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Abstract

This article introduces the R package ExtremeBounds to perform extreme bounds
analysis (EBA), a sensitivity test that examines how robustly the dependent variable of
a regression model is related to a variety of possible determinants. ExtremeBounds sup-
ports Leamer’s EBA that focuses on the upper and lower extreme bounds of regression
coefficients, as well as Sala-i-Martin’s EBA which considers their entire distribution. In
contrast to existing alternatives, it can estimate models of any size, use regression models
other than Ordinary Least Squares, incorporate non-linearities in the model specification,
and apply custom weights and standard errors. To alleviate concerns about the multi-
collinearity and conceptual overlap of examined variables, ExtremeBounds allows users
to specify sets of mutually exclusive variables, and can restrict the analysis to coefficients
from regression models that yield a variance inflation factor (VIF) within a pre-specified
limit.
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1. Introduction

In this article, I introduce the R package ExtremeBounds to perform extreme bounds analysis
(EBA), a sensitivity test that examines how robustly the dependent variable of a regression
model is associated with a variety of possible determinants. EBA sifts through a large number
of model specifications to answer the following questions:

� Which determinants are robustly associated with the dependent variable across a large
number of possible regression models?

� Is a particular determinant robustly associated with the dependent variable?

Extreme bounds analysis has been used to examine a plethora of questions of interest to social
scientists. Economists have used it to examine the determinants of long-term economic growth
(Sala-i-Martin 1997; Levine and Renelt 1992; Sturm and de Haan 2005), regional growth rates
(Reed 2009), foreign direct investment (Moosa and Cardak 2006), as well as investment in
research and development (Wang 2010). Political scientists have analyzed democratization
(Gassebner, Lamla, and Vreeland 2013), political repression (Hafner-Burton 2005) and lending
decisions by the International Monetary Fund (Moser and Sturm 2011). Other examples of
EBA in the social scientific literature include an examination of the relationship between wage
inequality and crime rates (Fowles and Merva 1996), of the effects of concealed weapons laws
in the United States (Bartley and Cohen 1998), and even of the determinants of Olympic
medal counts (Moosa and Smith 2004).
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The R package ExtremeBounds supports a demanding version of EBA, proposed by Leamer
(1985), that focuses on the upper and lower extreme bounds of regression estimates, as well
as a more flexible version by Sala-i-Martin (1997). Sala-i-Martin’s EBA considers the entire
distribution of regression coefficients. For Sala-i-Martin’s version of extreme bounds analysis,
ExtremeBounds estimates the normal model in which regression coefficients are assumed to
be normally distributed across models, as well as the generic model which makes no such
assumption.

Despite the relative ease with which EBA can be implemented in most statistical programming
languages, only a handful of ready-made software solutions exist for its estimation. Available
packages include the module eba (Impavido 1998) for Stata (StataCorp 2013), procedure
EBA (Doan 2004) for RATS (Estima 2013) and program MICRO-EBA (Fowles 1988) for
Gauss (Aptech Systems 2013) and SHAZAM (SHAZAM Analytics 2013).

These packages can only estimate Leamer’s extreme bounds analysis (Shiba 1992) or, in the
case of EBA for RATS, its slightly modified version suggested by Granger and Uhlig (1990).
Recent scholarship has, however, tended to follow Sala-i-Martin (1997) and consider the entire
distribution of coefficients that emerge from the extreme bounds analysis (e.g., Gassebner et al.
2013; Sturm and de Haan 2005). In addition, researchers have used histograms to illustrate
the distribution of estimated regression coefficients graphically (e.g., Hegre and Sambanis
2006). The packages listed above do not support Sala-i-Martin’s EBA or generate graphical
output. As a result, they do not provide a satisfactory implementation of extreme bounds
analysis that would accurately reflect the method’s contemporary use.

The ExtremeBounds package, by contrast, estimates both Leamer’s and Sala-i-Martin’s ver-
sions of extreme bounds analysis. It is the first EBA package for the R statistical programming
language (R Core Team 2013). It can be installed free of charge from the Comprehensive R
Archive Network (CRAN) (2014) in the usual way:

> install.packages("ExtremeBounds")

The package provides users with a large number of important features that distinguish it
from existing alternatives for EBA estimation. In particular, ExtremeBounds can estimate
models of any size, use regression models other than Ordinary Least Squares, incorporate
non-linearities in the model specification, and apply custom weights and standard errors.
To alleviate concerns about the multicollinearity or conceptual overlap of examined variables,
ExtremeBounds allows users to specify sets of mutually exclusive variables. It can also restrict
the analysis to coefficients from regression models that yield a variance inflation factor (VIF)
within a given maximum limit.

In the next section, I briefly describe Leamer’s and Sala-i-Martin’s extreme bounds analysis.
I then provide an overview of these capabilities in Section 3. In Section 4, I demonstrate the
ExtremeBounds package’s usage and capabilities on an empirical example that involves the
fuel efficiency of automobiles. Section 5 concludes.

