
R Package FME : Inverse Modelling, Sensitivity,

Monte Carlo – Applied to a Dynamic Simulation

Model

Karline Soetaert
NIOZ Yerseke

The Netherlands

Abstract

Rpackage FME (Soetaert and Petzoldt 2010) contains functions for model calibration,
sensitivity, identifiability, and Monte Carlo analysis of nonlinear models.

This vignette (vignette("FMEdyna")) applies the functions to a dynamic simula-
tion model, solved with integration routines from package deSolve. A similar vignette,
(vignette("FMEsteady")), applies FME to a partial differential equation, solved with a
steady-state solver from package rootSolve. A third vignette (vignette("FMEother")),
applies the functions to a simple nonlinear model. vignette("FMEmcmc") tests the Markov
chain Monte Carlo (MCMC) implementation.

Keywords:˜dynamic simulation models, differential equations, fitting, sensitivity, Monte Carlo,
identifiability, R.

1. Introduction

R-package FME contains part of the functions present in the software environment FEMME

(Soetaert, deClippele, and Herman 2002), a F lexible Environment for M athematically M odel-
ling the Environment. FEMME was written in FORTRAN. FME is – obviously – written in
R.

Although FME can work with many types of functions, it is mainly meant to be used with
models that are written as (a system of) differential equations (ordinary or partial), which
are solved either with routines from package deSolve (Soetaert, Petzoldt, and Setzer 2010),
which integrate the model in time, or from package rootSolve (Soetaert 2009) which estimate
steady-state conditions. With FME it is possible to:

• perform local and global sensitivity analysis (Brun, Reichert, and Kunsch 2001; Soetaert
and Herman 2009),

• perform parameter identifiability analysis (Brun et˜al. 2001),

• fit a model to data,

• run a Markov chain Monte Carlo (MCMC, Haario, Laine, Mira, and Saksman 2006).

2 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

Most of these functions have suitable methods for printing, visualising output etc. In ad-
dition, there are functions to generate parameter combinations corresponding to a certain
distribution. In this document a – very quick – survey of the functionality is given, based on
a simple model from (Soetaert and Herman 2009).

2. The example model

The example model describes growth of bacteria (BACT) on a substrate (SUB) in a closed vessel.
The model equations are:

dBact

dt
= gmax · eff · Sub

Sub + ks
·Bact− d ·Bact− rB ·Bact

dSub

dt
= −gmax · Sub

Sub + ks
·Bact + d ·Bact

where the first, second and third term of the rate of change of Bact is growth of bacteria,
death and respiration respectively. In R, this model is implemented and solved as follows (see
help pages of deSolve). First the parameters are defined, as a list (a vector would also do)

> pars <- list(gmax = 0.5, eff = 0.5,

+ ks = 0.5, rB = 0.01, dB = 0.01)

The model function solveBact takes as input the parameters and the time sequence at which
output is wanted. Within this function, derivs is defined, which is the derivative function,
called at each time step by the solver. It takes as input the current time (t), the current
values of the state variables (state) and the parameters (pars). It returns the rate of change
of the state variables, packed as a list. Also within function solveBact, the state variables are
given an initial condition (state) and the model is solved by integration, using function ode

from package deSolve. The results of the integration are returned, packed as a data.frame.

> solveBact <- function(pars, times=seq(0,50,by=0.5)) {

+ derivs <- function(t, state, pars) { # returns rate of change

+ with(as.list(c(state, pars)), {

+

+ dBact <- gmax*eff*Sub/(Sub+ks)*Bact - dB*Bact - rB*Bact

+ dSub <- -gmax *Sub/(Sub+ks)*Bact + dB*Bact

+ return(list(c(dBact, dSub), TOC = Bact + Sub))

+ })

+ }

+ state <- c(Bact = 0.1, Sub = 100)

+ ## ode solves the model by integration...

+ return(ode(y = state, times = times, func = derivs, parms = pars))

+ }

The model is then solved by calling solveBact with the default parameters:

Karline Soetaert 3

0 10 20 30 40 50

0
20

40
60

80
10

0

time, hour

m
ol

 C
/m

3

Bacteria
Glucose
TOC

Figure 1: Solution of the simple bacterial growth model - see text for R-code

> out <- solveBact(pars)

and output plotted as:

> matplot(out[,1], out[,-1], type = "l", lty = 1:3, lwd = c(2, 2, 1),

+ col = "black", xlab = "time, hour", ylab = "mol C/m3")

> legend("topright", c("Bacteria", "Glucose", "TOC"),

+ lty = 1:3, lwd = c(2, 2, 1))

3. Global sensitivity

In global sensitivity analysis, certain parameters are changed over a large range, and the effect
on certain model ouput variables assessed. In FME this is done via function sensRange.

