
Default GMSE data structures1

GMSE: an R package for generalised management strategy evaluation (Supporting2

Information 7)3

A. Bradley Duthie13, Jeremy J. Cusack1, Isabel L. Jones1, Jeroen Minderman1, Erlend B.4

Nilsen2, Rocío A. Pozo1, O. Sarobidy Rakotonarivo1, Bram Van Moorter2, and Nils5

Bunnefeld16

[1] Biological and Environmental Sciences, University of Stirling, Stirling, UK [2] Norwegian7

Institute for Nature Research, Trondheim, Norway [3] alexander.duthie@stir.ac.uk8

The most important (default) GMSE data structures9

The default sub-models of GMSE (resource, observation, manager, and user) use a small number of10

default data structures to hold the information needed in simulations. While these default sub-models do not11

necessarily need to be used in every run in GMSE (see use of gmse_apply), they will be used in any run12

of the gmse function, and in any call of the gmse_apply function that does not run with entirely custom13

sub-models. Simulation and model inference do not require an understanding of the default data structures,14

but such an understanding can be especially useful when running gmse_apply if there is a need to extract15

uncommonly used information, change key simulated values (e.g., landscape properties, agent budgets, or16

resource movement rules, as in SI4), or build custom individual-based sub-models. Here we provide a brief17

explanation of the following key data structures (each name below is listed as it is named in the output18

gmse_apply when get_res = "Full").19

1. AGENTS20

2. resource_array (or RESOURCES)21

3. observation_array (or OBSERVATION)22

4. manager_array (or COST)23

5. user_array (or ACTION)24

6. LAND25

Note that these are not the only data structures used in GMSE, but they are the only ones that can be easily26

modified in GMSE v0.4.0.7 (see, e.g., SI4), so they are the ones that we focus on here. Additionally, any27

custom subfunction that returns an array rather than a single value should adhere to the same structure as28

these defaults if any default GMSE functions are to be used in gmse_apply. We can investigate each data29

structure by running a single simulation of gmse_apply.30

sim <- gmse_apply(get_res = "Full");

The full list output of sim holds each structure by name (in the case where two names are used, e.g.,31

resource_array and RESOURCES, both are identical, but the lower case resource_array takes precedence32

in case of a change). Each data structure can be examined, changed, and incorporated into a new simulation33

(e.g., new_sim <- gmse_apply(old_list = sim)).34

1. AGENTS35

The AGENTS data structure is a two dimensional array with a fixed number of 17 columns and a number of36

rows that is always equal to the sum of the number of manager and users (i.e., each row is an individual37

agent).38

1

mailto:alexander.duthie@stir.ac.uk

print(sim$AGENTS);

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]39

[1,] 1 0 0 0 89 30 50 0 10 0 50 0 040

[2,] 2 1 0 0 97 55 50 0 10 0 0 0 041

[3,] 3 1 0 0 35 83 50 0 10 0 0 0 042

[4,] 4 1 0 0 74 57 50 0 10 0 0 0 043

[5,] 5 1 0 0 22 91 50 0 10 0 0 0 044

[,14] [,15] [,16] [,17]45

[1,] 0 0 9525.719 100046

[2,] 0 0 0.000 100047

[3,] 0 0 0.000 100048

[4,] 0 0 0.000 100049

[5,] 0 0 0.000 100050

In the default case above, there are five agents (one manager and four users), each represented by a unique51

row. Columns in the array represent the agent traits listed below.52

1. ID (each agent gets a unique number)53

2. Type 1 (0 indicates the manager; 1 indicates users)54

3. Type 2 (currently unused)55

4. Type 3 (currently unused)56

5. x-location on the landscape (typically ignored)57

6. y-location on the landscape (typically ignored)58

7. Movement distance (typically ignored)59

8. Time parameter (typically ignored)60

9. Distance of vision (currently used only for managers)61

10. Error parameter (currently unused)62

11. Resource marking parameter (currently used only for managers)63

12. Resource tally parameter (currently used only for managers)64

13. Unused column 165

14. Unused column 266

15. Unused column 367

16. Yield from owned land (zero for users when default land_ownership = FALSE)68

17. Budget69

It is obvious from the above list that most columns represent traits that are either typically ignored or70

