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Abstract

This paper presents the R package GAS for the analysis of time series under the
Generalized Autoregressive Score (GAS) framework of Creal et al. (2013) and Harvey
(2013). The distinctive feature of the GAS approach is the use of the score function as
the driver of time–variation in the parameters of nonlinear models. The GAS package
provides functions to simulate univariate and multivariate GAS processes, estimate the
GAS parameters and to make time series forecasts. We illustrate the use of the GAS
package with a detailed case study on estimating the time–varying conditional densities
of financial asset returns.
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1. Introduction

Time–variation in the parameters describing a stochastic time series process is pervasive in al-
most all applied scientific fields. Early references to time series models include Kalman (1960)
and Box and Jenkins (1970). In many settings, the model of interest is characterized by time–
varying parameters, for which the literature has proposed a myriad of possible specifications.
Recently, Creal et al. (2013) and Harvey (2013) note that many of the proposed models are
either difficult to estimate (in particular, the class of stochastic volatility models reviewed in
Shephard (2005)) and/or do not properly take the shape of the conditional distribution of
the data into account.1 Creal et al. (2013) and Harvey (2013) therefore propose to use the
score of the conditional density function as the main driver of time–variation in the param-
eters of the time series process used to describe the data. A further advantage of using the
conditional score as driver is that the estimation by Maximum Likelihood is straightforward.
The resulting model is referred to as: Score–Driven model, Dynamic Conditional Score (DCS)
model, or Generalized Autoregressive Score (GAS) model. In this article and accompanying
R package, we use the GAS acronym.

The R package GAS is conceived to be of relevance for the modelling of all types of time
series data. It does not matter whether they are real–valued, integer–valued, (0,1)–bounded
or strictly positive, as long as there is a conditional density for which the score function
and the Hessian are well–defined. The practical relevance of the GAS framework has been
illustrated in the case of financial risk forecasting (see e.g., Harvey and Sucarrat (2014) for
market risk, Oh and Patton (2016) for systematic risk, and Creal et al. (2014) for credit risk
analysis), dependence modelling (see e.g., Harvey and Thiele (2016) and Janus et al. (2014)),
and spatial econometrics (see e.g., Blasques et al. (2016b) and Catania and Billé (2017)).
For a more complete overview of the work on GAS models, we refer the reader to the GAS
community page at http://www.gasmodel.com/.

It is important to note that, even though the GAS framework has been developed by econo-
metricians, it is flexible enough to be used in all fields in which the use of time–varying
parameter models is relevant. The main difficulty in using GAS models is to derive the score
and Hessian and implementing the Maximum Likelihood estimation of the resulting nonlin-
ear models. The R package GAS answers these needs by proposing an integrated set of R
functions to do time series analysis in the R statistical language (R Core Team 2017) under
the GAS framework. The functionalities include: (i) estimation, (ii) prediction, (iii) simu-
lation, (iv) backtesting, and (v) graphical representation of the results, implying that it is
ready to use in real–life applications. The user interface uses the R programming language,
which has the advantage of being free and open source. However, most of the underlying
routines are principally written in C++ exploiting the armadillo library (Sanderson 2010)
and the R packages Rcpp (Eddelbuettel and François 2011; Eddelbuettel et al. 2017a) and
RcppArmadillo (Eddelbuettel and Sanderson 2014; Eddelbuettel et al. 2017b) to speed up
the computations. Furthermore, the package is written using S4 classes, and provides meth-
ods such as coef(), plot() and show() to extract and analyze the results. We believe

1A typical example is the class of (G)ARCH models in which the squared (demeaned) return is the driver
of time–variation in the conditional variance, independently of the shape of the conditional distribution of the
return. To see that this is counter–intuitive, consider the case of observing a 10% return when the conditional
mean is 0% and the volatility is 3%. Under the assumption of a Gaussian distribution, the 10% return is a
strong signal of an increase in volatility, while under a fat–tailed Student–t distribution, the signal is weakened
because of the higher probability that the extreme value is an observation from the tails.

http://www.gasmodel.com/
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that this functionality makes the R package GAS more user friendly and thus accessible to a
larger number of potential users. The R package GAS is available from the CRAN repository
at https://cran.r-project.org/package=GAS. Other codes for specific GAS models are
available on the GAS community page at http://www.gasmodel.com/. For instance, the R
package betategarch (Sucarrat 2013) has functions to estimate the beta–t–EGARCH model
of Harvey (2013) and its skewed version introduced by Harvey and Sucarrat (2014).

The outline of the paper is as follows. Section 2 reviews the GAS framework to define time–
varying parameter models, referring to the seminal works of Creal et al. (2013) and Harvey
(2013). Section 3 introduces the R package GAS and illustrates how to simulate, estimate and
make predictions. Section 4 presents a real–life application to financial return data. Section 5
concludes.

2. The GAS framework to modeling time–varying parameters

One of the most appealing characteristics of the GAS framework is its applicability to define
time–varying parameter models in a large variety of univariate and multivariate time series
settings. We try to be as general as possible in reviewing the GAS framework, and report in
Appendix A the detailed equations for the specific case of a conditionally Student–t distributed
random variable with time–varying location, scale and degrees of freedom parameters. In this
section, we first introduce the notation and present the GAS model when the parameter
space is unrestricted. We then show how a mapping function can be used to model the time–
variation in the parameters when the parameter space is restricted. The section concludes by
summarizing the Maximum Likelihood approach for GAS model estimation.

2.1. Model specification

Let yt ∈ <N be an N–dimensional random vector at time t with conditional distribution:

yt|y1:t−1 ∼ p(yt;θt) , (1)

where y1:t−1 ≡ (y>1 , . . . ,y
>
t−1)

> contains the past values of yt up to time t−1 and θt ∈ Θ ⊆ <J
is a vector of time–varying parameters which fully characterizes p(·) and only depends on
y1:t−1 and a set of static additional parameters ξ, i.e., θt ≡ θ(y1:t−1, ξ) for all t. The main
feature of GAS models is that the evolution in the time–varying parameter vector θt is driven
by the score of the conditional distribution defined in (1), together with an autoregressive
component:

θt+1 ≡ κ + A st + Bθt , (2)

where, κ, A and B are matrices of coefficients with proper dimensions collected in ξ, and st
is a vector which is proportional to the score of (1):

st ≡ St(θt)∇t(yt,θt) .

The matrix St is a J × J positive definite scaling matrix known at time t and:

∇t(yt,θt) ≡
∂ log p(yt;θt)

∂θt
,

https://cran.r-project.org/package=GAS
http://www.gasmodel.com/
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is the score of (1) evaluated at θt. Creal et al. (2013) suggest to set the scaling matrix St to
a power γ > 0 of the inverse of the Information Matrix of θt to account for the variance of
∇t. More precisely:

St(θt) ≡ It(θt)−γ ,

with:
It(θt) ≡ Et−1

[
∇t(yt,θt)∇t(yt,θt)

>
]
, (3)

where the expectation is taken with respect to the conditional distribution of yt given y1:t−1.
The additional parameter γ is fixed by the user and usually takes value in the set {0, 12 , 1}.
When γ = 0, St = I and there is no scaling.2 If γ = 1 (γ = 1

2), the conditional score ∇t(yt,θt)
is premultiplied by the inverse of (the square root of) its covariance matrix It(θt).
It is worth noting that, whatever the choice of γ, st is a Martingale Difference (MD) with
respect to the distribution of yt given y1:t−1, i.e., Et−1 [st] = 0 for all t. Furthermore, when
γ = 1

2 , the additional moment condition Vt−1 [st] = I can be easily derived. Due to the fact
that st is an MD, the process θt in (2) is mean–reverting around its long–term mean value
(I−B)−1 κ when the spectral radius of B is less than one.3 It follows that the J–valued
vector κ and the J × J matrix B control for the level and the persistence of the process,
respectively.