First the sensitivity parameters are defined and a distribution is assigned; here we specify the
minimum and maximum values of three parameters in a data.frame:

> parRanges <- data.frame(min = c(0.4, 0.4, 0.0), max = c(0.6, 0.6, 0.02))

> rownames(parRanges) <- c("gmax", "eff", "rB")

> parRanges

min max

gmax 0.4 0.60

eff 0.4 0.60

rB 0.0 0.02

Then we estimate the sensitivity to one parameter, rB (parameter 3), varying its values
according to a regular grid (dist=grid). The effect of that on sensitivitiy variables Bact and
Sub are estimated. To do this, the model is run 100 times (num=100). The system.time is
printed (in seconds):

4 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

> tout <- 0:50

> print(system.time(

+ sR <- sensRange(func = solveBact, parms = pars, dist = "grid",

+ sensvar = c("Bact", "Sub"), parRange = parRanges[3,], num = 50)

+))

user system elapsed

2.460 0.012 2.472

> head(summary(sR))

x Mean Sd Min Max q05 q25

Bact0 0.0 0.1000000 0.0000000000 0.1000000 0.1000000 0.1000000 0.1000000

Bact0.5 0.5 0.1121194 0.0003335405 0.1115597 0.1126809 0.1116155 0.1118390

Bact1 1.0 0.1257062 0.0007479668 0.1244532 0.1269674 0.1245777 0.1250770

Bact1.5 1.5 0.1409422 0.0012579439 0.1388384 0.1430668 0.1390468 0.1398836

Bact2 2.0 0.1580263 0.0018805072 0.1548863 0.1612075 0.1551964 0.1564430

Bact2.5 2.5 0.1771819 0.0026354918 0.1727886 0.1816476 0.1732211 0.1749620

q50 q75 q95

Bact0 0.1000000 0.1000000 0.1000000

Bact0.5 0.1121189 0.1123996 0.1126246

Bact1 0.1257040 0.1263341 0.1268405

Bact1.5 0.1409367 0.1419978 0.1428524

Bact2 0.1580153 0.1596034 0.1608854

Bact2.5 0.1771627 0.1793911 0.1811941

The results are represented as a data.frame, containing summary information of the value of
the sensitivity variable (var) at each time step (x). It is relatively simple to plot the ranges,
either as min±sd or using quantiles:

> summ.sR <- summary(sR)

> par(mfrow=c(2, 2))

> plot(summ.sR, xlab = "time, hour", ylab = "molC/m3",

+ legpos = "topright", mfrow = NULL)

> plot(summ.sR, xlab = "time, hour", ylab = "molC/m3", mfrow = NULL,

+ quant = TRUE, col = c("lightblue", "darkblue"), legpos = "topright")

> mtext(outer = TRUE, line = -1.5, side = 3, "Sensitivity to rB", cex = 1.25)

> par(mfrow = c(1, 1))

Sensitivity ranges can also be estimated for a combination of parameters. Here we use all 3
parameters, and select the latin hypercube sampling algorithm.

> Sens2 <- summary(sensRange(func = solveBact, parms = pars,

+ dist = "latin", sensvar = "Bact", parRange = parRanges, num = 100))

> plot(Sens2, main = "Sensitivity gmax,eff,rB", xlab = "time, hour",

+ ylab = "molC/m3")

Karline Soetaert 5

0 10 20 30 40 50

0
10

20
30

40
50

Bact

time, hour

m
ol

C
/m

3

0 10 20 30 40 50

0
20

40
60

80

Sub

time, hour

m
ol

C
/m

3

Min−Max
Mean+−sd

0 10 20 30 40 50

0
10

20
30

40
50

Bact

time, hour

m
ol

C
/m

3

0 10 20 30 40 50

0
20

40
60

80

Sub

time, hour

m
ol

C
/m

3

q05−q95
q25−q75

Sensitivity to rB

Figure 2: Sensitivity range for one parameter - see text for R-code

0 10 20 30 40 50

0
10

20
30

40
50

Sensitivity gmax,eff,rB

time, hour

m
ol

C
/m

3

Min−Max
Mean+−sd

Figure 3: Sensitivity range for a combination of parameters - see text for R-code

6 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

0 10 20 30 40 50

0
50

10
0

15
0

20
0

25
0

All variables

time

se
ns

iti
vi

ty

gmax
eff
ks
rB
dB

Figure 4: Sensitivity functions - see text for R-code

4. Local sensitivity

In local sensitivity, the effect of a parameter value in a very small region near its nominal
value is estimated. The methods implemented in FME are based on Brun et˜al. (2001) which
should be consulted for details. They are based on so-called “sensitivity functions”.

4.1. Sensitivity functions

Sensitivity functions are generated with sensFun, and estimate the effect of a selection of
parameters (here all parameters are selected) on a selection of variables (here only Bact).

> SnsBact<- sensFun(func = solveBact, parms = pars,

+ sensvar = "Bact", varscale = 1)

> head(SnsBact)

x var gmax eff ks rB dB

1 0.0 Bact 0.00000000 0.00000000 0.000000e+00 0.0000000000 0.0000000000

2 0.5 Bact 0.01394694 0.01394695 -7.024728e-05 -0.0005605677 -0.0005605676

3 1.0 Bact 0.03127202 0.03127206 -1.561543e-04 -0.0012570761 -0.0012570752

4 1.5 Bact 0.05259198 0.05259209 -2.623152e-04 -0.0021141409 -0.0021141387

5 2.0 Bact 0.07861772 0.07861795 -3.920489e-04 -0.0031603689 -0.0031603643

6 2.5 Bact 0.11017696 0.11017737 -5.494327e-04 -0.0044290424 -0.0044290341

They can easily be plotted (Fig. 3):

> plot(SnsBact)

4.2. Univariate sensitivity

Based on the sensitivity functions, several summaries are generated, which allow to rank the
parameters based on their influence on the selected variables.