currently not in use. This is intended to allow for easier future development of default model options and71

potential customisation of sub-models in gmse_apply. We anticipate that future versions of GMSE will72

contain multiple user types with unique traits and among-user interactions.73

2. resource_array74

The resource_array (also accessible as RESOURCES) is a two dimensional array with a fixed number of 2075

columns and a number of rows that is always equal to the total number of resources (each row is an individual76

resource). In the above simulation, sim$resource_array includes 1118 rows, so we only print out the first77

eight for illustration.78

print(sim$resource_array[1:8,]);

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]79

[1,] 1 1 0 0 45 18 20 1 0 0.3 0 4 080

[2,] 2 1 0 0 15 97 20 1 0 0.3 0 5 081

[3,] 3 1 0 0 64 35 20 1 0 0.3 0 3 082

2

[4,] 5 1 0 0 15 49 20 1 0 0.3 0 4 083

[5,] 6 1 0 0 33 19 20 1 0 0.3 0 3 084

[6,] 7 1 0 0 16 20 20 1 0 0.3 0 3 085

[7,] 8 1 0 0 43 1 20 1 0 0.3 1 5 086

[8,] 9 1 0 0 13 38 20 1 0 0.3 2 4 087

[,14] [,15] [,16] [,17] [,18] [,19] [,20]88

[1,] 0 0.5 0 0 0 0 089

[2,] 0 0.5 0 3 0 0 090

[3,] 0 0.5 0 0 0 0 091

[4,] 0 0.5 0 0 0 0 092

[5,] 0 0.5 0 0 0 0 093

[6,] 0 0.5 0 0 0 0 094

[7,] 0 0.5 0 0 0 0 095

[8,] 0 0.5 0 0 0 0 096

Columns in the resource array represent the individual resource traits listed below.97

1. ID (each resource gets a unique number)98

2. Type 1 (currently all resources are of type 1)99

3. Type 2 (currently unused)100

4. Type 3 (currently unused)101

5. x-location on the landscape102

6. y-location on the landscape103

7. Movement distance104

8. Time parameter (typically ignored)105

9. Density-independent removal (i.e., death) probability106

10. Growth (i.e., birth) probability107

11. Offspring produced108

12. Age (initial resources are given a random age between 1 and the maximum age sampled from a uniform109

distribution; offspring always start at age zero in their time step of birth)110

13. Marking indicator (used in the observation function)111

14. Tallying indicator (used in the observation function)112

15. Proportion of a landscape cell the resource consumes in a time step113

16. Has the resource been scared by an agent?114

17. Has the resource been culled by an agent?115

18. Has the resource been castrated by an agent?116

19. Has the resource’s growth rate been increased by an agent?117

20. Has the resource’s offspring production been increased by an agent?118

In the case of columns 16-20, the value is either zero (if no action has occurred), or some positive integer that119

matches the ID of the agent that has performed the act (e.g., if column 17 equals 3, then that means that120

the agent with ID = 3 culled the resource in the corresponding row; where more than one agent’s action is121

possible per time step – as in scaring – the integer reflects the most recently acting agent). We anticipate that122

future versions of gmse will contain multiple resource types, and might add columns to include additional123

resource traits.124

3. observation_array125

The observation_array (also accessible as OBSERVATION) is a two dimensional array, the number of rows126

and columns of which depend on the type of observation being made (i.e., observe_type, which can take127

integer values from 0-3; see the GMSE reference manual for more information about built-in observation128

types that are available in GMSE). The first 20 columns of observation_array contain the same individual129

resource traits as in resource_array, while any additional columns provide information about how and when130

a resource was observed. The number of rows in observation_array is always equal to or less than that of131

3

https://cran.r-project.org/package=GMSE

resource_array; each resource that is observed at least once is placed into one unique row, while unobserved132

resources are not included as rows in the observation_array. In sim, there are 50 rows, meaning that 1068133

resources were not observed at all in this time step. Below, we print out the first eight rows of the observation134

array.135

print(sim$observation_array[1:8,]);