The additional J × J matrix of coefficients A, that premultiplies the scaled score st, controls
for the impact of st on θt+1. Specifically, as detailed in Creal et al. (2013), the quantity
st indicates the direction to update the vector of parameters from θt, to θt+1, acting as a
steepest ascent algorithm for improving the model’s local fit given the current parameter
position. Interestingly, this updating procedure resembles the well–known Newton–Raphson
algorithm. Hence, A can be interpreted as the step of the update, and needs to be designed
in a way to not distort the signal coming from st; see Section 2.3.

2.2. Reparameterization

In (2) the parameter vector θt has a linear specification and is thus unbounded. In practice,
the parameter space of θt is often restricted (Θ ⊂ <J). For instance, when we model the
scale parameter of a Student–t distribution, we need to ensure its positiveness. Even if
this problem can be solved by imposing constraints on ξ (as is done in the GARCH model;
see Bollerslev 1986), the standard solution under the GAS framework is to use a (usually
nonlinear) link function Λ(·) that maps θ̃t ∈ <J into θt and where θ̃t ∈ <J has the linear
dynamic specification of (2).4 Specifically, let Λ : <J → Θ be a twice–differentiable vector–
valued mapping function such that Λ(θ̃t) = θt. The updating equation for θt is then given
by:

θt ≡ Λ(θ̃t)

θ̃t ≡ κ + As̃t + Bθ̃t−1 ,
(4)

2We denote by I the identity matrix of appropriate size.
3The spectral radius of a L × L matrix X is defined as τ (X) ≡ max (|τ1|, . . . , |τL|), where τi is the i–th

eigenvalue of X, for i = 1, . . . , L. In the R package GAS, we impose that τ(B) < 1.
4For instance, if we employ the identity mapping and a conditional Gaussian distribution for the innovations,

we recover the well–known GARCH model of Bollerslev (1986). In these circumstances, usual constraints on
the model coefficients to ensure positiveness of the conditional variance have to be satisfied. In the R package
GAS, the exponential link function is employed for the time–varying scale parameters.
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where s̃t ≡ S̃t(θ̃t) ∇̃t(yt, θ̃t) and ∇̃t(yt, θ̃t) represents the score of (1) with respect to θ̃t, and,
consequently, S̃t(θ̃t) can depend on the information matrix of θ̃t given by Ĩt(θ̃t). Denote the
Jacobian matrix of Λ(·) evaluated at θ̃t as follows:

J (θ̃t) ≡
∂Λ(θ̃t)

∂θ̃t
.

Then, the following relations hold:

∇̃t(yt, θ̃t) = J (θ̃t)
>∇t(yt,θt)

Ĩt(θ̃t) = J (θ̃t)
>It(θt)J (θ̃t) .

This way, almost all the nonlinear constraints can be easily handled via the definition of a
proper mapping function Λ(·) and its associated Jacobian matrix J (·). The coefficients to
be estimated are gathered into ξ ≡ (κ,A,B) and estimated by numerically maximizing the
(log-)likelihood function as detailed in Section 2.3.5 In Appendix B we discuss the choice of
mapping functions for GAS models in more details.

2.3. Maximum likelihood estimation

A useful property of GAS models is that given the past information and the static parameter
vector ξ, the vector of time–varying parameters, θt, is perfectly predictable and the loglikeli-
hood function can be easily evaluated via the prediction error decomposition. More precisely,
for a sample of T realizations of yt, collected in y1:T , the vector of parameters ξ can be
estimated by Maximum Likelihood (ML) as the solution of:

ξ̂ ≡ arg max
ξ

L (ξ; y1:T ) , (5)

where:

L (ξ; y1:T ) ≡ log p (y1;θ1) +
T∑
t=2

log p (yt;θt) ,

with θ1 ≡ (I−B)−1κ, and, for t > 1, θt ≡ θ(y1:t−1, ξ). Note the dependence of θt on ξ and
y1:t−1.

There are two important caveats in the ML estimation of GAS models. The first one is that,
from a theoretical perspective, ML estimation of GAS models is an on–going research topic.
General results are reported by Harvey (2013), Blasques et al. (2014a) and Blasques et al.
(2014b), while results for specific models have been derived by Andres (2014) and Blasques
et al. (2016b).

The second one is that, even when the ML estimator is consistent and asymptotically Gaus-
sian, the numerical maximization of the loglikelihood function in (5) can be challenging,
because of the nonlinearities induced by Λ (·) and the way yt enters the scaled score st. Con-
sequently, when the optimizer is gradient–based, good starting values need to be selected for
GAS models. We refer the reader to Section 3.2 for more details.

5Clearly, the coefficients κ, A and B in (4) are different from those of (2), however, for notational purposes,
we continue to use the same notation.
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Implementation of the models in the R package GAS follows the common approach in the
GAS literature. First, matrices A and B are constrained to be diagonal. Second, in order to
avoid an explosive pattern for θ̃t, the spectral radius of B is constrained to be less than one.
Third, we use an exponential transformation in the estimation of each diagonal element of A.
This ensures its positiveness in order to not distort the signal coming from the conditional
score st.

3. The R package GAS

The R package GAS offers an integrated environment to deal with GAS models in R. Its
structure is somehow similar to the R package rugarch (Ghalanos 2015b) for GARCH models,
which is widely used by practitioners and academics. The similarities concern the steps the
user has to do to perform her analysis as well as the type of functions she faces. Specifically,
the first step is to specify the model, which means choosing: (i) the conditional distribution of
the data, (ii) the set of parameters that have to vary over time and, (iii) the scaling mechanism
for the conditional score. These steps are detailed in Section 3.1. Once the model is properly
specified, the user can estimate the unknown parameters in ξ by numerical maximization
of the log–likelihood function as detailed in Section 3.2. Finally, predictions according to
the estimated model can be easily performed; see Section 3.3. Simulation of GAS models is
presented in Section 3.4.

Functions for: (i) specification, (ii) estimation, (iii) forecasting and (iv) simulation are avail-
able for univariate and multivariate time series. The general nomenclature for the functions
when we consider univariate time series is “UniGAS...()”and that for multivariate time series
is “MultiGAS...()” .

In the R package GAS, several datasets are also included for reproducibility purposes, such
as: US inflation (cpichg), US unemployment rate (usunp), realized volatility of the S&P500
Index (sp500rv) and intraday bid and ask quotes for Citygroup corporation (tqdata). These
datasets are freely available online; see the R documentation for references. In this section, we
use the monthly US inflation measured as the logarithmic change in the CPI available from
the Federal Reserve Bank of St. Louis website https://fred.stlouisfed.org/. This dataset can
be easily loaded in the R workspace using: data("cpichg", package = "GAS").

