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Abstract

This paper presents the R package GAS for the analysis of time series under the
Generalized Autoregressive Score (GAS) framework of Harvey (2013) and Creal et al.
(2013). The distinctive feature of the GAS approach is the use of the score function as
the driver of time–variation in the parameters of nonlinear models. The GAS package
provides functions to simulate univariate and multivariate GAS processes, estimate the
GAS parameters and to make time series forecasts. We illustrate the use of the GAS
package with a detailed case study on estimating the time–varying risk of a financial
portfolio.
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1. Introduction

Time–variation in the parameters of a model describing time series process is pervasive in
almost all applied scientific fields. Early references to time series models include Kalman
(1960) and Box and Jenkins (1970). In many settings, the model of interest is characterized
by time–varying parameters, for which the literature on time–varying parameter models has
proposed a myriad of possible specifications. Recently, Harvey (2013) and Creal et al. (2013)
note that many of the proposed models are either difficult to estimate (in particular, the class
of stochastic volatility models reviewed in Shephard (2005)) and/or do not properly take the
shape of the conditional distribution of the data into account.1 Harvey (2013) and Creal et al.
(2013) therefore propose to use the score of the conditional density function as the main driver
of time–variation in the parameters of the time series process used to describe the data. A
further advantage of using the conditional score as driver is that the estimation by maximum
likelihood is straightforward. The resulting model is generally referred to as the Dynamic
Conditional Score (DCS) model or the Generalized Autoregressive Score (GAS) model, . In
this article and accompanying R package, we use the GAS acronym for both.

The R package GAS is conceived to be of relevance for the modelling of all types of time
series data. It does not matter whether they are real-valued, integer valued, (0,1)–bounded
or strictly positive, as long as there is a conditional density for which the score function
and the hessian are well-defined. The practical relevance of the GAS framework has been
illustrated in the case of financial risk forecasting (see e.g. Harvey and Sucarrat (2014) for
market risk, Oh and Patton (2013) for systematic risk, and Creal et al. (2014) for credit risk
analysis), dependence modelling (see e.g., Harvey and Thiele (2015) and Janus et al. (2014)),
and spatial econometrics (see e.g., Blasques et al. (2014c) and Catania and Billé (2016)).
For a more complete overview of the work on GAS models, we refer the reader to the GAS
community page at http://www.gasmodel.com/.

It is important to note that, even though the GAS framework has been developed by econome-
tricians, it is flexible enough to be used in all fields in which the use of time–varying parameter
models is relevant. The main difficulty in using GAS models is to derive the score and Hes-
sian, and implementing the maximum likelihood estimation of the resulting nonlinear models,
as well as the generation of time series forecasts. The R package GAS answers these needs
by proposing an integrated set of R functions to do time series analysis in the R statistical
language (R Core Team 2016) under the GAS framework. The functionality includes: (i) es-
timation, (ii) prediction, (iii) simulation, (iv) backtesting, and (v) graphical representation of
the results, and is ready to use in real–life applications. The user interface uses the R program-
ming language, which has the advantage of being free and open source. However, most of the
underlying routines are principally written in C++ exploiting the armadillo library (Sander-
son 2010) and the R packages Rcpp (Eddelbuettel and François 2011; Eddelbuettel et al.
2016a) and RcppArmadillo (Eddelbuettel and Sanderson 2014; Eddelbuettel et al. 2016b) to
speed up the computations. Furthermore, since the package is written with the S4 methods, R
users with basic programming knowledge will find common functions such as coef(), plot()

1
A typical example is the class of (G)ARCH models in which the squared (de-meaned) return is the driver

of time–variation in the conditional variance, independently of the shape of the conditional distribution of the
return. To see that this is counter-intuitive, consider the case of observing a 10% return when the conditional
mean is 0% and the volatility is 3%. Under the assumption of a normal distribution, the 10% return is a
strong signal of an increase in volatility, while under a fat-tailed Student–t distribution, the signal is weakened
because of the possibility that the extreme value is an observation from the tails.

http://www.gasmodel.com/
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and show() to extract and analyze their results. We believe that this aspect is of primary
importance since it dramatically increases the number of potential users. The R package GAS
is available from the CRAN repository at https://cran.r-project.org/package=GAS.

The outline of the paper is as follows: Section 2 reviews the GAS framework to define time–
varying parameter models, referring to the seminal works of Harvey (2013) and Creal et al.
(2013). Section 3 introduces the R package GAS and illustrates how to to simulate, estimate
and make predictions. Section 4 presents a real–life application to financial data. Section 5
concludes.

2. The GAS framework to modeling time–varying parameters

One of the most appealing characteristics of the GAS framework is its applicability to define
time–varying parameter models in a large variety of univariate and multivariate time series
settings. We try to be as general as possible in reviewing the GAS framework, and report
the detailed equations for a specific model in Appendix A. First, we introduce the notation
and present the GAS model when the parameter space is unrestricted. We then show how
a mapping function can be used to model the time–variation in the parameters when the
parameter space is restricted. The section concludes by summarizing the maximum likelihood
approach to estimating GAS models.

2.1. Model specification

Let yt ∈ <
N be an N–dimensional random vector at time t with conditional distribution:

yt|y1:t−1 ∼ p(yt;θt) , (1)

where y1:t−1 ≡ (y′1, . . . ,y
′
t−1)

′ contains the past values of yt up to time t−1 and θt ∈ Θ ⊆ <J

is a vector of time–varying parameters which fully characterizes p(·) and only depends on
y1:t−1 and a set of static additional parameters ξ, i.e., θt ≡ θ(y1:t−1, ξ) for all t. The main
feature of GAS models is that the evolution in the time–varying parameter vector θt is driven
by the score of the conditional distribution defined in (1), together with an autoregressive
component:

θt+1 ≡ κ + A st + Bθt , (2)

where, κ, A and B are matrices of coefficients with proper dimensions collected in ξ, and st
is a vector which is proportional to the score of (1):

st ≡ St(θt)∇t(yt,θt) , (3)

where St is a J × J positive definite scaling matrix known at time t and:

∇t(yt,θt) ≡
∂ log p(yt;θt)

∂θt
, (4)

is the score of (1) evaluated at θt. Creal et al. (2013) suggest to set the scaling matrix to a
power γ > 0 of the inverse of the Information Matrix of θt to account for the variance of ∇t.
More precisely:

St ≡ It(θt)
−γ ,

https://cran.r-project.org/package=GAS
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with:
It(θt) ≡ Et−1

[
∇t(yt,θt)∇t(yt,θt)

′] , (5)

where the expectation is taken with respect to the conditional distribution of yt given y1:t−1.
The additional parameter γ is fixed by the user and usually takes value in the set {0, 12 , 1}.
When γ = 0, St = I and there is no scaling. If γ = 1 (γ = 1