Karline Soetaert 7

> summary(SnsBact)

value scale L1 L2 Mean Min Max N

gmax 0.50 0.50 29.51 5.859 16.2 -17.1 266.360 101

eff 0.50 0.50 37.12 6.212 37.1 0.0 268.408 101

ks 0.50 0.50 0.17 0.037 -0.1 -1.8 0.097 101

rB 0.01 0.01 3.47 0.463 -3.5 -10.8 0.000 101

dB 0.01 0.01 2.06 0.297 -2.1 -10.8 0.000 101

Here

• L1 is the L1-norm,
∑
|Sij |/n

• L2 is the L2-norm,
√∑

(S2
ij)/n

• Mean: the mean of the sensitivity functions

• Min: the minimal value of the sensitivity functions

• Max: the maximal value of the sensitivity functions

Sensitivity analysis can also be performed on several variables:

> summary(sensFun(solveBact, pars, varscale = 1), var = TRUE)

value scale L1 L2 Mean Min Max N var

gmax1 0.50 0.50 29.51 58.88 16.25 -1.7e+01 2.7e+02 101 Bact

gmax2 0.50 0.50 48.40 122.95 -48.40 -5.6e+02 0.0e+00 101 Sub

gmax3 0.50 0.50 32.16 65.66 -32.16 -3.0e+02 0.0e+00 101 TOC

eff1 0.50 0.50 37.12 62.43 37.12 0.0e+00 2.7e+02 101 Bact

eff2 0.50 0.50 39.64 102.50 -39.64 -4.8e+02 6.9e-06 101 Sub

eff3 0.50 0.50 30.39 48.31 -2.52 -2.1e+02 3.4e+01 101 TOC

ks1 0.50 0.50 0.17 0.37 -0.10 -1.8e+00 9.7e-02 101 Bact

ks2 0.50 0.50 0.29 0.77 0.29 0.0e+00 3.8e+00 101 Sub

ks3 0.50 0.50 0.19 0.41 0.19 0.0e+00 2.0e+00 101 TOC

rB1 0.01 0.01 3.47 4.65 -3.47 -1.1e+01 0.0e+00 101 Bact

rB2 0.01 0.01 1.59 4.12 1.59 -2.8e-07 1.9e+01 101 Sub

rB3 0.01 0.01 3.19 4.37 -1.87 -8.6e+00 8.3e+00 101 TOC

dB1 0.01 0.01 2.06 2.98 -2.06 -1.1e+01 0.0e+00 101 Bact

dB2 0.01 0.01 1.78 4.54 1.78 0.0e+00 2.1e+01 101 Sub

dB3 0.01 0.01 1.97 2.84 -0.29 -4.1e+00 1.0e+01 101 TOC

4.3. Bivariate sensitivity

The pairwise relationships in parameter sensitivity is easily assessed by plotting the sensitivity
functions using R-function pairs, and by calculating the correlation.

> cor(SnsBact[,-(1:2)])

8 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

gmax

0 100 200

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●
●●

●●
●

●
●

●
●

●
●

●

●

●

●

●●

−10 −6 −2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●●

0
10

0
20

0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●●

0
10

0
20

0

0.92 eff

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●●

−0.99 −0.93 ks

●●●
●

●
●

●
●

●

●

●

●

●

●●

−
1.

5
−

0.
5

●●●
●

●
●

●
●

●

●

●

●

●

●●

−
10

−
6

−
2

−0.26 −0.56 0.29 rB

●●
●

●
●

●
●

●
●

●

●

●

●

●●

0 100 200

−0.72 −0.89

−1.5 −0.5

0.73 0.86

−10 −6 −2

−
10

−
6

−
2

dB

Figure 5: Pairs of sensitivity functions - see text for R-code

gmax eff ks rB dB

gmax 1.0000000 0.9184218 -0.9879345 -0.2602264 -0.7165957

eff 0.9184218 1.0000000 -0.9265083 -0.5575108 -0.8883637

ks -0.9879345 -0.9265083 1.0000000 0.2878314 0.7302562

rB -0.2602264 -0.5575108 0.2878314 1.0000000 0.8599353

dB -0.7165957 -0.8883637 0.7302562 0.8599353 1.0000000

> pairs(SnsBact)

4.4. Monte Carlo runs

Function modCRL runs a Monte Carlo simulation, outputting single variables.

This is in contrast to sensRange which outputs vectors of variables, e.g. a time-sequence, or
a spatially-dependent variable.

It can be used to test what-if scenarios. Here it is used to calculate the final concentration of
bacteria and substrate as a function of the maximal growth rate.

Karline Soetaert 9

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0.40 0.50 0.60

32
33

34
35

36

Bact

gmax

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0.40 0.50 0.60

0.
00

9
0.

01
0

0.
01

1
0.

01
2

Sub

gmax

Figure 6: Monte carlo analysis - see text for R-code

> SF <- function (pars) {

+ out <- solveBact(pars)

+ return(out[nrow(out), 2:3])

+ }

> CRL <- modCRL(func = SF, parms = pars, parRange = parRanges[1,])

> plot(CRL)

Monte Carlo methods can also be used to see how parameter uncertainties propagate, i.e. to
derive the distribution of output variables as a function of parameter distribution.

Here the effect of the parameters gmax and eff on final bacterial concentration is assessed. The
parameter values are generated according to a multi-normal distribution; they are positively
correlated (with a correlation = 0.63).

> CRL2 <- modCRL(func = SF, parms = pars, parMean = c(gmax = 0.5, eff = 0.7),

+ parCovar = matrix(nr = 2, data = c(0.02, 0.02, 0.02, 0.05)),

+ dist = "norm", sensvar = "Bact", num = 150)

10 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

gmax

0.2 0.4 0.6 0.8 1.0 1.2

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0.
2

0.
4

0.
6

0.
8

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.69

eff

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

0.2 0.4 0.6 0.8

0.64 0.96

0 20 40 60 80

0
20

40
60

80Bact

Figure 7: Multivariate Monte Carlo analysis - see text for R-code

> pairs(CRL2)

5. Multivariate sensitivity analysis

Based on the sensitivity functions of model variables to selection of parameters, function
collin calculates the collinearity or identifiability of sets of parameters.