3.1. Specification

Specification of GAS models is the first step the user needs to undertake. This is achieved
by using the UniGASSpec() and MultiGASSpec() functions, in the cases of univariate and
multivariate models, respectively. Both functions accept three arguments and return an object
of class uGASSpec and mGASSpec, respectively. The three arguments are:

- Dist: A character indicating the name of the conditional distribution assumed for the
data. Available distributions can be displayed using the function DistInfo() and are
reported in Table 1. By default Dist = "norm", i.e., the Gaussian distribution.

- ScalingType: A character indicating the scaling mechanism for the conditional score,
i.e., the value of the γ parameter in (3). Possible choices are "Identity" (γ = 0),
"Inv" (γ = 1) and "InvSqrt" (γ = 1

2). For some distributions, only ScalingType =

https://fred.stlouisfed.org/
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Label Name Type Parameters # Scaling Type

norm Gaussian univariate location, scale 2 Identity, Inv, InvSqrt

snorm (i) Skew-Gaussian univariate location, scale, skewness 3 Identity

std (ii) Student-t univariate location, scale, shape 3 Identity, Inv, InvSqrt

sstd (i) Skew-Student-t univariate location, scale, skewness, shape 4 Identity

ast (iii) Asymmetric Student-t with two tail decay parameters univariate location, scale, skewness, shape, shape2 5 Identity, Inv, InvSqrt

ast1 (iv) Asymmetric Student-t with one tail decay parameter univariate location, scale, skewness, shape 4 Identity, Inv, InvSqrt

ald (v) Asymmetric Laplace Distribution univariate location, scale, skewness 3 Identity, Inv, InvSqrt

poi (vi) Poisson univariate location 1 Identity, Inv, InvSqrt

gamma Gamma univariate scale, shape 2 Identity, Inv, InvSqrt

exp (vii) Exponential univariate location 1 Identity, Inv, InvSqrt

beta (viii) Beta univariate scale, shape 2 Identity, Inv, InvSqrt

negbin Negative Binomial univariate location, scale 2 Identity, Inv, InvSqrt

skellam (ix) Skellam univariate location, scale 2 Identity

mvnorm Multivariate Gaussian multivariate location, scale, correlation 9 (x) Identity

mvt Multivariate Student-t multivariate location, scale, correlation, shape 10 (x) Identity

Table 1: Statistical distributions for which the R package GAS provides the functionality to
simulate, estimate and forecast the time–variation in its parameters. The fifth column, #,
reports the number of parameters of the distribution.
Notes: (i) the reparameterized Skew–Gaussian and Skew–Student–t for which the location
and scale parameters coincide with the mean and the standard deviation of the distribution
as done in the R package rugarch (Ghalanos 2015b), (ii) the usual Student–t distribution
(not reparameterized in terms of the variance parameter), (iii) the Asymmetric Student–t
distribution of Zhu and Galbraith (2010), (iv) the Asymmetric Student–t distribution of Zhu
and Galbraith (2010) with equal tail decay parameters, (v) the ald distribution with the
θ, σ, κ reparameterization, as specified in Kotz et al. (2001), (vi) for the Poisson distribu-
tion location means the usual intensity parameter, (vii) for the Exponential distribution
location means the usual rate parameter, (viii) for the Beta distribution shape means the
usual α parameter and scale means the usual β parameter, (ix) The Skellam distribution
reparameterized in terms of mean and variance, (x) for N = 3.

"Identity" is supported; see function DistInfo() and Table 1. By default ScalingType
= "Identity", i.e., no scaling occurs.6

- GASPar: A named list with logical entries containing information about which pa-
rameters of the conditional distribution have to be time–varying. Generally, each uni-
variate distribution is identified by a series of maximum five parameters. These are
indicated by location, scale, skewness, shape and shape2. Note that, for some
distributions, these labels are not strictly related to their literal statistical meaning.
Indeed, for the Exponential distribution exp, the term location indicates the usual
intensity rate parameter; see the DistInfo() function and the R documentation for
more details. For multivariate distributions, the set of parameters is indicated by
location, scale, correlation and shape. For example, in the case of a multivari-
ate Student–t distribution with mean vector µt, scale matrix Σt ≡ DtRtDt, where
Dt is the diagonal matrix of scales and Rt is the correlation matrix, and νt degrees of
freedom, we have that: location refers to µt, scale refers to Dt, correlation refers
to Rt and shape refers to νt. By default, GASPar = list(location = FALSE, scale

= TRUE, skewness = FALSE, shape = FALSE) for the univariate case, and GASPar =

list(location = FALSE, scale = TRUE, correlation = FALSE, shape = FALSE, shape2

= FALSE) for the multivariate case.

6In the R package GAS, the information matrices and the scores are always computed using their analytical
formulations.
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The function MultiGASSpec() also accepts the additional logical argument ScalarParameters
controlling for the parametrization of A and B in (4). By setting the argument ScalarParameters
= TRUE (the default value), the coefficients controlling the evolution of the location, scale
and correlation parameters are constrained to be the same across each group. For example,
if yt ∈ <3 follows a GAS process with conditional multivariate Gaussian distribution, the
vector of time–varying parameters is θt = (µ1,t, µ2,t, µ3,t, σ1,t, σ2,t, σ3,t, ρ21,t, ρ31,t, ρ32,t)

′. If
ScalarParameters = TRUE, the matrix of coefficients A is parameterized as:

A ≡ diag (aµ, aµ, aµ, aσ, aσ, aσ, aρ, aρ, aρ) ,

while, if ScalarParameters = FALSE, the matrix of coefficients A takes the form:

A ≡ diag (aµ1 , aµ2 , aµ3 , aσ1 , aσ2 , aσ3 , aρ21 , aρ31 , aρ32) .

Hence, in the latter case, each element of θt evolves heterogeneously with respect to the
others. The same constraints are applied to B, which means that, if ScalarParameters =

TRUE, for the general N case, the number of parameters decreases from 3N (N + 1) /2 to
N (N + 1) /2 + 2. Additional constraints are introduced through the GASPar argument as in
the univariate case; see help("MultiGASSpec").

As an illustration, assume that we want to specify a Student–t GAS model with time–varying
conditional mean and scale parameters, but fixed degree of freedom, i.e., νt = ν. This can be
easily done with the following lines of code:

R> GASSpec <- UniGASSpec(Dist = "std", ScalingType = "Identity",

+ GASPar = list(location = TRUE, scale = TRUE, shape = FALSE))

Details about the object returned from UniGASSpec() are printed to the console by simply
calling GASSpec:

R> GASSpec

-------------------------------------------------------

- Univariate GAS Specification -

-------------------------------------------------------

Conditional distribution

-------------------------------------------------------

Name: Student-t

Label: std

Type: univariate

Parameters: location, scale, shape

Number of Parameters: 3

References:

-------------------------------------------------------

GAS specification

-------------------------------------------------------

Score scaling type: Identity

Time varying parameters: location, scale

-------------------------------------------------------
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Since the scaling matrix St is set to the identity matrix (i.e., ScalingType = "Identity")
this model for the conditional Student–t distribution corresponds to the one described in Ap-
pendix A. Multivariate GAS specifications are analogously specified using the MultiGASSpec()
function; see help("MultiGASSpec").