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]136

[1,] 100 1 0 0 81 40 20 1 0 0.3 0 5 1137

[2,] 113 1 0 0 95 22 20 1 0 0.3 2 3 1138

[3,] 122 1 0 0 82 32 20 1 0 0.3 0 2 1139

[4,] 142 1 0 0 90 40 20 1 0 0.3 1 5 1140

[5,] 156 1 0 0 89 28 20 1 0 0.3 0 5 1141

[6,] 159 1 0 0 83 26 20 1 0 0.3 1 4 1142

[7,] 180 1 0 0 81 32 20 1 0 0.3 2 3 1143

[8,] 184 1 0 0 82 35 20 1 0 0.3 0 2 1144

[,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22]145

[1,] 0 0.5 0 0 0 0 0 0 1146

[2,] 0 0.5 0 0 0 0 0 0 1147

[3,] 0 0.5 0 0 0 0 0 0 1148

[4,] 0 0.5 0 0 0 0 0 0 1149

[5,] 0 0.5 0 0 0 0 0 0 1150

[6,] 0 0.5 0 0 0 0 0 0 1151

[7,] 0 0.5 0 0 0 0 0 0 1152

[8,] 0 0.5 0 0 0 0 0 0 1153

In the case of the default parameters, the observation array has only two additional columns; the first added154

column 21 is currently unused, and all values in this column are zero. The second added column 22 contains a155

value of 1 confirming that the resource was observed. Additional options will add different numbers of columns156

with different values. For example, when observe_type = 0 (managers observe all resources on a random157

subset of the landscape, the size of which is determined by their distance of vision) but times_observe > 1,158

managers sample more than one random subset of the landscape. A new column is added for each sampled159

subset, and a 1 is placed in the relevant column if the resource is observed (these collected data are then used160

to estimate population size). An example where times_observe = 4 is shown below.161

sim_t0_4 <- gmse_apply(get_res = "Full", times_observe = 4);
print(sim_t0_4$observation_array[1:8,]);

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]162

[1,] 1 1 0 0 67 76 20 1 0 0.3 1 2 1163

[2,] 5 1 0 0 69 14 20 1 0 0.3 0 3 1164

[3,] 6 1 0 0 71 82 20 1 0 0.3 0 2 1165

[4,] 8 1 0 0 64 15 20 1 0 0.3 0 5 1166

[5,] 9 1 0 0 59 65 20 1 0 0.3 0 2 1167

[6,] 13 1 0 0 16 84 20 1 0 0.3 0 5 1168

[7,] 45 1 0 0 70 74 20 1 0 0.3 0 4 1169

[8,] 54 1 0 0 60 82 20 1 0 0.3 0 4 1170

[,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]171

[1,] 0 0.5 0 0 0 0 0 0 0 0 1172

[2,] 0 0.5 0 0 0 0 0 0 0 1 0173

[3,] 0 0.5 0 0 0 0 0 0 0 0 1174

[4,] 0 0.5 0 0 0 0 0 0 0 1 0175

[5,] 0 0.5 0 0 0 0 0 0 0 0 1176

[6,] 0 0.5 0 0 0 0 0 0 0 0 0177

[7,] 0 0.5 0 0 0 0 0 0 0 0 1178

[8,] 0 0.5 0 0 0 0 0 0 0 0 1179

4

[,25]180

[1,] 0181

[2,] 0182

[3,] 0183

[4,] 0184

[5,] 0185

[6,] 1186

[7,] 0187

[8,] 0188

This process simulates the data collection of resources (and potentially resource trait measurement) as might189

be performed by observers within the system. It therefore takes a virtual ecologist approach; this enables the190

integration of theory and empirical work and can improve the mechanistic understanding of social-ecological191

systems (Zurell et al., 2010).192

4. manager_array193

For context, it might be easier to understand manager_array after reading about user_array below. The194

manager_array (also accessible as COST) is a three dimensional array, each layer of which corresponds to195

a unique agent (rows in AGENT correpond to layers in manager_array). Hence, in the simulation output196

sim$manager_array, there are 5 layers. Each layer in manager_array has 13 columns, and a number of rows197

that varies depending on the number of agents and resource types. As of GMSE v0.4.0.7, only the first three198

rows are used. Two layers of sim$manager_array are shown below, the first being that of the manager and199

the second being that of the first user.200

print(sim$manager_array[,,1:2]);

