type = 3,
manager_budget = 10000, user_budget = 10000,
public_land = 0.4, stakeholders = 8, res_consume = 0.02,
res_birth_K = 200000, land_ownership = TRUE,
observe_type = 3, agent_view = 1, converge_crit = 0.01,
ga_mingen = 200, res_move_type = 0);

# By setting `res_move_type = 0`, no resource movement will occur in gmse_apply
# Adjust the landscape ownership below
sim_old$LAND[1:20, 1:20, 3] <- 2;
sim_old$LAND[1:20, 21:40, 3] <- 3;
sim_old$LAND[1:20, 41:60, 3] <- 4;
sim_old$LAND[1:20, 61:80, 3] <- 5;
sim_old$LAND[1:20, 81:100, 3] <- 6;
sim_old$LAND[21:40, 1:50, 3] <- 7;
sim_old$LAND[21:40, 51:100, 3] <- 8;
sim_old$LAND[41:60, 1:100, 3] <- 9;
sim_old$LAND[61:100, 1:100, 3] <- 1;
# Change the budgets of each farmer based on the land they own
for(ID in 2:9){

cells_owned <- sum(sim_old$LAND[,,3] == ID);
sim_old$AGENTS[ID, 17] <- 10 * cells_owned;

}
# Begin simulating time steps for the system
sim_sum_2 <- matrix(data = NA, nrow = 30, ncol = 5);
for(time_step in 1:30){

# Apply the new movement rules at the beginning of the loop
sim_old$resource_array <- avoid_aggregation(sim_old$resource_array);
# Next, move on to simulate (old_list remembers that res_move_type = 0)
sim_new <- gmse_apply(get_res = "Full", old_list = sim_old);
sim_sum_2[time_step, 1] <- time_step;
sim_sum_2[time_step, 2] <- sim_new$basic_output$resource_results[1];
sim_sum_2[time_step, 3] <- sim_new$basic_output$observation_results[1];
sim_sum_2[time_step, 4] <- sim_new$basic_output$manager_results[3];
sim_sum_2[time_step, 5] <- sum(sim_new$basic_output$user_results[,3]);
sim_old <- sim_new;

}
colnames(sim_sum_2) <- c("Time", "Pop_size", "Pop_est", "Cull_cost",

"Cull_count");
print(sim_sum_2);

## Time Pop_size Pop_est Cull_cost Cull_count
## [1,] 1 34048 34048 788 74
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## [2,] 2 34626 34626 894 64
## [3,] 3 35876 35876 946 60
## [4,] 4 37798 37798 975 60
## [5,] 5 43761 43761 978 60
## [6,] 6 46067 46067 1008 52
## [7,] 7 48857 48857 998 56
## [8,] 8 51977 51977 977 60
## [9,] 9 55408 55408 985 60
## [10,] 10 59308 59308 977 60
## [11,] 11 63553 63553 970 60
## [12,] 12 67542 67542 994 58
## [13,] 13 71721 71721 468 124
## [14,] 14 76276 76276 385 151
## [15,] 15 81302 81302 394 150
## [16,] 16 86630 86630 428 137
## [17,] 17 92550 92550 428 137
## [18,] 18 98760 98760 438 132
## [19,] 19 101621 101621 412 140
## [20,] 20 102475 102475 424 136
## [21,] 21 102668 102668 431 134
## [22,] 22 103216 103216 425 137
## [23,] 23 103612 103612 428 137
## [24,] 24 103845 103845 424 137
## [25,] 25 103600 103600 431 136
## [26,] 26 103651 103651 437 132
## [27,] 27 103323 103323 422 137
## [28,] 28 103267 103267 429 136
## [29,] 29 103196 103196 432 136
## [30,] 30 103239 103239 417 138

Conclusions

In this example, we showed how the built-in resource, observation, manager, and user sub-models can be
customised by manipulating the data within the data structures that they use. The goal was to show how
software users can work with these existing sub-models and data structures to customise GMSE simulations.
Readers seeking even greater flexibility (e.g., replacing an entire built-in sub-model with a custom sub-model)
should refer to SI2 that introduces gmse_apply more generally. Future versions of GMSE are likely to
expand on the built-in options available for simulation; requests for such expansions, or contributions, can be
submitted to GitHub.
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