3.2. Estimation

Similar to model specification, estimation is handled with two different functions for univari-
ate and multivariate models: UniGASFit() and MultiGASFit(), respectively. These functions
require two arguments: the GAS specification object GASSpec and the data, and returns an
object of class uGASFit or mGASFit. By default, the optimization relies on the standard
optim optimizer with method = "BFGS". An additional optional function argument, called
fn.optimize, can be provided by the user in order to rely on a different optimization pro-
cedure. This function must satisfy specific requirements; see the documentation manual for
an example using Differential Evolution implemented in the DEoptim package (Mullen et al.
2011). Users can also employ the General Nonlinear Augmented Lagrange Multiplier method
of Ye (1988) available in the R package Rsolnp (Ghalanos and Theussl 2015) by specifying
fn.optimize = fn.solnp, where fn.solnp is a wrapper to the solnp function in Rsolnp.7

In the R package GAS, starting values for the optimizer are chosen in the following way: (i)
estimate the long–term mean of θt under the static version of the model (i.e., with A = 0
and B = 0), and (ii) perform a grid search for the coefficients contained in A and B and
whereby κ is set in such a way that the dynamic version of the model is still mean–reverting
around the long–term mean of θt estimated in the first step.

As an illustration, let us estimate the GAS model previously specified using the US inflation
data included in the R package GAS:

R> data("cpichg", package = "GAS")

R> Fit <- UniGASFit(GASSpec, cpichg)

The computational time is less than one second on a modern computer (see the Section
Computational Details for more details). Results can be inspected by calling the object Fit.8

R> Fit

------------------------------------------

- Univariate GAS Fit -

------------------------------------------

Model Specification:

T = 276

Conditional distribution: std

Score scaling type: Identity

Time varying parameters: location, scale

7A previous version of this paper used Rsolnp as the default optimizer. As noted by a referee, the Rsolnp
optimizer may lead to small differences across operating platforms.

8The command summary(Fit) provides the same information in addition to the analysis of the residuals as
in the fGarch package (Wuertz et al. 2016).
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------------------------------------------

Estimates:

Estimate Std. Error t value Pr(>|t|)

kappa1 0.03736 0.03110 1.201 1.148e-01

kappa2 -0.25993 0.14084 -1.846 3.248e-02

kappa3 -2.84547 0.79650 -3.572 1.768e-04

a1 0.07173 0.01846 3.887 5.077e-05

a2 0.45372 0.21392 2.121 1.696e-02

b1 0.94317 0.02723 34.634 0.000e+00

b2 0.85560 0.07430 11.515 0.000e+00

------------------------------------------

Unconditional Parameters:

location scale shape

0.6575 0.1653 6.5261

------------------------------------------

Information Criteria:

AIC BIC np llk

370.4 395.8 7.0 -178.2

------------------------------------------

Convergence: 0

------------------------------------------

Elapsed time: 0.02 mins

The output printed to the console is divided into: (i) the summary of the model, (ii) the
estimated coefficients along with significance levels according to their asymptotic Gaussian
distribution, (iii) the long–term value of the time–varying parameters, i.e., Λ((I − B̂)−1κ̂),
(iv) AIC and BIC information criteria in addition to the number of estimated parameters
(np) and the log–likelihood (llk) evaluated at its optimum, (v) the convergence flag, and (vi)
the computation time.9

Concerning the estimated coefficients, kappa1, kappa2 and kappa3 are the elements of vector
κ in (9), i.e., κµ, κφ and κν , respectively. Analogously, a1 and a2 are the estimates of aµ and
aφ and b1 and b2 are estimates of bµ and bφ, where φ refers to the scale parameter of the
Student–t distribution; see Appendix A. Note that, since we have specified shape = FALSE

in the UniGASSpec() function, coefficients a3 and b3, corresponding to aν and bν are not
reported (and constrained to zero during the optimization).

The R package GAS provides several methods to extract the relevant estimated quantities
for objects of class uGASFit or mGASFit. They allow us to: (i) calculate several quan-
tities of the estimated conditional distribution at each point in time, such as: quantiles,
conditional moments and filtered parameters (see quantile(Fit), getMoments(Fit) and

9Convergence flag follows the nomenclature of the default optim optimizer, that is: solver has converged
(0), or not (1 or 2); see help("optim"). For user–defined optimizers, the definition of the convergence flag is
flexible. The only requirement is that successful convergence is indicated with 0.
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getFilteredParameters(Fit), respectively), (ii) extract the estimated coefficients (coef(Fit)),
(iii) generate a graphical representation of the results (plot(Fit)); see help("uGASFit") for
details.

3.3. Forecasting

Forecasting is a crucial aspect in applied time series analysis and discussed in detail in the
framework of GAS models by Blasques et al. (2016a). Given the parametric assumption of
GAS models, predictions are usually given in the form of density forecasts, i.e., the distribution
of yT+h|y1:T for h ≥ 1. Knowing the predictive density, practitioners can extract any relevant
quantities such as future expected value ET [yT+h] or (co–)variance VT [yT+h]. For GAS
models, the one–step ahead predictive distribution (h = 1) is analytically available while it
needs to be estimated by simulation in the multi–step ahead case (h > 1).10

The R package GAS can handle both one–step and multi–step ahead forecasts. Consis-
tent with previous nomenclature, functions for univariate and multivariate predictions are
UniGASFor() and MultiGASFor(), respectively. These functions accept an object of class
uGASFit or mGASFit, created using the functions UniGASFit() and MultiGASFit(), and re-
turn an object of class uGASFor and mGASFor, respectively. Additional arguments are:

� H: a numeric integer value representing the forecast horizon, i.e., h. By default H = 1.

� B: a numeric integer value representing the number of draws to approximate the multi–
step ahead predictive distribution when h > 1. By default B = 1e4.

� ReturnDraws: a logical argument controlling if the simulated draws from yT+1|y1:T ,
yT+2|y1:T , . . . , yT+h|y1:T have to be returned. By default ReturnDraws = FALSE.

Other arguments to perform rolling–type of forecasts are detailed in the documentation; see
help("UniGASFor"). Practically, if we want to predict the next–year inflation (i.e., h = 12
with the monthly series cpichg), after having estimated the GAS model of Section 3.2, we
can execute the following code:

R> set.seed(123)

R> Forecast <- UniGASFor(Fit, H = 12)

and inspect the results by calling the object Forecast:

R> Forecast

------------------------------------------

- Univariate GAS Forecast -

------------------------------------------

Model Specification

Conditional distribution: std

Score scaling type: Identity

10As multi–step ahead forecasts are based on simulations, the user needs to set the seed of the random
number generator for reproducibility.
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Horizon: 12

Rolling forecast: FALSE

------------------------------------------

Parameters forecast:

location scale shape

T+1 0.10130 0.1524 6.526

T+2 0.09499 0.1737 6.526

T+3 0.09382 0.2151 6.526

T+4 0.09256 0.2577 6.526

T+5 0.08747 0.3020 6.526

....................

location scale shape

T+8 0.08345 0.4219 6.526

T+9 0.07792 0.4575 6.526

T+10 0.07383 0.4900 6.526

T+11 0.07558 0.5199 6.526

T+12 0.07507 0.5465 6.526

which returns some model information and the predictions of future model parameters based
on averages over B draws. Forecast is an object of class uGASFor which comes with several
methods to extract and visualize the results; see help("uGASFor").

As commonly done in time series analysis, predictions are generated from models fitted to
rolling windows. The R package GAS includes this functionality via UniGASRoll() and
MultiGASRoll(). These functions accept several arguments that we describe below in the
univariate case:

� data: a vector of length T+ForecastLength containing all the observations.

� GASSpec: an object of class uGASSpec created with UniGASSpec().