, , 1201

##202

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]203

[1,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001204

[2,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001205

[3,] 100001 100001 100001 100001 100001 100001 100001 100001 10 100001206

[4,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001207

[5,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001208

[6,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001209

[7,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001210

[,11] [,12] [,13]211

[1,] 100001 100001 10212

[2,] 100001 100001 10213

[3,] 100001 100001 10214

[4,] 100001 100001 100001215

[5,] 100001 100001 100001216

[6,] 100001 100001 100001217

[7,] 100001 100001 100001218

##219

, , 2220

##221

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]222

[1,] 100001 100001 100001 100001 100001 100001 100001 100001 69 100001223

[2,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001224

[3,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001225

[4,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001226

[5,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001227

5

[6,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001228

[7,] 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001229

[,11] [,12] [,13]230

[1,] 100001 100001 10231

[2,] 100001 100001 10232

[3,] 100001 100001 100001233

[4,] 100001 100001 100001234

[5,] 100001 100001 100001235

[6,] 100001 100001 100001236

[7,] 100001 100001 100001237

Each element in the array indicates the cost of performing a particular action. In the code, this is the cost238

of changing an element in user_array (which has the same dimensions as manager_array). The minimum239

value in sim$manager_array is therefore 10, reflecting the default minimum_cost value of 10. The maximum240

value is 100001, which is one higher than the maximum allowed manager or user budget. Where a cost is241

100001, actions can therefore never be performed. An explanation of the rows and columns of manager_array242

is provided below in the description of user_array.243

5. user_array244

The user_array (also accessible as ACTION) is a three dimensional array, each layer of which corresponds245

to a unique agent. When considering the three dimensional user_array, it is helpful to keep in mind that246

each layer corresponds to the actions of a particular agent, that each column corresponds to a particular247

type of action, and that each row corresponds to a particular resource, agent, or group that the action will248

affect. The cost of performing any action in this array is held in manager_array, wherein an action’s cost249

in manager_array is held in the same array element as the action itself in user_array. Recall from the250

manager array that the first layer of user_array corresponds to the manager actions, and that remaining251

layers correspond to user actions; there are therefore as many layers in user_array as there are agents in the252

model, and each row of AGENTS corresponds to equivalent layer of user_array (e.g., the manager agent, ID253

= 1, is in the first row of AGENTS and the first layer of user_array). The first two layers of user_array are254

shown below.255

print(sim$user_array[,,1:2]);

, , 1256

##257

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]258

[1,] -2 1 0 0 1000.0000 0 0 0 0 0 0 0259

[2,] -1 1 0 0 0.0000 0 0 0 0 0 0 0260

[3,] 1 1 0 0 -133.7868 0 0 10 69 10 10 10261

[4,] 2 1 0 0 0.0000 0 0 0 0 0 0 0262

[5,] 3 1 0 0 0.0000 0 0 0 0 0 0 0263

[6,] 4 1 0 0 0.0000 0 0 0 0 0 0 0264

[7,] 5 1 0 0 0.0000 0 0 0 0 0 0 0265

[,13]266

[1,] 0267

[2,] 0268

[3,] 51269

[4,] 0270

[5,] 0271

[6,] 0272

[7,] 0273

##274

, , 2275

6

##276

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]277

[1,] -2 1 0 0 -1 0 0 0 14 0 0 0 0278

[2,] -1 1 0 0 0 0 0 0 0 0 0 0 2279

[3,] 1 1 0 0 0 0 0 0 0 0 0 0 0280

[4,] 2 1 0 0 0 0 0 0 0 0 0 0 0281

[5,] 3 1 0 0 0 0 0 0 0 0 0 0 0282

[6,] 4 1 0 0 0 0 0 0 0 0 0 0 0283

[7,] 5 1 0 0 0 0 0 0 0 0 0 0 0284

Note that there are more columns in this array than there are possible actions in GMSE. This is because285

there are several columns that do not map to actions per se, but properties of agents. As of GMSE v0.4.0.7,286

these properties cannot be changed by other agents. Column of user_array are as follows.287