2), the conditional score ∇t(yt,θt)
is premultiplied by the inverse of (the square root of) its covariance matrix It(θt). It is worth
noting that, whatever the choice of γ, st is a Martingale Difference (MD) with respect to
the distribution of yt given y1:t−1, i.e., Et−1 [st] = 0 for all t. Furthermore, when γ = 1

2 ,
the additional moment condition Vt−1 [st] = I can be easily derived. Due to the fact that st
is a MD, if the spectral radius of B is less then one2, the updating equation of θt reported
in (2) implies a mean reverting process for θt through the long–term mean (I−B)−1 κ,
which means that the unconditional value of θt is (I−B)−1 κ. It follows that, the J–valued
vector κ and the J × J matrix B, control for the level and the persistence of the process,
respectively. The additional J×J matrix of coefficients A, that premultiplies the scaled score
st, controls for the impact of st to θt+1. Specifically, as detailed in Creal et al. (2013), the
quantity st indicates the direction to update the vector of parameters from θt, to θt+1, acting
as a steepest ascent algorithm for improving the model local fit given the current parameter
position. Interestingly, this updating procedure resembles the well–known Newton–Raphson
algorithm. Hence, A can be interpreted as the step of the update, and needs to be designed
in a way to not distort the signal coming from st; see Section 2.3.

2.2. Reparametrization

In (2) the parameter vector θt has a linear specification and is thus unbounded. In practice,
the parameter space of θt is often restricted (Θ ⊂ <J). For instance, when we model the
scale parameter of a Student–t distribution, we need to ensure its positiveness. Even if this
problem can be solved by imposing constraints on ξ (as is done in the GARCH model, see
Bollerslev (1987)), the standard solution under the GAS framework is to use a (possibly
nonlinear) link function Λ(·) that maps θ̃t ∈ <

J into θt and where θ̃t ∈ <
J has the linear

dynamic specification of (2). Specifically, let Λ : <J → Θ be a twice differentiable vector–
valued mapping function such that Λ(θ̃t) = θt. The updating equation for θt is then given
by:

θt = Λ(θ̃t) (6)

θ̃t ≡ κ + As̃t + Bθ̃t−1 , (7)

where s̃t ≡ S̃t(θ̃t) ∇̃t(yt, θ̃t) and ∇̃t(yt, θ̃t) represents the score of (1) with respect to θ̃t, and,
consequently, S̃t(θ̃t) can depend on the information matrix of θ̃t given by Ĩt(θ̃t). Nicely, the
following relations hold:

∇̃t(yt, θ̃t) = J (θ̃t)
′∇t(yt,θt) (8)

Ĩt(θ̃t) = J (θ̃t)
′It(θt)J (θ̃t) , (9)

where:

J (θ̃t) ≡
∂Λ(θ̃t)

∂θ̃t
, (10)

2
The spectral radius of a L × L matrix X is defined as τ (X) ≡ max (|τ1|, . . . , |τL|), where τi is the i–th

eigenvalue of X, for i = 1, . . . , L.
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is the Jacobian matrix of Λ(·) evaluated at θ̃t.
3 This way, almost all the nonlinear constraints

can be easily handled via the definition of a proper mapping function Λ(·) and its associated
Jacobian matrix J (·). The coefficients to be estimated are gathered into ξ ≡ (κ,A,B) and
estimated by numerically maximizing the (log-)likelihood function as detailed in Section 2.3.4

In Appendix B we discuss the choice of mapping function for GAS models in more details.

2.3. Maximum likelihood estimation

A useful property of GAS models is that, given the past information and the static parameter
vector ξ, the time–varying parameters are perfectly predictable and the loglikelihood function
can be easily evaluated via the prediction error decomposition. More precisely, for a sample
of T realizations of yt, collected in y1:T , the vector of parameters ξ can be estimated by
Maximum Likelihood (ML) as the solution of:

ξ̂ ≡ arg max
ξ

L (ξ,y1:T ) , (11)

where:

L (ξ,y1:T ) ≡ log p (y1;θ1) +
T∑
t=2

log p (yt;θt(ξ,y1:t−1)) , (12)

and θ1 ≡ (I−B)−1κ. Note the dependence of θt from ξ and y1:t−1.

There are two important caveats in the ML evaluation of GAS models. The first one is that,
from a theoretical perspective, ML estimation of GAS models is an on–going research topic.
General results are reported by Blasques et al. (2014b), Blasques et al. (2014a) and Harvey
(2013), while results for specific models have been derived by Blasques et al. (2014c) and
Andres (2014).

The second one is that, even when the ML estimator is consistent and asymptotically normal,
the numerical maximization (11) can be challenging, because of the nonlinearities induced
by Λ (·) and by the way yt enters the scaled score st. Consequently, when the optimizer is
gradient–based, good starting values need to be selected for GAS models. In the R package
GAS, starting values for the optimizer are chosen in the following way: (i) estimate the static
version of the model (i.e., with A = 0 and B = 0) and set the initial value of κ accordingly,
and (ii) perform a grid search for the coefficients contained in A and B. Further technical
details are presented in Section 3.2.

Implementation of the models in the R package GAS follows the common approach in the
GAS literature. First, matrices B and A are constrained to be diagonal. Second, in order to
avoid an explosive pattern for θ̃t, the spectral radius of B is constrained to be less then one.
Third, the positiveness of each element of A is imposed in order to do not distort the signal
coming from the conditional score st.

3
The new scaled score s̃t is still a MD with Vt−1 [̃st] = Ĩt(θ̃t).

4
Clearly, the coefficients κ, A and B in (6) are different from those of (2), however, for notational purposes,

we continue to use the same notation.
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3. The R package GAS

The R package GAS offers an integrated environment to deal with GAS models in R. Its
structure is somehow similar to the R package rugarch (Ghalanos 2015b) for GARCH models,
which is widely used by practitioners and academics. The similarities concern the steps the
user has to do to perform her analysis as well as the type of functions she faces. Specifically, the
first step is to specify the model, which means choosing: (i) the assumptions for the conditional
distribution of the data, (ii) the set of parameters that have to vary over time and, (iii) the
scaling mechanism for the conditional score. These steps are detailed in Section 3.1. Once the
model is properly specified, the user can estimate the unknown parameters in ξ by numerical
maximization of the log–likelihood function as detailed in Section 3.2. Finally, predictions
according to the estimated model can be easily performed; see Section 3.3. Simulation of
GAS models is presented in Section 3.4.

Functions for: (i) specification, (ii) estimation, (iii) forecasting and (iv) simulation are avail-
able for univariate and multivariate time series. The general nomenclature for the functions
when we consider univariate time series is “UniGAS...()”and that for multivariate time series
is “MultiGAS...()” .