� ForecastLength: a numeric integer which specifies the length of the out–of–sample.

� RefitEvery: a numeric integer of periods before coefficients are re–estimated.

� RefitWindow: a character for the type of the window. As in the R package ru-
garch (Ghalanos 2015b), we define the options: RefitWindow = "recursive" and
RefitWindow = "moving". If RefitWindow = "recursive" all past observations are
used when the model is re–estimated. If RefitWindow = "moving", initial observations
are eliminated.11 We refer the reader to Marcellino et al. (2006) for a discussion about
the difference between the “recursive” and the “moving” window approaches.

Other arguments useful to tailor the forecasting procedure and to parallelize the code execu-
tion are available and detailed in the R documentation; see help("UniGASRoll").

Suppose now we are interested in assessing the forecasting performance of the GAS model
with a Student–t conditional distribution and time–varying location and scale parameters,

11Note that the “moving window” approach is also referred to as the “rolling window” approach in the
literature.
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detailed in Appendix A, and specified in the object GASSpec in Section 3.1. We treat the
last 150 observations of cpichg as out–of–sample and run a rolling–window forecast exercise
using the following portion of code:

R> Roll <- UniGASRoll(cpichg, GASSpec, ForecastLength = 150,

+ RefitEvery = 3, RefitWindow = "moving")

where model coefficients are re–estimated quarterly (i.e., every three observations with monthly
data) using a moving windows (RefitWindow = "moving"). The code automatically makes a
series of one–step ahead rolling predictions according to the model estimated using only the
past information. This way, the user can perform out–of–sample analysis with GAS models.
The object Roll belongs to the class uGASRoll which, as uGASFit and uGASFor, comes with
several methods to extract and represent the results; see help("uGASRoll").

3.4. Simulation

Simulation of univariate and multivariate GAS models is straightforward with the R package
GAS. This can be easily done via UniGASSim() and MultiGASSim(); see the R documentation.
Several examples, are reported in the tests/testthat/test_Simulate.R file included in the
package tarball.

There are two possibilities for simulating GAS models. The first is to simulate from an
estimated uGASFit or mGASFit object. For instance, if Fit is an uGASFit object delivered
by the UniGASFit() function, the code Sim <- UniGASSim(Fit, T.Sim = 1000) simulates
1,000 observations from the corresponding GAS model. The second possibility is to fully
specify a GAS model which means: (i) selecting the conditional distribution of the time series
process, and (ii) specify the static parameters ξ governing the dynamics in θt. Regarding
the former point, the vector κ and the system matrices A and B need to be specified. It is
worth stressing that the definition of κ can be tricky, especially for multivariate models. In
the analysis of time–varying parameter models, it is common to define κ, A and B in such a
way that the time–varying parameter θt is covariance–stationary and that its unconditional
expectation equals a target value. This is straightforward to do when the mapping function
is linear, see, e.g., Francq et al. (2011). When the link function is non–linear, which is the
most common case in GAS modeling, it is more complex. The difficulty emerges from the
fact that κ determines the unconditional value of θ̃t, that is E[θ̃t] = (I − B)−1κ, implying
that if the user wants to specify the model in terms of a target value θ∗ = Λ((I − B)−1κ),
she needs to know the inverse of the mapping function Λ (·).12 To address this problem, the
functions UniUnmapParameters() and MultiUnmapParameters(), representing Λ−1 (·), are
available for univariate and multivariate models, respectively. This way, the user can easily
specify κ such that κ ≡ (I − B)Λ−1(θ∗). Table 2 lists the numerical bounds imposed for
the univariate distributions, such that the arguments of UniUnmapParameters() cannot take
values outside those ranges. For the multivariate case, please refer to the examples reported
in the inst/test/SimulateGAS.R file included in the package tarball.

12Here we define the “target value” as the unconditional expectation of the time–varying parameter the user
has in mind. This targeting approach requires the time–varying parameter model to be stationary, as explained
in, e.g., Blasques et al. (2014c).
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Label location scale skewness shape

norm < <+ – –
snorm < <+ (0.5, 1.5) –
std < <+ – (4.01, 50.0)
sstd < <+ (0.5, 1.5) (4.01, 50.0)

ast1 (i) < <+ (0.01, 0.99) (4.01, 50.0)
ald < <+ <+ –
ghskt < <+ < (4.01, 50.0)
poi <+ – – –
gamma <+ <+ – –
exp <+ – – –
beta <+ <+ – –
negbin (0, 1) <+ – –
skellam < <+ – –

Table 2: Overview of the restrictions on the allowed values for the parameters of the univariate
distributions, for which the R package GAS provides the functionality to simulate, estimate
and forecast the time variation in the parameters. When the parameter space is <+, we use
the exponential link function reported in (10) with c = 0, while when the space is of the type
(a, b), we use the modified logistic link function reported in (11); see Appendix B.
Notes: (i) for ast the same constraints apply, and shape2 is constrained in (2.01, 50.0).

Suppose we want to simulate T = 1, 000 observations from the Student–t GAS model reported
in Appendix A with time–varying location and scale, but constant shape parameters. Assume
our target value for the parameters is θ∗ = (µ∗, σ∗, ν∗)′ with µ∗ = 0.1, σ∗ = 1.5 and ν∗ = 7.
The matrix A and B are defined as:

A = diag (0.1, 0.4, 0.0)

B = diag (0.9, 0.95, 0.0) ,

such that both the conditional mean and the conditional variance evolve quite persistently over
time, while the shape parameter is constant. The implementation of UniUnmapParameters()
and UniGASSim() proceeds as:

R> A <- diag(c(0.1, 0.4, 0.0))

R> B <- diag(c(0.9, 0.95, 0.0))

R> ThetaStar <- c(0.1, 1.5, 7.0)

R> kappa <- (diag(3) - B) %*% UniUnmapParameters(ThetaStar, "std")

R> Sim <- UniGASSim(T.sim = 1000, kappa = kappa, A = A,

+ B = B, Dist = "std", ScalingType = "Identity")

where Sim is an object of class uGASSim which comes with several methods such as show,
plot, and getMoments, among others; see help("uGASSim").

4. Application to financial returns
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In order to illustrate how the R package GAS can be used in practical situations, we present
an empirical application with univariate and multivariate time series of financial returns. We
consider daily log–returns (in percentage points) of the Dow Jones 30 constituents available
in the dji30ret dataset. This dataset includes the closing value log–returns from March 3rd,
1987 to February 3rd, 2009 for a total of 5,521 observations per series. The dataset can be
easily loaded in the workspace using:

R> library("GAS")

R> data("dji30ret", package = "GAS")

where dji30ret is a 5521 × 30 data.frame containing the daily log–returns in percentage
points. Our analysis is a typical out–of–sample exercise, meaning that: (i) we estimate
the models using an in–sample period, (ii) we do rolling one–step ahead predictions of the
conditional distribution for the observations in the out–of–sample period, and (iii) that we
compare the models according to their out–of–sample performance.

The models we consider are univariate/multivariate GAS models estimated with the R package
GAS, and univariate/multivariate GARCH models estimated using the popular R packages
rugarch (Ghalanos 2015b) and rmgarch (Ghalanos 2015a), respectively. The univariate spec-
ifications we consider are: (i) the Skew–Student–t GAS model with only time–varying scale
parameter (i.e., Dist = "sstd") and, (ii) the GARCH(1,1) model with Skew–Student–t dis-
tributed error. For both models we employ the Skew–Student–t distribution of Fernández
and Steel (1998) reparametrised such that the location and scale parameters coincide with
the mean and the standard deviation of the distribution as done in the rugarch package.