> Coll <- collin(SnsBact)

> Coll

gmax eff ks rB dB N collinearity

1 1 1 0 0 0 2 2.8

2 1 0 1 0 0 2 9.5

3 1 0 0 1 0 2 1.3

4 1 0 0 0 1 2 1.8

Karline Soetaert 11

5 0 1 1 0 0 2 2.9

6 0 1 0 1 0 2 2.0

7 0 1 0 0 1 2 3.7

8 0 0 1 1 0 2 1.3

9 0 0 1 0 1 2 1.8

10 0 0 0 1 1 2 3.8

11 1 1 1 0 0 3 9.5

12 1 1 0 1 0 3 7.0

13 1 1 0 0 1 3 6.8

14 1 0 1 1 0 3 9.5

15 1 0 1 0 1 3 9.5

16 1 0 0 1 1 3 2261.4

17 0 1 1 1 0 3 6.7

18 0 1 1 0 1 3 6.8

19 0 1 0 1 1 3 12.2

20 0 0 1 1 1 3 22.6

21 1 1 1 1 0 4 9.6

22 1 1 1 0 1 4 9.5

23 1 1 0 1 1 4 3631.3

24 1 0 1 1 1 4 3451.0

25 0 1 1 1 1 4 23.5

26 1 1 1 1 1 5 2395663.9

> Coll [Coll[,"collinearity"] < 20 & Coll[,"N"] == 4,]

gmax eff ks rB dB N collinearity

1 1 1 1 1 0 4 9.6

2 1 1 1 0 1 4 9.5

> collin(SnsBact, parset = 1:5)

gmax eff ks rB dB N collinearity

1 1 1 1 1 1 5 2395664

The higher the value, the larger the (approximate) linear dependence. This function is mainly
useful to derive suitable parameter sets that can be calibrated based on data (see next section).

6. Fitting the model to data

6.1. Data structures

There are two modes of data input:

• data table (long) format ; this is a two to four column data.frame that contains the
name of the observed variable (always the FIRST column), the (optional) value of

the independent variable (default = ”time”), the value of the observation and
the (optional) value of the error.

12 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

• crosstable format ; this is a matrix, where each column denotes one dependent (or inde-
pendent) variable; the column name is the name of the observed variable.

As an example of both formats consider the data, called Dat consisting of two observed
variables, called ”Obs1” and ”Obs2”, both containing two observations, at time 1 and 2:

name time val err

Obs1 1 50 5
Obs1 2 150 15
Obs2 1 1 0.1
Obs2 2 2 0.2

for the long format and

time Obs1 Obs2

1 50 1
2 150 2

for the crosstable format. Note, that in the latter case it is not possible to provide separate
errors per data point.

6.2. The model cost function

FME function modCost estimates the “model cost”, which the sum of (weighted) squared
residuals of the model versus the data. This function is central to parameter identifiability
analysis, model fitting or running a Markov chain Monte Carlo.

Assume the following model output (in a matrix or data.frame called Mod:

time Obs1 Obs2

0 4 1
1 4 2
2 4 3
3 4 4

Then the modCost will give:

> Dat<- data.frame(name = c("Obs1", "Obs1", "Obs2", "Obs2"),

+ time = c(1, 2, 1, 2), val = c(50, 150, 1, 2),

+ err = c(5, 15, 0.1, 0.2))

> Mod <- data.frame(time = 0:3, Obs1 = rep(4, 4), Obs2 = 1:4)

> modCost(mod = Mod, obs = Dat, y = "val")

$model

[1] 23434

$minlogp

Karline Soetaert 13

[1] Inf

$var

name scale N SSR.unweighted SSR.unscaled SSR

1 Obs1 1 2 23432 23432 23432

2 Obs2 1 2 2 2 2

$residuals

name x obs mod weight res.unweighted res

1 Obs1 1 50 4 1 -46 -46

2 Obs1 2 150 4 1 -146 -146

3 Obs2 1 1 2 1 1 1

4 Obs2 2 2 3 1 1 1

attr(,"class")

[1] "modCost"

in case the residuals are not weighed and

> modCost(mod = Mod, obs = Dat, y = "val", err = "err")

$model

[1] 304.3778

$minlogp

[1] 156.2701

$var

name scale N SSR.unweighted SSR.unscaled SSR

1 Obs1 1 2 23432 179.3778 179.3778

2 Obs2 1 2 2 125.0000 125.0000

$residuals

name x obs mod weight res.unweighted res

1 Obs1 1 50 4 0.20000000 -46 -9.200000

2 Obs1 2 150 4 0.06666667 -146 -9.733333

3 Obs2 1 1 2 10.00000000 1 10.000000

4 Obs2 2 2 3 5.00000000 1 5.000000

attr(,"class")

[1] "modCost"

in case the residuals are weighed by 1/error.