In the R package GAS, several datasets are also included for reproducibility purposes, such
as: US inflation (cpichg), US unemployment rate (usunp), Realized volatility of the S&P500
Index (sp500rv), intraday bid and ask quotes for Citygroup corporation (tqdata); these
datasets are freely available online; see the R documentation for references. In this Section,
we use the monthly US inflation measured as the logarithmic change in the CPI available
from the Federal Reserve Bank of St. Louis website https://fred.stlouisfed.org/. This dataset
can be easily loaded in the R workspace using data("cpichg").

3.1. Specification

Specification of GAS models is the first step the user needs to undertake. This is achieved
by using the UniGASSpec() and MultiGASSpec() functions, in the cases of univariate and
multivariate models, respectively. Both functions accept three arguments and return an object
of the class uGASSpec and mGASSpec, respectively. The three arguments are:

- Dist: A character indicating the label of the conditional distributions assumed for the
data. Available distributions can be displayed using the function DistInfo() and are
reported in Table 1. By default Dist = "norm".

- ScalingType: A character indicating the scaling mechanism for the conditional score,
i.e., the value of the γ parameter in (5). Possible choices are "Identity" (γ = 0),
"Inv" (γ = 1) and "InvSqrt" (γ = 1

2). Note that, for some distributions only
ScalingType = "Identity" is supported; see function DistInfo() and Table 1. By
default ScalingType = "Identity", i.e., no scaling occurs.5

- GASPar: A named list with boolean entries containing information about which pa-
rameters of the conditional distribution have to be time–varying. Generally, each uni-
variate distribution is identified by a series of maximum four parameters. These are

5
In the GAS package the information matrices and the scores are always computed using their analytical

formulations.

https://fred.stlouisfed.org/
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Label Name Type Parameters # Scaling Type

norm Gaussian univariate location, scale 2 Identity, Inv, InvSqrt

std Student–t (i) univariate location, scale, shape 3 Identity, Inv, InvSqrt

sstd Skew–Student–t (ii) univariate location, scale, skewness, shape 4 Identity

ald Asymmetric Laplace (iii) univariate location, scale, skewness 3 Identity, Inv, InvSqrt

poi Poisson (iv) univariate location 1 Identity, Inv, InvSqrt

ber Bernoulli univariate location 1 Identity, Inv, InvSqrt

gamma Gamma univariate scale, shape 2 Identity, Inv, InvSqrt

exp Exponential (v) univariate location 1 Identity, Inv, InvSqrt

beta Beta (vi) univariate scale, shape 2 Identity, Inv, InvSqrt

mvnorm Multivariate Gaussian multivariate location, scale, correlation 9 (vii) Identity

mvt Multivariate Student-t multivariate location, scale, correlation, shape 10 (vii) Identity

Table 1: Statistical distributions included in the R package GAS. The fifth column, #, reports
the number of parameters of the distribution. Note: (i) The usual Student–t distribution (not
reparametrised in terms of the variance parameter), (ii) reparametrised such that the location
and scale parameters coincide with the mean and the standard deviation of the distribution
as done in the rugarch package. (iii) for the ald distribution the θ, σ, κ reparametrization
is used; see Kotz et al. (2001), (iv) For the Poisson distribution location means the usual
intensity parameter, (v) For the Beta distribution shape means the usual alpha parameter
and scale means the usual beta parameter, (vi) For the Exponential distribution ’location’
means the usual rate parameter. (vii) For N = 3.

indicated by location, scale, skewness and shape. Note that, for same distribu-
tions, these labels are not strictly related to their literal statistical meaning. Indeed, for
the Exponential distribution exp, the term location indicates the usual intensity rate
parameter; see the DistInfo() function for more details. For multivariate distributions,
the set of parameters is indicated by location, scale, correlation and shape. For
example, in the case of a multivariate Student–t distribution with mean vector µt, scale
matrix Σt ≡ DtRtDt, where Dt is the diagonal matrix of scales and Rt is the corre-
lation matrix, and νt degrees of freedom, we have that: location refers to µt, scale
refers to Dt, correlation refers to Rt and shape refers to νt. By default, GASPar =

list(location = FALSE, scale = TRUE, skewness = FALSE, shape = FALSE).

The function MultiGASSpec() also accepts the additional boolean argument ScalarParameters
controlling for the parametrization of A and B in (6). Setting ScalarParameters = TRUE

(the default value), the coefficients controlling the evolution of the location, scale and corre-
lation parameters are constrained to be the same across each group. Specifically, if yt ∈ <

3

follows a GAS process with conditional multivariate Gaussian distribution, the set of param-
eters is θt =

(
µ1,t, µ2,t, µ3,t, σ1,t, σ2,t, σ3,t, ρ21,t, ρ31,t, ρ32,t

)′
, and the matrix of coefficients A is

parameterized as:

A ≡ diag
(
aµ, aµ, aµ, aσ, aσ, aσ, aρ, aρ, aρ

)
, (13)

while, if ScalarParameters = FALSE, the matrix of coefficients A takes the form:

A ≡ diag
(
aµ1 , aµ2 , aµ3 , aσ1 , aσ2 , aσ3 , aρ21 , aρ31 , aρ32

)
. (14)

Hence, in the latter case, each element of θt evolves heterogeneously with respect to the
others. The same constraints are applied to B, which means that, if ScalarParameters =
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TRUE, for the general N case, the number of parameters decreases from 3N (N + 1) /2 to
N (N + 1) /2 + 2. Additional constraints are introduced through the GASPar argument as in
the univariate case; see help("MultiGASSpec").

As an illustration, assume that we want to specify a Student–t GAS model with time–varying
conditional mean and scale parameters, but fixed degree of freedom, i.e., νt = ν. This can be
easily done with the following lines of code:

R> GASSpec <- UniGASSpec(Dist = "std", ScalingType = "Identity",

GASPar = list(location = TRUE, scale = TRUE,

shape = FALSE))

Details about the object returned from UniGASSpec() are printed in the console by simply
calling GASSpec:

R> GASSpec

-------------------------------------------------------

- Univariate GAS Specification -

-------------------------------------------------------

Conditional distribution

-------------------------------------------------------

Name: Student-t

Label: std

Type: univariate

Parameters: location, scale, shape

Number of Parameters: 3

References:

-------------------------------------------------------

GAS specification

-------------------------------------------------------

Score scaling type : Identity

Time varying parameters : location, scale

-------------------------------------------------------

As we have not specified a scaling (ScalingType = "Identity") this model is the same as
the one reported in Appendix A. Multivariate GAS specifications are analogously specified
using the MultiGASSpec() function; see help(MultiGASSpec).