For the multivariate specifications, we consider: (i) the GAS model with conditional multi-
variate Student–t distribution with time–varying scales and correlations used in Creal et al.
(2011) and, (ii) the Dynamic Conditional Correlation (DCC) model of Engle (2002) with a
conditional multivariate Student–t distribution. For simplicity, the multivariate analysis only
considers three return series, namely the returns for: Caterpillar Inc. (CAT), 3M (MMM)
and Pfizer Inc. (PFE).

The code used to specify the univariate and multivariate GAS models is:

R> uGASSpec <- UniGASSpec(Dist = "sstd", ScalingType = "Identity",

+ GASPar = list(scale = TRUE))

and:

R> mGASSpec <- MultiGASSpec(Dist = "mvt", ScalingType = "Identity",

+ GASPar = list(scale = TRUE, correlation = TRUE))

respectively.

The last H = 3, 000 observations (from January 27th, 1991, to the end of the sample) com-
pose the out–of–sample period. During the out–of–sample period, one–step ahead density
predictions are constructed by the univariate and multivariate specifications. The models
(and therefore coefficients) are re–estimated using a moving–window every hundredth obser-
vations, as detailed in Section 3.3. One–step ahead rolling prediction are then computed
as:
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R> library("parallel")

R> cluster <- makeCluster(8)

R>

R> luGASRoll <- list()

R> N = ncol(dji30ret)

R> for (i in 1:N) {

+ luGASRoll[[i]] <- UniGASRoll(data = dji30ret[, i],

+ GASSpec = uGASSpec, ForecastLength = 3000,

+ RefitEvery = 100, cluster = cluster)

+ }

R> names(luGASRoll) <- colnames(dji30ret)

and:

R> mGASRoll <- MultiGASRoll(data = dji30ret[, c("CAT", "MMM", "PFE")],

+ GASSpec = mGASSpec, ForecastLength = 3000,

+ RefitEvery = 100, cluster = cluster)

R> stopCluster(cluster)

for the univariate and multivariate cases, respectively. To speed up the computations, we run
the code over eight processors via the R package parallel. Again, we emphasize that in the
case of one–step ahead density predictions, results are available in closed–form, in contrast
with multi–step ahead forecasts which are based on simulations. Hence, our results do not
depend on the seed or the parallelization scheme used for the computations.

Let us now compare the ability of GAS and GARCH models in predicting the one–step
ahead distribution using so–called scoring rules, which compare the predicted density with
the ex–post realized value of the return and deliver a score which defines a ranking across
the alternative models at each point in time (Gneiting et al. 2007). Generally, we define
St+1 ≡ S(yt+1, p(yt+1; θ̂t+1)) as the score at time t + 1 for having predicted p(yt+1; θ̂t+1)
when yt+1 has been realized. We consider two widely used scoring rules:

� The average weighted Continuous Ranked Probability Score (wCRPS):

wCRPS ≡ 1

H

T+H−1∑
t=T

∫ ∞
−∞

w (z)
(
F
(
z; θ̂t+1

)
− I{yt+1<z}

)2
dz, (6)

where w (z) is a weight function that emphasizes regions of interest of the predictive

distribution, such as the tails or the center and F
(
z; θ̂t+1

)
is the predictive cumulative

density function evaluated in z.13 Similarly to Gneiting and Ranjan (2011), we consider
the cases of: (i) a weighting that gives equal emphasis to all the parts of the distribution;
w (z) = 1, (ii) a weighting that focuses on the center; w (z) = φa,b (z); (iii) a weighting
that focuses on the tails; w (z) = 1 − φa,b (z) /φa,b (0), (iv) a weighting that focuses
on the right tail; w (z) = Φa,b (z), and (v) a weighting that focuses on the left tail
w (z) = 1−Φa,b (z). The functions φa,b (z) and Φa,b (z) are the pdf and cdf of a Gaussian
distribution with mean a and standard deviation b, respectively. The label uniform
represents the case where equal emphasis is given to all the parts of the distribution.

13We denote by I{·} the indicator function which equals one if the condition is satisfied and zero otherwise.
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� The average Negative Log Score (NLS):

NLS ≡ − 1

H

T+H−1∑
t=T

log p(yt+1; θ̂t+1). (7)

Consistent with Gneiting et al. (2007), we specify the Negative Log Score such that the
“direction” between the two scoring rules is the same, i.e., forecasts with lower NLS
and lower wCRPS are preferred.

The two aforementioned scoring rules can be easily evaluated using the BacktestDensity()

function available in the R package GAS. The BacktestDensity() function accepts an object
of class uGASRoll, and returns a list with two elements: (i) the average wCRPS and average
NLS as in (6) and (7), and (ii) their values at each point in time. To evaluate the integral
in (6), we use the numerical integration scheme adopted by Gneiting and Ranjan (2011). To
this end, the BacktestDensity() function accepts the following additional arguments:

� lower: numeric representing the lower bound of the numerical integration.

� upper: numeric as lower but for the upper bound.14

� K: numeric integer representing the number of points used in the numerical integration.15

By default K = 1000,

plus the two numeric arguments, a and b, representing a and b in the weight functions. By
default, a and b are equal to the empirical mean and standard deviation of the in–sample
data, respectively.16

In our case, in order to evaluate NLS and wCRPS for the first asset, we can simply run:17

R> DensityBacktest <- BacktestDensity(luGASRoll[[1]],

+ lower = -100, upper = 100)

R> DensityBacktest$average

NLS uniform center tails tail_r tail_l

2.2163 1.3292 0.1767 0.5251 0.6522 0.6770

Table 3 reports the test statistics for the Diebold and Mariano (1995) (DM) test of equal per-
formance between the series of Negative Log Scores and weighed Continuous Ranked Prob-
ability Scores for univariate GAS and GARCH models across the out–of–sample period.18

14The two arguments lower and upper coincide with yl and yu in Equation 16 of Gneiting and Ranjan
(2011), respectively. These are two numeric objects with no default value, i.e., the user has to define these
values according to her research design.

15Equals to I in Equation 16 of Gneiting and Ranjan (2011).
16These values can be chosen in order to target some “optimal” prediction level, or to add more flexibility

and focus on specific parts the predictive distribution; see Gneiting and Ranjan (2011).
17Chosen lower and upper values define a proper range for log–returns in percentage points as the one

considered here.
18Results of Table 3 were obtained on a Windows platform with the setup described in the Section “Compu-

tational details”. When computations were performed on Linux or Mac OS, the test statistics matched up to
two digits, except for a couple of entries (up to one digit) and lead to the same conclusions in terms of relative
performance of the GAS and GARCH models. We thank a referee for having noted these differences across
platforms. For more details, we refer the reader to the Section “Computational details”.
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Asset NLS Uniform Center Tails Tails–r Tails–l

AA −1.98b −2.36a −2.15b −2.02b −2.16b −1.04
AXP −2.98a −2.35a −3.14a −1.21 −1.53c −1.60c

BA −1.44c −1.91b −2.79a −1.13 −1.21 −1.39c

BAC −2.95a −1.44c −3.80a 0.22 1.26 −4.00a

C −0.66 −0.55 −1.82b 0.34 −1.59c 0.40
CAT −5.26a −5.20a −5.61a −3.77a −2.17b −5.29a