6.3. Model fitting

Assume the following data set (in crosstable (wide) format):

14 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

> Data <- matrix (nc=2,byrow=2,data=

+ c(2, 0.14, 4, 0.21, 6, 0.31, 8, 0.40,

+ 10, 0.69, 12, 0.97, 14, 1.42, 16, 2.0,

+ 18, 3.0, 20, 4.5, 22, 6.5, 24, 9.5,

+ 26, 13.5, 28, 20.5, 30, 29 , 35, 65, 40, 61)

+)

> colnames(Data) <- c("time", "Bact")

> head(Data)

time Bact

[1,] 2 0.14

[2,] 4 0.21

[3,] 6 0.31

[4,] 8 0.40

[5,] 10 0.69

[6,] 12 0.97

and assume that we want to fit the model parameters gmax and eff to these data.

We first define an objective function that returns the residuals of the model versus the data,
as estimated by modcost. Input to the function are the current values of the parameters that
need to be finetuned and their names (or position in par).

> Objective <- function(x, parset = names(x)) {

+ pars[parset] <- x

+ tout <- seq(0, 50, by = 0.5)

+ ## output times

+ out <- solveBact(pars, tout)

+ ## Model cost

+ return(modCost(obs = Data, model = out))

+ }

First it is instructive to establish which parameters can be identified based on the data set.
We assess that by means of the identifiability function collin, selecting only the output
variables at the instances when there is an observation.

> Coll <- collin(sF <- sensFun(func = Objective, parms = pars, varscale = 1))

> Coll

gmax eff ks rB dB N collinearity

1 1 1 0 0 0 2 4.5

2 1 0 1 0 0 2 21.1

3 1 0 0 1 0 2 2.1

4 1 0 0 0 1 2 3.7

5 0 1 1 0 0 2 4.5

6 0 1 0 1 0 2 3.3

7 0 1 0 0 1 2 9.2

Karline Soetaert 15

2 3 4 5

1e
+

01
1e

+
03

1e
+

05
1e

+
07

Collinearity

Number of parameters

C
ol

lin
ea

rit
y

in
de

x

Figure 8: Collinearity analysis - see text for R-code

8 0 0 1 1 0 2 2.1

9 0 0 1 0 1 2 3.7

10 0 0 0 1 1 2 4.5

11 1 1 1 0 0 3 21.1

12 1 1 0 1 0 3 10.2

13 1 1 0 0 1 3 10.5

14 1 0 1 1 0 3 21.1

15 1 0 1 0 1 3 21.1

16 1 0 0 1 1 3 3442.5

17 0 1 1 1 0 3 9.9

18 0 1 1 0 1 3 10.5

19 0 1 0 1 1 3 13.8

20 0 0 1 1 1 3 39.2

21 1 1 1 1 0 4 21.3

22 1 1 1 0 1 4 21.1

23 1 1 0 1 1 4 6465.9

24 1 0 1 1 1 4 4198.4

25 0 1 1 1 1 4 40.1

26 1 1 1 1 1 5 19330846.9

The larger the collinearity value, the less identifiable the parameter based on the data. In
general a collinearity value less than about 20 is ”identifiable”. Below we plot the collinarity
as a function of the number of parameters selected. We add a line at the height of 20, the
critical value:

> plot(Coll, log = "y")

> abline(h = 20, col = "red")

The collinearity index for parameters gmax and eff is small enough to enable estimating both
parameters.

16 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

> collin(sF,parset=1:2)

gmax eff ks rB dB N collinearity

1 1 1 0 0 0 2 4.5

We now use function modFit to locate the minimum. It includes several fitting procedures;
the default one is the Levenberg-Marquardt algorithm.

In the following example, parameters are constrained to be > 0

> print(system.time(Fit <- modFit(p = c(gmax = 0.5, eff = 0.5),

+ f = Objective, lower = c(0.0, 0.0))))

user system elapsed

1.456 0.000 1.455

> summary(Fit)

Parameters:

Estimate Std. Error t value Pr(>|t|)

gmax 0.3003277 0.0004744 633.1 <2e-16 ***

eff 0.7006292 0.0010819 647.6 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1531 on 15 degrees of freedom

Parameter correlation:

gmax eff

gmax 1.0000 -0.9151

eff -0.9151 1.0000

The model is run with the original and the best-fit parameters, the model cost function
estimated and the model outcome compared to data.

> init <- solveBact(pars)

> pars[c("gmax", "eff")] <- Fit$par

> out <- solveBact(pars)

> Cost <- modCost(obs = Data, model = out)

> Cost

$model

[1] 0.3514637

$minlogp

[1] 15.79769

Karline Soetaert 17

$var

name scale N SSR.unweighted SSR.unscaled SSR

1 Bact 1 17 0.3514637 0.3514637 0.3514637

$residuals

name x obs mod weight res.unweighted res

1 Bact 2 0.14 0.1460459 1 0.0060458808 0.0060458808

2 Bact 4 0.21 0.2132921 1 0.0032921294 0.0032921294

3 Bact 6 0.31 0.3115005 1 0.0015004787 0.0015004787

4 Bact 8 0.40 0.4549261 1 0.0549260940 0.0549260940

5 Bact 10 0.69 0.6643861 1 -0.0256139222 -0.0256139222

6 Bact 12 0.97 0.9702790 1 0.0002789821 0.0002789821

7 Bact 14 1.42 1.4169922 1 -0.0030078355 -0.0030078355

8 Bact 16 2.00 2.0693334 1 0.0693333545 0.0693333545

9 Bact 18 3.00 3.0219120 1 0.0219119828 0.0219119828

10 Bact 20 4.50 4.4128138 1 -0.0871862027 -0.0871862027

11 Bact 22 6.50 6.4435103 1 -0.0564896586 -0.0564896586

12 Bact 24 9.50 9.4077850 1 -0.0922149567 -0.0922149567

13 Bact 26 13.50 13.7335831 1 0.2335831440 0.2335831440

14 Bact 28 20.50 20.0429738 1 -0.4570261992 -0.4570261992

15 Bact 30 29.00 29.2356341 1 0.2356341099 0.2356341099

16 Bact 35 65.00 65.0449092 1 0.0449092090 0.0449092090

17 Bact 40 61.00 60.9533704 1 -0.0466295997 -0.0466295997

attr(,"class")