3.2. Estimation

Similar to model specification, estimation is handled with two different functions for univariate
and multivariate models, UniGASFit() and MultiGASFit(), respectively. These functions
require only two arguments: The GAS specification object GASSpec and the data, and returns
an object of the class uGASFit or mGASFit. As an example, let us estimate the GAS model
previously specified using the US inflation data included in the R package GAS:

R> data("cpichg", package = "GAS")

R> Fit <- UniGASFit(GASSpec, cpichg)
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The computational time is less than one second on a modern computer. The optimizer used
is the General Nonlinear Augmented Lagrange Multiplier method of Ye (1988) available in
the R package Rsolnp (Ghalanos and Theussl 2016). Results can be inspected by calling the
object Fit.

R> Fit

------------------------------------------

- Univariate GAS Fit -

------------------------------------------

Model Specification :

T = 276

Conditional distribution : std

Score scaling type : Identity

Time varying parameres : location, scale

------------------------------------------

Estimates:

Estimate Std. Error t value Pr(>|t|)

kappa1 0.03735 0.02991 1.249 1.059e-01

kappa2 -0.25994 0.13553 -1.918 2.755e-02

kappa3 0.92671 0.76127 1.217 1.117e-01

a1 0.07173 0.01780 4.030 2.787e-05

a2 0.45377 0.20828 2.179 1.468e-02

b1 0.94318 0.02600 36.272 0.000e+00

b2 0.85559 0.07185 11.908 0.000e+00

------------------------------------------

Unconditional Parameters:

location scale shape

0.6574 0.1653 6.5262

------------------------------------------

Information Criteria:

AIC BIC np llk

370.4 395.8 7.0 -178.2

The output printed in the console is divided into: (i) the summary of the model, (ii) the
estimated coefficients along with significance levels according to their asymptotic normal

distribution, (iii) the unconditional level of the parameters, i.e., Λ
(

(I−B)−1κ
)

, (iv) AIC

and BIC information criteria in addition to the the log–likelihood evaluated at its optimum,
and (v) the computation time.

Concerning the estimated coefficients, kappa1, kappa2 and kappa3 are the elements of vector
κ in (23), i.e., κµ, κφ and κν , respectively. Analogously, a1 and a2 are the estimates of aµ
and aφ and b1 and b2 are estimates of bµ and bφ. Note that, since we have specified scale =

FALSE in the UniGASSpec() function, coefficients a3 and b3, corresponding to aν and bν are
not reported (and constrained to zero during the log–likelihood optimization).
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Several methods to extract estimated quantities are available for objects of the class uGASFit
or mGASFit. They allow us to: (i) calculate several quantities of the estimated conditional
distribution at each point in time, such as: quantiles, conditional moments and filtered pa-
rameters (see quantile(Fit), getMoments(Fit) and getFilteredParameters(Fit), respec-
tively), (ii) extract the estimated coefficients (coef(Fit)), (iii) generate a graphical repre-
sentation of the results (plot(Fit)); see help(uGASFit) for details.

3.3. Forecasting

Forecasting is a crucial aspect in applied time series analysis. Given the parametric assump-
tion of GAS models, predictions are usually given in the form of density forecasts, i.e., the
distribution of yT+h|y1:T for h ≥ 1. Knowing the predictive density, practitioners can extract
any relevant quantities such as future expected value ET [yT+h] or (co–)variance VT [yT+h].
For GAS models, the one–step ahead predictive distribution (h = 1) is analytically available
while it needs to be estimated by simulation in the multi–step ahead case (h > 1).

The R package GAS can handle both one–step and multi–step ahead forecasts. Consis-
tent with previous nomenclature, functions for univariate and multivariate predictions are
UniGASFor() and MultiGASFor(), respectively. These functions accept an object of the class
uGASFit or mGASFit, created using the functions UniGASFit() and MultiGASFit(), and re-
turn an object of the class uGASFor and mGASFor, respectively. Additional arguments are:

� H: a numeric integer value representing the forecast horizon, i.e., h. By default iH = 1.

� B: a numeric integer value representing the number of draws to approximate the multi–
step ahead predictive distribution when h > 1. By default, B = 1e4.

� ReturnDraws: a boolean controlling if the simulated draws from yT+1|y1:T , yT+2|y1:T , . . . ,
yT+h|y1:T have to be returned. By default ReturnDraws = FALSE.

Other arguments to perform rolling–type of forecasts are detailed in the documentation; see
help("UniGASFor"). Practically, if we want to predict the next year inflation (i.e., h = 12
with the monthly series cpichg), after having estimated the GAS model of Section 3.2, we
can execute the following code:

R> Forecast <- UniGASFor(Fit, H = 12)

and inspect the results by calling the object Forecast:

R> Forecast

------------------------------------------

- Univariate GAS Forecast -

------------------------------------------

Model Specification

Conditional distribution : std

Score scaling type : Identity

Horizon : 12
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Rolling forecast : FALSE

------------------------------------------

Parameters forecast:

location scale shape

T+1 0.10128 0.1524 6.526

T+2 0.10219 0.1753 6.526

T+3 0.09718 0.2188 6.526

T+4 0.10207 0.2586 6.526

T+5 0.09407 0.2987 6.526

....................

location scale shape

T+8 0.09603 0.4207 6.526

T+9 0.08959 0.4458 6.526

T+10 0.08804 0.4901 6.526

T+11 0.07340 0.5159 6.526

T+12 0.07060 0.5405 6.526

which returns some model information and the predictions of future model parameters based
on averages over B draws. Forecast is an object of the class uGASFor and comes with several
methods to extract and visualize the results; see help("uGASFor").

As commonly done in (financial) econometrics, predictions are generated from models fitted
to rolling windows. The R package GAS includes this functionality via UniGASRoll() and
MultiGASRoll(). These functions accept several arguments that we briefly describe in the
univariate case:

� data: a vector of length T+ForecastLength containing all the observations.

� GASSpec: an object of the class uGASSpec created with UniGASSpec().

� ForecastLength: a numeric integer which specifies the length of the out–of–sample.

� RefitEvery: a numeric integer of periods before coefficients are re–estimated.

� RefitWindow: a character for the type of the window. As in the R package rugarch,
we define the options: RefitWindow = "recursive" and RefitWindow = "moving".
If RefitWindow = "recursive" all past observations are used when the model is re–
estimated. If RefitWindow = "moving" initial observations are eliminated.

Other arguments useful to tailor the forecasting procedure and to parallelize the code execu-
tion are available and detailed in the R documentation; see help("UniGASRoll").

Suppose now we are interested in assessing the forecast ability of the GAS model with
Student–t conditional distribution and time varying location and scale parameters, detailed
in Section A, and specified in the object GASSpec in Appendix 3.1. We treat the last 150
observations of cpichg as out–of–sample and run a rolling–window forecast exercise using the
following portion of code:

Roll <- UniGASRoll(cpichg, GASSpec, ForecastLength = 150,

RefitEvery = 3, RefitWindow = "moving")
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where model coefficients are re–estimated quarterly (i.e., every three observations). The
code automatically makes a series of one–step ahead rolling predictions according to the
model estimated using only the past information. This way, the user can perform out–of–
sample analysis with GAS models. The object Roll belongs to the class uGASRoll which, as
uGASFit and uGASFor, comes with several methods to extract and represent the results; see
help("uGASRoll").