1. The type of agent or resource being affected by an action. A value of -2 indicates that actions have288

a direct effect on a resource (e.g., scaring, culling, etc.). A value of -1 indicates that actions have a289

direct effect on a landscape layer. Positive integer values indicate actions that affect other agents, where290

each integer corresponds to the agents’ IDs. Where the integer value is identical with the agent’s own291

ID (e.g., row 3 in layer 1 where the element sim$user_array[3, 1, 1] = 1), actions affect all other292

agents in the model. As of GMSE v0.4.0.7, all rows except 1-3 are unused because agents do not affect293

one anothers actions individually; they either affect all other agents’ actions indiscriminately (in the294

case of the manager setting policy) or do not (directly) affect other agents’ actions at all (in the case of295

users). This data structure, however, is designed so that future versions of GMSE will allow users to296

affect one another directly (representing, e.g., different groups of agents lobbying for different interests,297

among-user conflict, etc.).298

2. Type 1 of the agent or resource of interest (in practice, this is currently unused).299

3. Type 2 of the agent or resource of interest (currently unused).300

4. Type 3 of the agent or resource of interest (currently unused).301

5. Utility associated with the recipient of the action. For example, in the case of the resource (row 1),302

positive values indicate that the agent wants more of these resources, while negative values indicate303

that the agent wants fewer. In the case of the manager (layer 1), the value in the first row equals304

manage_target, while the value in the third row is the change in resource number needed to achieve305

the target value (i.e., manage_target = 1000, and the manager’s estimate is sim$observation_vector306

= 1133.7868481. The former minus the latter is -133.78685).307

6. Whether or not the utility associated with the recipient of the action is dependent upon that recipient308

being on land owned by the actor (e.g., if users only care about resources on landscape cells that they309

own, then this value is 1 instead of 0).310

7. Whether or not actions on the recipient are possible if the recipient is not on land owned by the actor311

(e.g., if users cannot cull resources that are not on their own land, then this value is 1 instead of 0).312

8. The number of actions performed for scaring, which in row 3 of the manager layer 1 is interpreted as313

the scaring cost set by the manager for users.314

9. The number of actions performed for culling, which in row 3 of the manager layer 1 is interpreted as315

the culling cost set by the manager for users.316

10. The number of actions performed for castration, which in row 3 of the manager’s layer 1 is interpreted317

as the castration cost set by the manager for users. Further, in row 2 for users (where column 1 equals318

-1), this value is instead the number of tend_crop actions (the number of cells on which crops are319

tended by users, which always is perfomed on users’ own land, cannot be affected by the manager, and320

always equals minimum_cost).321

11. The number of actions performed for feeding resources (increasing their growth rate, lambda), which in322

row 3 of the manager’s layer 1 is interpreted as the feeding cost set by the manager for users. Further,323

in row 2 for users (where column 1 equals -1), this value is instead the number of kill_crop actions324

(the number of cells on which crops are destroyed by users, which always is perfomed on users’ own325

land, cannot be affected by the manager, and always equals minimum_cost)326

12. The number of actions performed for helping resource offspring (directly increasing offspring production),327

which in row 3 of the manager’s layer 1 is interpreted as the helping offspring cost set by the manager328

7

for users.329

13. The number of actions unspent by the user or manager; any actions allocated to this row do nothing.330

These may be used when any action would lead the agent to a less than desirable outcome, such as if331

only culling exists as a policy option (default), but managers do not want to increase the cost of culling332

because resource density is above manage_target.333

In the genetic algorithm, values in elements of a user_array layer are potentially modified according to each334

agent’s objective, as constrained by costs in manager_array.335

6. LAND336

Events in default GMSE sub-models occur on a spatially-explicit landscape LAND, which is stored as a three337

dimensional array. The size of this landscape is specified with the land_dim_1 and land_dim_2 arguments of338