[1] "modCost"

> plot(out, init, xlab = "time, hour", ylab = "molC/m3", lwd = 2,

+ obs = Data, obspar = list(cex = 2, pch = 18))

> legend ("bottomright", lwd = 2, col = 1:2, lty = 1:2, c("fitted", "original"))

Finally, model residuals are plotted:

> plot(Cost, xlab = "time", ylab = "", main = "residuals")

7. Markov chain Monte Carlo

We can use the results of the fit to run a MCMC (Gelman, Varlin, Stern, and Rubin 2004).
Function modMCMC implements the delayed rejection (DR) adaptive Metropolis (AM) algorithm
(Haario et˜al. 2006).

The summary method of the best fit returns several useful values:

• The model variance modVariance is used as the initial model error variance (var0) in
the MCMC. In each MCMC step, 1/model variance is drawn from a gamma function
with parameters rate and shape, calculated as: shape = 0.5*N * (1 + pvar0), and

18 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

0 10 20 30 40 50

0
10

20
30

40
50

60

Bact

time, hour

m
ol

C
/m

3

fitted
original

Figure 9: Fitting the model to data - see text for R-code

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

10 20 30 40

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

residuals

time

● Bact

Figure 10: Model-data residuals - see text for R-code

Karline Soetaert 19

rate = 0.5 * (pvar0*N*var0 + SS)) and where SS is the current sum of squared
residals, N is the number of data points and pVar0 is a weighing parameter, argument
of function modMCMC.

• The best-fit parameters are used as initial parameter values for the MCMC (p).

• The parameter covariance returned by the summary method, scaled with 2.42/length(p),
gives a suitable covariance matrix, for generating new parameter values (jump).

> SF<-summary(Fit)

> SF

Parameters:

Estimate Std. Error t value Pr(>|t|)

gmax 0.3003277 0.0004744 633.1 <2e-16 ***

eff 0.7006292 0.0010819 647.6 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1531 on 15 degrees of freedom

Parameter correlation:

gmax eff

gmax 1.0000 -0.9151

eff -0.9151 1.0000

> SF[]

$residuals

Bact Bact Bact Bact Bact

0.0060458808 0.0032921294 0.0015004787 0.0549260940 -0.0256139222

Bact Bact Bact Bact Bact

0.0002789821 -0.0030078355 0.0693333545 0.0219119828 -0.0871862027

Bact Bact Bact Bact Bact

-0.0564896586 -0.0922149567 0.2335831440 -0.4570261992 0.2356341099

Bact Bact

0.0449092090 -0.0466295997

$residualVariance

[1] 0.02343091

$sigma

[1] 0.1530716

$modVariance

[1] 0.02067434

20 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

$df

[1] 2 15

$cov.unscaled

gmax eff

gmax 9.604612e-06 -2.004621e-05

eff -2.004621e-05 4.995866e-05

$cov.scaled

gmax eff

gmax 2.250448e-07 -4.697011e-07

eff -4.697011e-07 1.170577e-06

$info

[1] 1

$niter

[1] 7

$stopmess

[1] "ok"

$par

Estimate Std. Error t value Pr(>|t|)

gmax 0.3003277 0.0004743889 633.0833 1.274438e-34

eff 0.7006292 0.0010819321 647.5722 9.076393e-35

> Var0 <- SF$modVariance

> covIni <- SF$cov.scaled *2.4^2/2

> MCMC <- modMCMC(p = coef(Fit), f = Objective, jump = covIni,

+ var0 = Var0, wvar0 = 1)

number of accepted runs: 336 out of 1000 (33.6%)

The plot method shows the trace of the parameters and, in Full is TRUE, also the model
function.

> plot(MCMC, Full = TRUE)

The pairs method plots both parameters as a function of one another:

> pairs(MCMC)

The MCMC output can be used in the functions from the coda package:

> MC <- as.mcmc(MCMC$pars)

Karline Soetaert 21

0 200 400 600 800
0.

29
90

0.
30

05

gmax

iter

0 200 400 600 800

0.
69

8
0.

70
1

0.
70

4

eff

iter

0 200 400 600 800

0.
35

0.
45

0.
55

SSR

iter

0 200 400 600 800
0.

01
0

0.
02

0
0.

03
5

var_model

iter

va
ria

nc
e

Figure 11: MCMC parameter values per iteration - see text for R-code

gmax

0.698 0.700 0.702 0.704

0.
29

90
0.