3.4. Simulation

Simulation of univariate and multivariate GAS models is straightforward with the R package
GAS. This can be easily done via UniGASSim() and MultiGASSim(); see the R documentation.
Several examples, also investigating the finite sample properties of the ML estimator for GAS
models, are reported in the inst/test/Simulation.R file included in the package tarball.
For simulation of GAS models, the vector κ and the matrices B and A, need to be specified.
It is worth stressing that, the definition of κ can be tricky, especially for multivariate mod-
els. The difficulty emerges from the fact that, κ determines the unconditional value of the
reparametrised vector of parameters θ̃t, implying that, if the user wants to specify the model
in terms of a target value θ∗ she needs to know the inverse of the mapping function Λ (·).6 To
address this problem, the functions UniUnmapParameters() and MultiUnmapParameters(),
representing Λ−1 (·), are available for univariate and multivariate models, respectively. This
way, the user can easily specify κ such that κ = (I−B) Λ−1

(
θ∗
)
. Table 2 lists the numerical

bounds imposed for the univariate distributions, such that UniUnmapParameters() cannot
takes values outside those ranges. For the multivariate case, please refer to the examples
reported in the inst/test/SimulateGAS.R file included in the package tarball.

Suppose we want to simulate T = 1, 000 observations from the Student–t GAS model reported
in Appendix A with time–varying location and scale, but constant shape parameters. Assume
our target value for the parameters is θ∗ =

(
µ∗, σ∗, ν∗

)′
with µ∗ = 0.1, σ∗ = 1.5 and ν∗ = 7.

The matrix A and B are defined as:

A = diag (0.1, 0.4, 0.0) (15)

B = diag (0.9, 0.95, 0.0) , (16)

such that both the conditional mean and the conditional variance evolve quite persistently over
time, while the shape parameter is constant. The implementation of UniUnmapParameters()
and UniGASSim() proceed as:

A <- diag(c(0.1, 0.4, 0.0))

B <- diag(c(0.9, 0.95, 0.0))

ThetaStar <- c(0.1, 1.5, 7.0)

Kappa <- (diag(3) - B) %*% UniUnmapParameters(ThetaStar, "std")

Sim <- UniGASSim(iT = 1000, Kappa, A, B,

Dist = "std", ScalingType = "Identity")

6
Here we define the“target value”as the unconditional level of the parameters the user has in mind, however,

in order to have E [θt] = θ
∗
, the model has to be stationary, see e.g., Blasques et al. (2014d).



David Ardia, Kris Boudt, Leopoldo Catania 13

Label location scale skewness shape

norm < <+ – –

std < <+ – (4.0, 50.0)

snorm < <+ (0.1, 2.0) –

sstd < <+ (0.1, 2.0) (4.0, 50.0)

ald < <+ <+ –

poi <+ – – –

gamma <+ <+ – –

exp <+ – – –

beta <+ <+ – –

norm < <+ – –

Table 2: Numerical bounds for univariate distributions in the R package GAS. For the case
when the space is <+ we use the exponential link function reported in Equation 26 with c = 0,
while in the case when the space is of the type (a, b) we use the modified logistic link function
reported in Equation 27.

where Sim is an object of the class uGASSim and comes with several method such as show,
plot, getMoments, among others; see help("uGASSim").

4. Applications to financial data

In order to illustrate how the R package GAS can be used in practical situations, we report
an empirical application with univariate and multivariate time series of financial returns. We
consider daily log–returns (in percentage points) of the Dow Jones 30 constituents available
in the dji30ret dataset originally included in the rugarch package and made available also in
the GAS package. This dataset includes the closing value log–returns from March 3rd, 1987
to February 3rd, 2009 for a total of 5,521 observations per series. The dataset can be easily
loaded in the workspace using:

R> library("GAS")

R> data("dji30ret", package = "GAS")

where dji30ret is a 5521 × 30 data.frame containing the daily logarithmic returns. Our
analysis is a typical out–of–sample exercise, meaning that: (i) we estimate the models using
an in–sample period, (ii) we do predictions during the out–of–sample period, (iii) we compare
the models according to their out–of–sample performance.

The models we consider are univariate/multivariate GAS models estimated with the R package
GAS, and univariate/multivariate GARCH models estimated using the popular R packages
rugarch (Ghalanos 2015b) and rmgarch (Ghalanos 2015a), respectively. The univariate spec-
ifications we consider are: (i) the Skew–Student–t GAS model with only time–varying scale
parameter (i.e., Dist = "sstd") and, (ii) the GARCH(1,1) model with Skew–Student–t dis-
tributed error. For both models we employ the Skew–Student–t distribution of Fernández
and Steel (1998) reparametrised such that the location and scale parameters coincide with
the mean and the standard deviation of the distribution as done in the rugarch packages.
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For the multivariate specifications, we consider: (i) the GAS model with conditional multi-
variate Student–t distribution with time–varying scales and correlations used in Creal et al.
(2011) and, (ii) the Dynamic Conditional Correlation (DCC) model of Engle (2002) with a
conditional multivariate Student–t distribution. For simplicity, the multivariate analysis only
considers three series of the whole dataset, these are: Caterpillar Inc. (CAT), 3M (MMM)
and Pfizer Inc. (PFE).

The code used to specify the univariate and multivariate GAS models is:

R> uGASSpec <- UniGASSpec(Dist = "sstd",

ScalingType = "Identity",

GASPar = list(scale = TRUE))

and:

R> mGASSpec <- MultiGASSpec(Dist = "mvt",

ScalingType = "Identity",

GASPar = list(scale = TRUE,

correlation = TRUE))

respectively.

The last H = 3, 000 observations (from January 27th, 1991, to the end of the sample) com-
pose the out–of–sample period. During the out–of–sample period, one–step ahead density
predictions are constructed by the univariate and multivariate models. Models (and there-
fore coefficients) are re–estimated using a moving–window every hundredth observations, as
detailed in Section 3.3. One–step ahead rolling prediction are then computed as:

luGASRoll <- list()

N <- ncol(dji30ret)

for(i in 1:N){

luGASRoll[[i]] <- UniGASRoll(data = dji30ret[, i],

GASSpec = uGASSpec,

ForecastLength = 3000,

RefitEvery = 100)

}

names(luGASRoll) <- colnames(dji30ret)

and:

mGASRoll <- MultiGASRoll(data = dji30ret[, c("CAT", "MMM", "PFE")],

GASSpec = mGASSpec,

ForecastLength = 3000,

RefitEvery = 100)
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for the univariate and multivariate case, respectively.