CVX 0.84 1.26 0.00 1.41c 0.71 1.04
DD −1.09 −0.57 −0.53 −0.51 0.23 −0.91
DIS −2.10b −1.69b −2.40a −1.00 −1.69b −0.84
GE −3.29a −3.33a −3.76a −2.61a −3.44a −2.21b

GM 0.08 −0.42 −1.22 −0.20 −1.03 0.39
HD −3.39a −2.53a −1.84b −2.72a −1.44c −1.91b

HPQ −4.25a −4.50a −3.58a −4.53a −3.08a −3.50a

IBM −3.54a −3.79a −3.41a −3.57a −1.99b −3.47a

INTC −3.17a −1.71b −1.70b −1.39c −2.93a 0.09
JNJ −3.74a −2.15b −3.57a −0.69 −0.14 −3.05a

JPM −2.05b −2.12b −2.91a −1.21 −1.22 −1.55c

AIG 1.07 0.66 −1.10 0.71 −0.79 0.96
KO −3.12a −3.07a −3.78a −1.59c −3.39a −1.69b

MCD −2.03b −1.86b −2.21b −1.39c −1.67b −1.10
MMM −4.15a −4.54a −4.13a −4.12a −3.33a −3.37a

MRK −2.98a −3.63a −4.15a −3.08a −4.56a −1.91b

MSFT −3.42a −2.74a −3.14a −1.64c −2.64a −1.69b

PFE −3.65a −3.54a −3.72a −3.07a −4.03a −2.46a

PG −1.78b −1.85b −2.91a −1.25 −1.34c −1.31c

T −0.41 −0.24 −1.19 0.26 0.35 −0.65
UTX −1.50c −1.61c −1.74b −1.38c −1.10 −0.89
VZ −1.99b −1.94b −1.50c −1.95b −1.35c −1.52c

WMT 2.11b 0.92 0.84 0.81 −0.42 1.68b

XOM 0.15 0.38 −1.29c 0.72 0.69 −0.04

Table 3: Test statistics for the Diebold and Mariano (1995) test of equal performance between
the series of negative Log Scores and weighted Continuous Ranked Probability Scores for uni-
variate GAS and GARCH models across the out–of–sample logarithmic returns in percentage
points of Dow Jones 30 constituents. Negative values indicate that GAS models provide
more accurate predictions of the one–step ahead conditional distribution while positive values
favour GARCH. The apexes a, b and c represent rejection of the null hypothesis of Equal
Predictive Ability at the 1%, 5% and 10% confidence levels, respectively. The out–of–sample
period spans from January 27th, 1991, to February 3rd, 2009 for a total of 3,000 observations.

Negative values indicate that GAS models generate more accurate predictions of the one–step
ahead conditional distribution while positive values favour GARCH. We find that, for almost
all the series, GAS outperforms GARCH at very high confidence levels according to both
NLS and wCRPS. Interestingly, our results suggest that GAS delivers more accurate results
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whatever part of the conditional distribution the wCRPS emphasizes.

For the multivariate analysis we only consider NLS. In this case, the DM test statistic is
−3.34, which strongly favours the GAS model against the DCC specification. To further
investigate this result, we report in Figure 1 the Cumulative sum of the differences between
the Log Scores (CLS) of GAS and DCC defined as:

CLS
GAS|DCC
T :T+l ≡

t=T+l−1∑
t=T

log p
(
yt+1; θ̂

GAS

t+1

)
− log p

(
yt+1; θ̂

DCC

t+1

)
,

where p
(
yt+1; θ̂

GAS

t+1

)
and p

(
yt+1; θ̂

DCC

t+1

)
are the densities predicted from GAS and DCC

evaluated in yt+1, respectively. The series of Log Scores for the multivariate GAS models is
available in the output of the BacktestDensity() function, or can be extracted using the
LogScore method defined for mGASRoll objects:

R> LS_MGAS <- LogScore(mGASRoll)

In Figure 1, periods when the time series line slopes upward represent periods in which GAS
outperforms DCC, while downward–sloping segments indicate periods when the DCC forecast
is more accurate. From this plot, we clearly understand the result of DM test. Interestingly,
we find that GAS starts dominating DCC after 2003.

5. Conclusion

This article introduced the R package GAS for simulating, estimating and forecasting time–
varying parameter models under the Generalized Autoregressive Score framework. It allows
practitioners in many scientific areas to perform their applied research using GAS models in
a user–friendly environment.

We introduced the model specification in a general way and illustrated the package usage. In
particular, we performed an empirical application using financial data in which we compared
the performance of univariate and multivariate GAS and GARCH models. Given the flexibility
of GAS models and the availability of several statistical distributions in the GAS package,
a number of different applications can be easily handled, such as: (i) the analysis of integer
valued time series using the Poisson GAS model (poi), (ii) the analysis of (0,1)–bounded time
series using the Beta GAS model (beta), (iii) the analysis of strictly positive time series with
an inverse location/scale dependence using the Gamma GAS model (gamma).

Finally, if you use R or GAS, please cite the software in publications.

Computational details

The results in this paper were obtained using R 3.4.1 (R Core Team 2017) with the packages:
GAS version 0.2.5 (Catania et al. 2017), lmtest version 0.9-35 (Zeileis and Hothorn 2002),
MASS version 7.3-47 (Venables and Ripley 2002; Ripley 2016), numDeriv version 2016.8-1
(Gilbert and Varadhan 2016), Rcpp version 0.12.12 (Eddelbuettel and François 2011; Eddel-
buettel et al. 2017a), RcppArmadillo version 0.7.900.2.0 (Eddelbuettel and Sanderson 2014;
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Figure 1: Cumulative out–of–sample Log Score differences between the multivariate Student–t
GAS and the DCC(1,1) model of Engle (2002) with multivariate Student–t errors. Periods
when the time series line slopes upward represent periods in which GAS outperforms GARCH,
while downward–sloping segments indicate periods when the GARCH forecast is more accu-
rate. The blue shaded area represents periods of recession in the US economy according
to the “USREC” series available from the Federal Reserve Bank of St. Louis web site at
https://fred.stlouisfed.org/series/USREC.

Eddelbuettel et al. 2017b), rugarch version 1.3-6 (Ghalanos 2015b), sandwich version 2.3-
4 (Zeileis 2004), xts version 0.10-0 (Ryan and Ulrich 2014), and zoo version 1.8-0 (Zeileis
and Grothendieck 2005). Some datasets available in the package were downloaded using
the quantmod package (Ryan 2016), version 0.4-10. Computations were performed on Win-
dows 10 Pro, x86 64-w64-mingw32/x64 (64-bit) with Intel(R) Xeon(R) CPUE3-1535M v6
Max Turbo Frequency 4.20 GHz. Full output of the computations is available in the file
sink_PART_II_R3.4.1_mingw32.txt in the folder inst/doc.

R itself and all packages used are available from CRAN at http://CRAN.R-project.org/.
The package GAS is available from the CRAN repository at https://cran.r-project.org/
package=GAS. The version under development is available in GitHub at https://github.

com/LeopoldoCatania/GAS.