30
00

0.
30

10

●●●

●

●

●●●●

●●●●●

●

●●●

● ●

●

●●●●

●●●

●●●

●●●

●●●●

●

●●●●

●

●

●

●

●●●

●

●●●●
●●●●●●

●●●
●●●●●●●●●●

●●

●

●

●●●●

●●●●

●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●●

●●●●●●

●●●●●●
●

●●●●●●●●
●●●●●●●●

●●

●●●●

●●●

●●●●●●

●●●●●●●

●

●●●
●

●●●●

●

●●

●

●●●●

●

●●

●

●

●●●

●

●●●●●●

●

●● ●●●●

●●●●

●●●

●●
●●●●

●

●

● ●●●●●●●●●

●●●●

●●●●

●●●●
●●●●

●●●●●
●●●●●●●

●

●●●●●●

●●

●●

●

●

●

●●
●

●●

●

●●●

●●●●●
●

●●

●●●●●
●●●●●●

●●●●

●●●●●●

●●●

●●●

●●●●●

●●

●●●

●●

●●●●●

●●

●●

●●●

●●

●●●●●

●●●

●●●

●

●

●

●

●●●
●

●●●

●●
●●●

●●●

●●●

●●

●●●●●

●●

●●●●

●

●

●●●●●●●●

●●●●●

●●●●●

●●●●●●●●● ●●
●●●

●●●

●●

●●

●

●●

●
●●●●●

●●●●●●●●●

●●●

●

●●●●● ●●●●

●●●

●
●

●●●

●

●●

●

●●●●●●●

●●●●●

●●
●●●●

●●●●●●

●

●

●

●●

●●●●●●

●

●●●●●●●●●●●

●●●●●

●●●●●●●●

●●

●●●●

●●●●●

●●●●●

●●●●●

●

●●

●
●

●● ●

●

●● ●

●

●●●●

●

●●●●●●●●●

●●●●●●

●●●●

●●●●●●●

●

●

●●●●●●●●

●●●

●●●
●●●●●●●●●

●

●

●●●●●●

●●●

●●●●●
●● ●●●●●●●●●●●●●●

●●

●●

●●

●

●●●●●

●

●

●●●

●●

●●●

●

●●● ●●●

●●●

●●

●

●●●●●●●
●

●●●●●●●●●
●●

●

●●●●
●●●

●●●●

●●●●●●●●●●

●●●●●●●●

●●●

●●●●

●●●●

●●●●●●●●

●●●

●●

●
●●●●●

●●●

●

●●

●●

●●●●●

●●●

●

●

●●●

●●●●●

●●

●●●●
●●●●●●●●●●

●●

●●

●●●●

●●●●●●

●●●

●●●

●

●

●

●●●●

●

●●●

●●

●●

●

●●

●●●

●

●●●●●
●

●●

●●●●

●●●●

●●●●●●●●●

●●●●

●

●●●

●●

●●●●●

●

●●●●

●●

●

●●●

●●●●●●

●●●●

●●●

●●●●●●

●●●

●●

●●●

●●●●

●●

●●●●●●

●

●●

●●●

●

●●
●●●●

●●

●●●●●

●●

●●●●

●

●

●●

●●

●●●●

●

●

●●

●●●●

●

●●●●●●●

0.2990 0.3000 0.3010

0.
69

8
0.

70
0

0.
70

2
0.

70
4

−0.91

eff

Figure 12: Pairs plot of MCMC results. See text for R-code

22 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

0 200 600 1000

0.
29

95
0.

30
00

0.
30

05
0.

30
10

0.
30

15

Iterations

gmax

0 200 600 1000

0.
69

8
0.

69
9

0.
70

0
0.

70
1

0.
70

2
0.

70
3

Iterations

eff

Figure 13: cumulative quantile plot from the MCMC run as from package coda - see text for
R-code

> cumuplot(MC)

Finally, we compare the covariances based on generated parameters with the ones from the
fit:

> cov(MCMC$pars)

gmax eff

gmax 2.020770e-07 -4.398393e-07

eff -4.398393e-07 1.145932e-06

> covIni

gmax eff

gmax 6.481291e-07 -1.352739e-06

eff -1.352739e-06 3.371262e-06

8. Distributions

Parameter values can be generated according to 4 different distributions:

Grid, Uniform, Normal, Latinhyper:

> par(mfrow = c(2, 2))

> Minmax <- data.frame(min = c(1, 2), max = c(2, 3))

> rownames(Minmax) <- c("par1", "par2")

> Mean <- c(par1 = 1.5, par2 = 2.5)

> Covar <- matrix(nr = 2, data = c(2, 2, 2, 3))

Karline Soetaert 23

● ●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.2 1.4 1.6 1.8 2.0

2.
0

2.
4

2.
8

Unif

par1

pa
r2

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

1.0 1.2 1.4 1.6 1.8 2.0

2.
0

2.
4

2.
8

Grid

par1

pa
r2

●

●

●

●

●

1.0 1.2 1.4 1.6 1.8 2.0

2.
0

2.
4

2.
8

Latin hypercube

par1

pa
r2

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●● ●●●

●

●

●
●

●

●●

● ●●

●●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

● ●
●

●●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

● ●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

● ●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●
●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●● ●

●

●
● ●

●
●

●

●

●●●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●● ●

●●

●

●

●
●

●●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●●

●
●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

● ●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●●●

●

●

●

●

● ●

−2 0 2 4

−
2

0
2

4
6

multi normal

par1

pa
r2

Figure 14: distributions

> plot(Unif(Minmax, 100), main = "Unif", xlim = c(1, 2), ylim = c(2, 3))

> plot(Grid(Minmax, 100), main = "Grid", xlim = c(1, 2), ylim = c(2, 3))

> plot(Latinhyper(Minmax, 5), main = "Latin hypercube", xlim = c(1, 2),

+ ylim = c(2, 3))

> grid()

> plot(Norm(parMean = Mean, parCovar = Covar, num = 1000),

+ main = "multi normal")

9. Examples

Several examples are present in subdirectory examples of the package. They include, a.o.:

• BODO2_FME.R, a 1-D model of oxygen dynamics in a river. This model consists of two
coupled partial differential equations, which are solved to steady-state.