Let us now compare the ability of GAS and GARCH models in predicting the one–step ahead
distribution using two proper scoring rules (Gneiting et al. 2007). Scoring rules compare
the predicted density with the ex–post realized value of the return and deliver a score which
defines a ranking across the alternative models at each point in time. Generally, we define
St+1 ≡ S(yt+1, p(yt+1; θ̂t+1)) as the score at time t+1 for having predicted p(yt+1; θ̂t+1) when
yt+1 has been realized. We consider two widely used scoring rules:

� The average Negative Log Score (NLS):

NLS ≡ − 1

H

T+H−1∑
t=T

log p(yt+1; θ̂t+1). (17)

� The average weighted Continuous Ranked Probability Score (wCRPS):

wCRPS ≡ 1

H

T+H−1∑
t=T

∫ ∞
−∞

w (z)
(
F
(
z; θ̂t+1

)
− I{yt+1<z}

)2
dz, (18)

where w (z) is a weight function that emphasizes regions of interest of the predictive
distribution, such as the tails or the center. Models with lower NLS and wCRPS are
preferred.7 Similarly to Gneiting and Ranjan (2012), we consider the cases:

(i) w (z) = 1: Uniform,

(ii) w (z) = φa,b (z) : Center,

(iii) w (z) = 1− φa,b (z) /φa,b (0): Tails,

(iv) w (z) = Φa,b (z): Right tail,

(v) w (z) = 1− Φa,b (z): Left tail,

where φa,b (z) and Φa,b (z) are the pdf and cdf of a Gaussian distribution with mean a
and standard deviation b, respectively. The label “Uniform” represents the case where
equal emphasis is given to all the parts of the distribution.

The two aforementioned scoring rules can be easily evaluated using the BacktestDensity()

function available in the R package GAS. The BacktestDensity() function accepts an object
of the class uGASRoll, and returns a list with two elements: (i) the averages negative LS and
wCRPS as in (17) and (18), and (ii) their values at each point in time. Additional arguments
are:

� lower: numeric representing the lower bound used to approximate Equation 18 by
Monte Carlo integration as detailed in Gneiting and Ranjan (2012).

� upper: numeric as lower but for the upper bound.8

7
Consistent with Gneiting et al. (2007), we specify the Negative Log Score such that the “direction” between

the two scoring rules is the same.
8
The two arguments lower and upper coincide with yl and yu in Equation 16 of Gneiting and Ranjan

(2012), respectively. These are two numeric objects with no default value, i.e., the user have to define these
values according to her research design.
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� K: numeric integer representing the number of points used to discretize the integral in
Equation 18.9 By default, K = 1000,

plus the two numeric arguments, a and b, representing a and b in the weight functions, by
default a = 0.0 and b = 1.0.10

In our case, in order to evaluate NLS and wCRPS for the first asset we can simply run:

R> DensityBacktest <- BacktestDensity(luGASRoll[[1]],

lower = -1.0, upper = 1.0)

R> DensityBacktest$average

LS uniform center tails tail_r tail_l

-2.387e+00 1.331e-02 5.307e-03 7.353e-06 6.654e-03 6.658e-03

where lower = -1.0 and upper = 1.0 works well for log–returns not in percentage points
as the one considered here.

Table 3 reports the test statistics for the Diebold and Mariano (1995) (DM) test between
the series of Negative Log Scores and weighed Continuous Ranked Probability Scores for
univariate GAS and GARCH models across the out–of–sample period. Negative values indi-
cate that GAS models generate more accurate predictions of the one–step ahead conditional
distribution while positive values favours GARCH. We found that, for almost all the series,
GAS outperforms GARCH at very high confidence levels according to both NLS and wCRPS.
Interestingly, our results suggest that GAS delivers more accurate results whatever part of
the conditional distribution the wCRPS emphasizes.

For the multivariate analysis we only consider the average Negative Log Score, NLS. In this
case, the DM test statistic is −0.34, which still favours the GAS model against the DCC
specification, however without being statistically different from zero (the associated p–value
is about 0.36). To further investigate this result, we report in Figure 1 the Cumulative sum
of the differences between the Log Scores (CLS) of GAS and DCC defined as:

CLS
GAS|DCC
T :T+l ≡

t=T+l−1∑
t=T

log p
(
yt+1; θ̂

GAS

t+1

)
− log p

(
yt+1; θ̂

DCC

t+1

)
, (19)

where p
(
yt+1; θ̂

GAS

t+1

)
and p

(
yt+1; θ̂

DCC

t+1

)
are the densities predicted from GAS and DCC

evaluated in yt+1, respectively. The series of Log Scores for the multivariate GAS models is
available in the output of the BacktestDensity() function, or can be extracted using the
LogScore method defined for mGASRoll objects:

R> LS_MGAS <- LogScore(mGASRoll)

Looking at Figure 1, periods when the plot line slopes upward represent periods in which
GAS outperforms DCC, while downward–sloping segments indicate periods when the DCC

9
Equals to I in Equation 16 of Gneiting and Ranjan (2012).

10
These values can be chosen in order to target some “optimal” prediction level, or to add more flexibility

and focus on specific part the predictive distribution; see Gneiting and Ranjan (2012).
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Asset LS uniform center tails tails–r tails–l

AA −2.12b −2.18b −2.18b −0.69 −2.26b −2.09b

AXP −3.06a −2.54a −2.54a −0.81 −2.59a −2.48a

BA −1.62c −2.06b −2.07b −0.39 −2.07b −2.06b

BAC −2.85a −1.05 −1.06 0.64 −0.94 −1.15
C −4.35a −2.83a −2.84a −0.28 −3.02a −2.63a