The folder inst/doc inside the GAS package tarball contains additional technical documen-
tations. A step by step guide on how to add a new statistical distribution in the GAS package
is reported in the file AddNewDistribution.pdf. To ensure replication of the results in Ta-
ble 3 across the various platforms we report, in the folder inst/doc, the estimation results of

https://fred.stlouisfed.org/series/USREC
http://CRAN.R-project.org/
https://cran.r-project.org/package=GAS
https://cran.r-project.org/package=GAS
https://github.com/LeopoldoCatania/GAS
https://github.com/LeopoldoCatania/GAS
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Section 4 obtained under Windows 10 Pro, Linux Ubuntu 12.04.5 LTS and Mac OS X 10.12
Sierra. We further provide the average negative log–scores of the individual models (see files
mGAS.txt and mGARCH.txt). Estimation results match up to seven digits for GAS models and
up to five digits for GARCH model across the platforms.
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A. The GAS model with conditional Student–t distribution

Let us consider the case where the distribution of the univariate random variable yt ∈ <,
conditionally on y1:t−1, is Student–t with location µt, scale φt ∈ <+, and νt > 2 degrees of
freedom19, i.e., θt = (µt, φt, νt)

′ and:

p(yt;θt) ≡
Γ
(
νt+1
2

)
Γ
(
νt
2

)
φt
√
πνt

(
1 +

(yt − µt)2

νtφ2t

)− νt+1
2

. (8)

As will become clear, the score corresponding to the Student–t distribution has the advantage
of dampening the effect of extreme observations on the future volatility, when the Student–t
has sufficiently fat tails. It has been used by Creal et al. (2013) and Lucas and Zhang (2016)
under the name tGAS, and by Harvey (2013) and Harvey and Luati (2014) under the name
Beta–t–EGARCH.

Differentiating the logarithm of (8) with respect to θt leads to the score vector ∇t(yt,θt) =

(∇µt ,∇
φ
t ,∇νt )>, with:

∇µt ≡
(νt + 1)(yt − µt)

νtφt

(
1 + (yt−µt)2

νtφt

)
∇φt ≡

(νt + 1) (yt − µt)2

2νtφ2t

(
1 + (yt−µt)2

νtφt

) − 1

φt

∇νt ≡
1

2
ψ

(
νt + 1

2

)
− 1

2
ψ
(νt

2

)
− 1

2νt

− 1

2
log

(
1 +

(yt − µt)2

νtφt

)
+

(νt + 1) (yt − µt)2

2ν2t φt

(
1 + (yt−µt)2

νtφt

) ,
where ψ(·) is the Digamma function. Without loss of generality, let us consider the case
where γ = 0 with no reparametrization, i.e., θt = θ̃t. The results when γ 6= 0 and a mapping
function Λ(·) for θt is introduced are qualitatively the same. Clearly, what controls for the
response to extreme observations in the conditional score ∇t(yt,θt) is the degree of freedom
parameter νt. When νt is small, say νt = 3, the conditional distribution of yt has a relatively
higher probability mass in the tails, which means that extreme observations, which would
be considered outliers under the conditionally Gaussian distribution, are more likely to be
observed.

If we introduce the following mapping function for the unrestricted vector of parameter θ̃t =
(µ̃t, φ̃t, ν̃t)

>:

Λ(θ̃t) ≡


µt ≡ µ̃t

φt ≡ exp(φ̃t)

νt ≡ exp(ν̃t) + c ,

with c = 2 in order to ensure the existence of Vt−1 [yt], then the GAS updating step for θt

19Note that the degrees of freedom parameter is assumed to be a real number larger than two, which makes
the computation of the partial derivative straightforward.
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when γ = 0 takes the form:

θt+1 ≡ Λ(θ̃t+1)

θ̃t+1 ≡ κ + AJ (θ̃t)
>∇t(yt,θt) + Bθ̃t ,

(9)

where κ ≡ (κµ, κφ, κν)>, A ≡ diag(aµ, aφ, aν) and B ≡ diag(bµ, bφ, bν). In this particular

case, the Jacobian matrix J (θ̃t) takes the form:

J (θ̃t) =

1 0 0

0 exp(φ̃t) 0
0 0 exp(ν̃t)

 .

Constraints on the evolution of the GAS parameters can be easily considered by fixing the
values of the A and B elements. For example, if the constraint νt = ν has to be imposed, we
set aν = bν = 0 during the (log-)likelihood maximization.

B. Mapping functions

Now we briefly discuss the choice of the mapping function Λ(·) for GAS models. We indicate
the i–th element of θt and θ̃t as θi,t and θ̃i,t, respectively. Analogously, we refer to the i–th

element of the vector–valued mapping function Λ(·) as λi(·), such that λi(θ̃i,t) = θi,t.

Generally, there are three types of constraints we want to impose on θi,t:

1) θi,t > c, c ∈ <

2) θi,t ∈ (a, b), for a, b ∈ < and b > a

3) θi,t ∈ (a, b) |θt ∈ Θ for a, b ∈ < and b > a ,

the additional case when θi,t ∈ <, and thus θ̃i,t = θi,t, implicitly requires that λi : < → < is
the identity function.

The first case, θi,t > c, covers the situation where, for example, θi,t is a scale parameter and,
consequently, its positiveness has to be imposed (i.e., c = 0).20 In this case, λi : < → [c,∞),
and the exponential link function, defined as:

θi,t = exp(θ̃i,t) + c , (10)

can be employed. The second case, θi,t ∈ (a, b), covers the situation where, for example,
p (·;θt), is the asymmetric Student–t distribution of Zhu and Galbraith (2010), and θi,t is its
skew parameter defined in (0, 1). In the more general case we have λi : < → (a, b), and thus,
the modified logistic function:

θi,t = a+
b− a

1 + exp(−θ̃t)
, (11)

can be employed. The last case, θi,t ∈ (a, b) |θt ∈ Θ, is more complicated and covers the
situation where, for example, p (·;θt) is a multivariate Gaussian distribution and θi,t is one

20The case θi,t < c follows immediately.
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element of its correlation matrix Rt. Clearly, in this case θi,t ⊆ [−1, 1], with the equivalence
corresponding to the case N = 2. For the more general case N > 1, we need to ensure
that Rt is positive definite, i.e., x′Rtx > 0,∀x ∈ <N . Following Creal et al. (2011), we
employ the hyperspherical coordinates transformation originally proposed by Pinheiro and
Bates (1996) and subsequently discussed in Jaeckel and Rebonato (1999), Rapisarda et al.
(2007) and Pourahmadi and Wang (2015). We define the general (h, k)–th lower diagonal
element of Rt as ρhk,t = θi,t for h > k, h < N and ρ̃hk,t = θ̃i,t, for i = 1, . . . , N (N − 1) /2.
Pourahmadi and Wang (2015) show that:

ρhk,t = ch1,tck1,t +

h−1∑
m=2

chm,tckm,t

m−1∏
l=1

shl,tskl,t + chk,t

h−1∏
l=1

shl,tskl,1 1 ≤ h < k ≤ N ,

where chk,t ≡ cos (ρ̃hk,t) and shk,t ≡ sin (ρ̃hk,t) for all 1 ≤ h < k ≤ N ensure that Rt ≡
{ρij,t}Ni,j=1 is a proper correlation matrix.

These three specifications for λi (·) cover all the cases considered in this article and in the R
package GAS. Additional information are reported in the R documentation. Fore details on
Λ (·) and Λ−1 (·); see help("UniMapParameters") and help("UniUnmapParameters") in the
univariate case and help("MultiMapParameters") and help("MultiUnmapParameters") in
the multivariate case.
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