24 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

• ccl4model_FME.R. Here the functions are applied to ”ccl4model”, one of the models
included in package deSolve . This is a model that has been written in FORTRAN.

• Omexdia_FME.R. Here the functions are applied to a model implemented in simecol,
an object-oriented framework for ecological modeling (Petzoldt and Rinke 2007), more
specifically in package simecolModels (Petzoldt and Soetaert 2008). The omexdia model
is a 1-D diagenetic model.

• O2profile_FME.R. This contains a simple model of oxygen, diffusing along a spatial
gradient, with imposed upper and lower boundary concentration

10. Finally

This vignette is made with Sweave (Leisch 2002).

Karline Soetaert 25

Table 1: Summary of the functions in package FME
Function Description

sensFun Sensitivity functions

sensRange Sensitivity ranges

modCost Estimates cost functions

modFit Fits a model to data

modMCMC Runs a Markov chain Monte Carlo

collin Estimates collinearity based on sensitivity functions

Grid, Norm,
Unif, Latinhyper Generates parameter sets based on grid, normal, uniform or latin

hypercube design

Table 2: Summary of the methods in package FME
Method Function Description

summary modFit Summary statistics, including parameter std deviations, sig-
nificance, parameter correlation

deviance modFit Model deviance (sum of squared residuals)

coef modFit Values of fitted parameters

residuals modFit Residuals of model and data

df.residual modFit Degrees of freedom

plot modFit Plots results of the fitting

print.summary modFit Printout of model summary

plot modCost Plots model-data residuals

summary modMCMC Summary statistics of sampled parameters

plot modMCMC Plots all sampled parameters

pairs modMCMC Pairwise plots all sampled parameters

hist modMCMC Histogram of all sampled parameters

summary modCRL Summary statistics of monte carlo variables

plot modCRL Plots Monte Carlo variables

pairs modCRL Pairwise plots of Monte Carlo variables

hist modCRL Histogram of Monte Carlo variables

summary sensFun Summary statistics of sensitivity functions

plot sensFun Plots sensitivity functions

pairs sensFun Pairwise plots of sensitivity functions

print.summary sensFun Prints summary of sensitivity functions

plot.summary sensFun Plots summary of sensitivity functions

summary sensRange Summary statistics of sensitivity range

plot sensRange Plots sensitivity ranges

plot.summary sensRange Plots summary of sensitivity ranges

print collin Prints collinearity results

plot collin Plots collinearity results

26 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Dynamic Model

References

Brun R, Reichert P, Kunsch H (2001). “Practical Identifiability Analysis of Large Environ-
mental Simulation Models.” Water Resources Research, 37(4), 1015–1030.

Gelman A, Varlin JB, Stern HS, Rubin DB (2004). Bayesian Data Analysis. 2nd edition.
Chapman & Hall/CRC, Boca Raton.

Haario H, Laine M, Mira A, Saksman E (2006). “DRAM: Efficient Adaptive MCMC.” Statis-
tics and Computing, 16, 339–354.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.”
In W˜Härdle, B˜Rönz (eds.), COMPSTAT 2002 – Proceedings in Computational Statistics,
pp. 575–580. Physica-Verlag, Heidelberg.

Petzoldt T, Rinke K (2007). “simecol: An Object-Oriented Framework for Ecological Modeling
in R.” Journal of Statistical Software, 22(9), 1–31. URL http://www.jstatsoft.org/v22/

i09/.

Petzoldt T, Soetaert K (2008). simecolModels: Model Collection for the simecol Package.
R package version 0.3, URL http://www.simecol.de/.

Soetaert K (2009). rootSolve: Nonlinear Root Finding, Equilibrium and Steady-State
Analysis of Ordinary Differential Equations. R package version 1.6, URL http://CRAN.

R-project.org/package=rootSolve.

Soetaert K, deClippele V, Herman PMJ (2002). “FEMME, A Flexible Environment for Math-
ematically Modelling the Environment.” Ecological Modelling, 151, 177–193.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer-Verlag, New York.

Soetaert K, Petzoldt T (2010). “Inverse Modelling, Sensitivity and Monte Carlo Analysis in
R Using Package FME.” Journal of Statistical Software, 33(3), 1–28. URL http://www.

jstatsoft.org/v33/i03/.

Soetaert K, Petzoldt T, Setzer RW (2010). deSolve: General Solvers for Initial Value Prob-
lems of Ordinary Differential Equations (ODE), Partial Differential Equations (PDE), Dif-
ferential Algebraic Equations (DAE), and Delay Differential Equations (DDE). R package
version 1.7, URL http://CRAN.R-project.org/package=deSolve.

Affiliation:

Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl
URL: http://www.nioz.nl

http://www.jstatsoft.org/v22/i09/
http://www.jstatsoft.org/v22/i09/
http://www.simecol.de/
http://CRAN.R-project.org/package=rootSolve
http://CRAN.R-project.org/package=rootSolve
http://www.jstatsoft.org/v33/i03/
http://www.jstatsoft.org/v33/i03/
http://CRAN.R-project.org/package=deSolve
mailto:karline.soetaert@nioz.nl
http://www.nioz.nl

	Introduction
	The example model
	Global sensitivity
	Local sensitivity
	Sensitivity functions
	Univariate sensitivity
	Bivariate sensitivity
	Monte Carlo runs

	Multivariate sensitivity analysis
	Fitting the model to data
	Data structures
	The model cost function
	Model fitting

	Markov chain Monte Carlo
	Distributions
	Examples
	Finally