CAT −5.84a −5.96a −5.96a −2.86a −5.91a −6.00a

CVX 0.57 1.14 1.14 1.33c 1.13 1.14

DD −2.40a −1.86b −1.86b −1.57c −1.84b −1.89b

DIS −2.58a −2.30b −2.30b −1.19 −2.31b −2.28b

GE −3.82a −4.64a −4.64a −2.50a −4.69a −4.58a

GM 0.50 0.11 0.10 0.90 0.03 0.19
HD −3.84a −3.05a −3.05a −3.94a −3.07a −3.03a

HPQ −4.73a −4.90a −4.90a −3.84a −4.88a −4.92a

IBM −4.71a −4.67a −4.67a −3.28a −4.64a −4.69a

INTC −3.05a −1.72b −1.72b −1.23 −1.79b −1.64c

JNJ −3.95a −2.26b −2.26b −0.46 −2.19b −2.34a

JPM −2.21b −2.20b −2.20b −0.67 −2.14b −2.25b

AIG −0.38 0.89 0.89 0.64 0.68 1.02

KO −3.75a −3.72a −3.72a −2.02b −3.74a −3.69a

MCD −2.20b −1.94b −1.94b −1.15 −1.94b −1.93b

MMM −4.69a −5.24a −5.24a −2.97a −5.25a −5.24a

MRK −3.83a −4.90a −4.90a −3.63a −4.98a −4.81a

MSFT −3.95a −3.23a −3.23a −2.44a −3.26a −3.19a

PFE −5.02a −5.22a −5.22a −3.56a −5.27a −5.18a

PG −2.24b −2.13b −2.13b −2.21b −2.15b −2.11b

T −0.09 −0.01 −0.01 0.42 0.00 −0.03

UTX −1.80b −1.73b −1.73b −0.95 −1.78b −1.67b

VZ −2.58a −2.48a −2.48a −3.35a −2.47a −2.49a

WMT −2.74a −2.47a −2.47a −0.36 −2.52a −2.43a

XOM 0.03 0.33 0.33 1.27 0.35 0.30

Table 3: Test statistics for the Diebold and Mariano (1995) test between the series of nega-
tive Log Scores and weighed Continuous Ranked Probability Scores for univariate GAS and
GARCH models across the out–of–sample logarithmic returns of Dow Jones 30 constituents.
Negative values indicate that GAS models report more accurate predictions of the one–step
ahead conditional distribution while positive values favour GARCH. The apexes a, b and c
represents rejection of the null hypothesis of Equal Predictive Ability at the 1%, 5% and 10%
confidence levels, respectively. The out–of–sample period spans from January 27th, 1991, to
February 3rd, 2009 for a total of 3,000 observations.

forecast is more accurate. From this plot, we clearly understand the output of the DM test.
Interestingly, we found that GAS dominates DCC for the first part of the out–of–sample
period after the end of the early 2000’s dot–com bubble, while the converse holds for the last
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Figure 1: Cumulative out–of–sample Log Score difference between the multivariate Student–
t GAS and the DCC(1,1) model of Engle (2002) with multivariate Student–t distributed
errors. Periods when the plot line slopes upward represent periods in which GAS outperforms
GARCH, while downward–sloping segments indicate periods when the GARCH forecast is
more accurate. The blue shaded area represents periods of recession for US according to
the “USREC” series available from the Federal Reserve Bank of St. Louis web site: https:

//fred.stlouisfed.org/series/USREC.

part of the sample. This result suggests that possible model combinations between GAS and
DCC can improve the predictions for multivariate returns series. We left this as a further
research topic.

5. Conclusion

This article introduced the R package GAS for simulating, estimating and forecasting with
Generalized Autoregressive Score models in R. We briefly reviewed GAS models and the fast
growing literature that relies on this class of models in applied works. To our knowledge,
the R package GAS is the first complete framework for GAS models allowing practitioners in
many scientific areas to perform their applied research in an user–friendly environment.

We introduced the model specification in a general way and illustrated the package’s usage.
In particular, we performed and empirical application to financial data in which we compared
the performance of univariate and multivariate GAS and GARCH models.

Given the flexibility of GAS models and the availability of several statistical distributions in

https://fred.stlouisfed.org/series/USREC
https://fred.stlouisfed.org/series/USREC
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the GAS package, a number of different applications can be easily handled, such as: (i) the
analysis of integer valued time series using the Poisson GAS model (poi), (ii) the analysis
of (0,1)–bounded time series using the Beta GAS model (beta), (iii) the analysis of strictly
positive time series with an inverse location/scale dependence using the Gamma GAS model
(gamma). We are convinced that GAS models are relevant in many fields and hope that the R
package GAS will be fruitful for many researchers like econometricians or applied statisticians.

Finally, if you use R or GAS, please cite the software in publications.

Computational details

The results in this paper were obtained using R 3.2.3 (R Core Team 2016) with the packages:
GAS version 0.1.1 (Catania et al. 2016), MASS version 7.3-45 and (Venables and Ripley 2002;
Ripley 2015), Rcpp version 0.12.5 (Eddelbuettel and François 2011; Eddelbuettel et al. 2016a),
RcppArmadillo version 0.7.100.3.1 (Eddelbuettel and Sanderson 2014; Eddelbuettel et al.
2016b), Rsolnp version 1.15 (Ghalanos and Theussl 2016), xts version 0.9-7 (Ryan and Ulrich
2015) and quantmod version 0.4-5 (Ryan 2015). R itself and all packages used are available
from CRAN at http://CRAN.R-project.org/. The package GAS is available from the CRAN
repository at https://cran.r-project.org/package=GAS. The version under development
is available in GitHub at https://github.com/LeopoldoCatania/GAS. Computations were
performed on a Genuine Intel® quad core CPU i7–3630QM 2.40Ghz processor. Code outputs
were obtained using options(digits = 4, max.print = 40, prompt = "R> ")

The folder inst/doc inside the GAS package tarball contains additional technical documen-
tations. A step by step guide on how to add a new statistical distribution in the GAS package
is reported in the file AddNewDistribution.pdf.

Acknowledgments

The authors acknowledge Google for financial support via the Google Summer of Code 2016
project ”GAS”; see https://summerofcode.withgoogle.com/projects/#4717600793690112.
Any remaining errors or shortcomings are the authors’ responsibility.

References

Andres P (2014). “Maximum Likelihood Estimates for Positive Valued Dynamic Score Models:
The DySco Package.” Computational Statistics & Data Analysis, 76, 34–42. doi:10.1016/
j.csda.2013.11.004.

Blasques F, Koopman SJ, Lucas A (2014a). “Maximum Likelihood Estimation for Correctly
Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Condi-
tions and Asymptotic Properties.” techreport TI 14-074/III, Tinbergen Institute. URL
http://www.tinbergen.nl/discussionpaper/?paper=2332.

Blasques F, Koopman SJ, Lucas A (2014b). “Maximum Likelihood Estimation for Generalized
Autoregressive Score Models.” techreport TI 2014-029/III, Tinbergen Institute. URL http:

//www.tinbergen.nl/discussionpaper/?paper=2286.

http://CRAN.R-project.org/
https://cran.r-project.org/package=GAS
https://github.com/LeopoldoCatania/GAS
https://summerofcode.withgoogle.com/projects/#4717600793690112
http://dx.doi.org/10.1016/j.csda.2013.11.004
http://dx.doi.org/10.1016/j.csda.2013.11.004
http://www.tinbergen.nl/discussionpaper/?paper=2332
http://www.tinbergen.nl/discussionpaper/?paper=2286
http://www.tinbergen.nl/discussionpaper/?paper=2286


20 The R package GAS

Blasques F, Koopman SJ, Lucas A, Schaumburg J (2014c). “Spillover Dynamics for Systemic
Risk Measurement using Spatial Financial Time Series Models.” techreport TI 2014-103/III,
Tinbergen Institute. URL http://www.tinbergen.nl/discussionpaper/?paper=2369.