GMSE, which determine the length, in cells, of the y and x dimensions of the landscape, respectively (e.g., if339

land_dim_1 = 10 and land_dim_2 = 1000, then the landscape will be one very long horizontal transect).340

The total number of landscape cells on which resources and agents can interact is therefore the product of341

land_dim_1 and land_dim_2. In addition, all landscapes have three layers, which hold three separate values342

of information for each x-y location. The first layer is unused in GMSE v0.4.0.7; the second layer holds crop343

production on a cell, and the third layer holds the owner of the cell (corresponding to the ID of an agent,344

where the manager’s ID = 0 defines public land). An 8 × 8 portion of the landscape from sim is shown below.345

print(sim$LAND[1:8,1:8,]);

, , 1346

##347

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]348

[1,] 1 1 1 1 1 1 1 1349

[2,] 1 1 1 1 1 1 1 1350

[3,] 1 1 1 1 1 1 1 1351

[4,] 1 1 1 1 1 1 1 1352

[5,] 1 1 1 1 1 1 1 1353

[6,] 1 1 1 1 1 1 1 1354

[7,] 1 1 1 1 1 1 1 1355

[8,] 1 1 1 1 1 1 1 1356

##357

, , 2358

##359

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]360

[1,] 1 1.0 1 1.00 1 1.00 1 1.0361

[2,] 1 1.0 1 1.00 1 1.00 1 1.0362

[3,] 1 1.0 1 0.25 1 1.00 1 1.0363

[4,] 1 1.0 1 1.00 1 1.00 1 1.0364

[5,] 1 1.0 1 1.00 1 1.00 1 1.0365

[6,] 1 0.5 1 1.00 1 1.00 1 0.5366

[7,] 1 1.0 1 1.00 1 0.25 1 1.0367

[8,] 1 0.5 1 1.00 1 1.00 1 0.5368

##369

, , 3370

##371

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]372

[1,] 1 1 1 1 1 1 1 1373

[2,] 1 1 1 1 1 1 1 1374

[3,] 1 1 1 1 1 1 1 1375

[4,] 1 1 1 1 1 1 1 1376

8

[5,] 1 1 1 1 1 1 1 1377

[6,] 1 1 1 1 1 1 1 1378

[7,] 1 1 1 1 1 1 1 1379

[8,] 1 1 1 1 1 1 1 1380

In the case of the above, all of the cells in this square patch of landscape are owned by agent 1 (i.e., the381

manager; see sim$LAND[„3]), and we can see that crop production on this patch of land has been decreased382

from 1 in several cells as a consequence of consumption by resources (see sim$LAND[„2]). In SI4, we show383

how landscape cell values can be manipulated to customise the placement of land ownership.384

Conclusions385

We have focused on the data structures AGENTS, resource_array, observation_array, manager_array,386

user_array, and LAND because these are the data structures that can be most readily manipulated to387

customise GMSE simulations. An example of how to do this within a loop using gmse_apply can be found in388

SI4. While other data structures exist within GMSE (e.g., see the output of gmse_apply when get_res =389

Full), we do not recommend manipulating these structures for custom simulations.390

Many data structures contain elements that are unused in GMSE v0.4.0.7, and in all cases this is designed391

for ease of ongoing development of new GMSE features. Requests for new features can be made on GitHub392

using the GMSE Wiki or the GMSE Issues page.393

References394

Zurell, D., Berger, U., Cabral, J. S., Jeltsch, F., Meynard, C. N., Münkemüller, T., Nehrbass, N., Pagel, J.,395

Reineking, B., Schröder, B., and Grimm, V. (2010). The virtual ecologist approach: Simulating data and396

observers. Oikos, 119(4):622–635.397

9

https://github.com/bradduthie/gmse/wiki
https://github.com/bradduthie/gmse/issues

	The most important (default) GMSE data structures
	1. AGENTS
	2. resource_array
	3. observation_array
	4. manager_array
	5. user_array
	6. LAND
	Conclusions