Blasques F, Koopman SJ, Lucas A, et al. (2014d). “Stationarity and Ergodicity of Univariate
Generalized Autoregressive Score Processes.” Electronic Journal of Statistics, 8(1), 1088–
1112. doi:doi:10.1214/14-EJS924.

Bollerslev T (1987). “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return.” The Review of Economics and Statistics, 69(3), 542–547.
doi:10.2307/1925546.

Box GE, Jenkins GM (1970). Time Series Analysis: Forecasting and Control. Holden–Day,
San Francisco.
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A. The GAS model with conditional Student–t distribution

Let’s consider the case when the distribution of the univariate random variable yt ∈ <,
conditionally on y1:t−1, is Student–t with location µt, scale φt and νt degrees of freedom, i.e.,
θt = (µt, φt, νt)

′ and:

p(yt;θt) ≡
Γ
(
νt+1
2

)
Γ
(νt
2

)
φt
√
πνt

(
1 +

(yt − µt)
2

νtφ
2
t

)− νt+1

2

. (20)

This model illustrates the benefits of the filter defined in (2) when the data are contaminated
by outliers or naturally exhibits extreme values and has been used by Creal et al. (2013) and
Lucas and Zhang (2016) under the name tGAS, and by Harvey (2013) and Harvey and Luati
(2014) under the name Beta–t–EGARCH.

Differentiating the logarithm of (20) with respect to θt leads to the score vector ∇t(yt,θt) =

(∇µt ,∇
φ
t ,∇

ν
t )′, with:

∇µt ≡
(νt + 1)(yt − µt)
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νtφt

) ,

(21)

where ψ(·) is the Digamma function. Without loss of generality, let us consider the case when
γ = 0 with no reparametrization, i.e., θt = θ̃t. The results when γ 6= 0 and a mapping
function Λ(·) for θt is introduced are qualitatively the same. Clearly, what controls for the
response to extreme observations in the conditional score ∇t(yt,θt) is the degree of freedom
parameter νt. Specifically, when νt is small, say νt = 3, the conditional distribution of yt has
high probability mass in the tails, which means that extreme observations, which would be
considered outliers by the Gaussian yardstick, are likely to be observed.

If we introduce the following mapping function for the unrestricted vector of parameter θ̃t =
(µ̃t, φ̃t, ν̃t)

′:

Λ(θ̃t) ≡


µt = µ̃t

φt = exp(φ̃t)

νt = exp(ν̃t) + c ,

(22)

with c = 2 in order to ensure the existence of Vt−1 [yt], then the GAS updating step for θt
when γ = 0 takes the form:

θt+1 = Λ(θ̃t+1) (23)

θ̃t+1 = κ + AJ (θ̃t)
′∇t(yt,θt) + Bθ̃t , (24)



24 The R package GAS

where κ ≡ (κµ, κφ, κν)′, A ≡ diag(aµ, aφ, aν) and B ≡ diag(bµ, bφ, bν). In this particular case,

the Jacobian matrix J (θ̃t) takes the form:

J (θ̃t) =

1 0 0

0 exp(φ̃t) 0
0 0 exp(ν̃t)

 . (25)

Constraints on the evolution of the GAS parameters can be easily considered fixing the values
of the A and B elements. For example, if the constraint νt = ν has to be imposed, we set
aν = bν = 0 during the (log-)likelihood maximization.

B. Mapping functions

Now we briefly discuss the choice of the mapping function Λ(·) for GAS models. We indicate
the i–th element of θt and θ̃t as θi,t and θ̃i,t, respectively. Analogously, we refer to the i–th

element of the vector–valued mapping function Λ(·) as λi(·), such that λi(θ̃i,t) = θi,t.

Generally, there are three types of constraints the time–series analyst wants to impose to θi,t,
namely:

1) θi,t > c, c ∈ <

2) θi,t ∈ (a, b), for a, b ∈ < and b > a

3) θi,t ∈ (a, b) |θt ∈ Θ for a, b ∈ < and b > a ,

the additional case when θi,t ∈ <, and thus θ̃i,t = θi,t, implicitly requires that λi : < → < is
the identity function.

The first case, θi,t > c,11 covers the situation where, for example, θi,t is a scale parameter and,
consequently, its positiveness has to be imposed (i.e., c = 0). In this case, λi : < → [c,∞),
and the exponential link function, defined as:

θi,t = exp(θ̃i,t) + c , (26)

can be employed. The second case, θi,t ∈ (a, b), covers the situation where, for example,
p (·;θt), is the Asymmetric Student–t Distribution of Zhu and Galbraith (2010), and θi,t is its
skew parameter defined in (0, 1). In the more general case we have λi : < → (a, b), and thus,
the modified logistic function:

θi,t = a+
b− a

1 + exp(−θ̃t)
, (27)

can be employed. The last case, θi,t ∈ (a, b) |θt ∈ Θ, is more complicated and covers the
situation where, for example, p (·;θt) is a multivariate Gaussian distribution and θi,t is one
element of its correlation matrix Rt. Clearly, in this case θi,t ∈ [−1, 1], with the equivalence
corresponding to the case N = 2. For the more general case N > 1, we need to ensure

11
The case θi,t < c follows immediately.
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that Rt is positive definite, i.e., x′Rtx > 0,∀x ∈ <N . Following Creal et al. (2011), we
employ the hyperspherical coordinates transformation originally proposed by Pinheiro and
Bates (1996) and subsequently discussed in Jaeckel and Rebonato (1999), Rapisarda et al.
(2007) and Pourahmadi and Wang (2015). We define the general (h, k)–th lower diagonal
element of Rt as ρhk,t = θi,t for h > k, h < N and ρ̃hk,t = θ̃i,t, for i = 1, . . . , N (N − 1) /2.
Pourahmadi and Wang (2015) show that:

ρhk,t = ch1,tck1,t +
h−1∑
m=2

chm,tckm,t

m−1∏
l=1

shl,tskl,t + chk,t

h−1∏
l=1

shl,tskl,1 1 ≤ h < k ≤ N , (28)

where chk,t ≡ cos
(
ρ̃hk,t

)
and shk,t ≡ sin

(
ρ̃hk,t

)
for all 1 ≤ h < k ≤ N ensure that Rt ≡

{ρij,t}
N
i,j=1 is a proper correlation matrix.

These three specifications for λi (·) cover all the cases considered in this article and in the R
package GAS. Additional information are reported in the R documentation; see help("UniMapParameters")
(help("MultiMapParameters")) and help("UniUnmapParameters") (help("MultiUnmapParameters")),
for details on Λ (·) and Λ−1 (·) in the univariate (multivariate) case, respectively.
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