2. Extreme bounds analysis (EBA)

In this section, I present a brief description of extreme bounds analysis. My discussion is
by no means intended to be exhaustive. Instead, I aim to familiarize the reader with the
fundamentals of this method’s estimation procedure. More detailed and rigorous treatments
of extreme bounds analysis can be found in Leamer (1985), Leamer and Leonard (1983) and



Marek Hlavac 3

Sala-i-Martin (1997). For a critical perspective on EBA, please refer to McAleer, Pagan, and
Volker (1985), Breusch (1990), Hendry and Krolzig (2004) or Angrist and Pischke (2010).

The basic idea of extreme bounds analysis is quite simple. We are interested in finding
out which variables from the set X are robustly associated with the dependent variable
y. To do so, we run a large number of regression models. Each has y as the dependent
variable and includes a set of standard explanatory variables F that are included in each
regression model. In addition, each model includes a different subset D of the variables
in X. Following the convention in the literature, we will refer to F as the free variables
and to X as the doubtful variables. Some subset of the doubtful variables X might be so-
called focus variables that are of particular interest to the researcher. The doubtful variables
whose regression coefficients retain their statistical significance in a large enough proportion
of estimated models are declared to be robust, whereas those that do not are labelled fragile.

More formally, to find out whether a focus variable v ∈ X is robustly correlated with the
dependent variable y, we estimate a set of regression models of the following form:

y = αj + βjv + γjF + δjDj + ε (1)

where j indexes regression models, F is the full set of free variables that will be included
in every regression model, Dj is a vector of k variables taken from the set X of doubtful
variables, and ε is the error term. While Dj has conventionally been limited to no more than
three doubtful variables per model (Levine and Renelt 1992; Achen 2005), the particular
choice of k, the number of doubtful variables to be included in each combination, is up to the
researcher.

The above regression is estimated for each of the M possible combinations of Dj ⊂ X. The

estimated regression coefficients β̂j on the focus variable v, along with the corresponding
standard errors σ̂j , are collected and stored for use in later calculations. In the original
formulation of extreme bounds analysis, the regressions were estimated by Ordinary Least
Squares (OLS). In recent research, however, other types of regression models have also been
used, such as ordered probit models (Bjørnskov, Dreher, and Fischer 2008; Hafner-Burton
2005) or logistic models (Hegre and Sambanis 2006; Moser and Sturm 2011; Gassebner et al.
2013).

2.1. Leamer’s EBA

In order to determine whether a determinant is robust or fragile, Leamer’s extreme bounds
analysis focuses only on the extreme bounds of the regression coefficients (Leamer 1985). For
any focus variable v, the lower and upper extreme bounds are defined as the minimum and
maximum values of β̂j± τ σ̂j across the M estimated regression models, where τ is the critical
value for the requested confidence level. For the conventional 95-percent confidence level, τ
will thus be equal to approximately 1.96. If the upper and lower extreme bounds have the
same sign, the focus variable v is said to be robust. Conversely, if the bounds have opposite
signs, the variable is declared fragile.

Leamer’s EBA relies on a very demanding criterion for robustness, since the results from a
single regression model are enough to classify a determinant as fragile. In other words, a
focus variable will be declared fragile even if the extreme bounds have the same sign in all
estimated models except one. Accordingly, Sala-i-Martin (1997) notes that“if the distribution
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of [regression coefficients] has some positive and some negative support, then one is bound
to find one regression for which the estimated coefficient changes signs if enough regressions
are run.” It should come as no surprise that studies that have employed Leamer’s EBA to
test the robustness of determinants have generally concluded that most, if not all, examined
variables are fragile (Levine and Renelt 1992; Levine and Zervos 1993; Sala-i-Martin 1997).

2.2. Sala-i-Martin’s EBA

In response to the perceived stringency of Leamer’s EBA, Sala-i-Martin (1997) proposes an
alternative method for extreme bounds analysis that focuses on the entire distribution of
regression coefficients, not just on its extreme bounds. Instead of applying a binary label of
robust or fragile, he assigns some level of confidence to the robustness of each of the variables.
In particular, Sala-i-Martin (1997) considers the value of CDF(0), the fraction of the variable’s
cumulative distribution that lies on each side of zero. To motivate his approach, he points
out that “if 95 percent of the density function for the estimates of β1 lies to the right of zero
and only 52 percent of the density function for β2 lies to the right of zero, one will probably
think of variable 1 as being more likely to be correlated with [the dependent variable] than
variable 2.”

Although the coefficients in each individual model have an asymptotic normal distribution, the
coefficient estimates obtained from different regression models might be scattered in various
ways. For this reason, Sala-i-Martin (1997) presents two variants of his extreme bounds
analysis – a normal model, in which the estimated regression coefficients are assumed to
follow a normal distribution across the estimated models, as well as a generic model, which
does not assume any particular distribution of regression coefficients.

To estimate the normal model, Sala-i-Martin first calculates the weighted mean of the regres-
sion coefficients β̂j and of the variances σ̂2j :

β̄ =

M∑
j=1

wj β̂j (2)

σ̄2 =
M∑
j=1

wj σ̂
2
j (3)

where wj represents weights that are applied to results from each estimated regression model.
Once the weighted means of coefficients and standard errors are known, Sala-i-Martin calcu-
lates CDF(0) based on the assumed normal distribution of regression coefficients such that

β ∼ N
(
β̄, σ̄2

)
(4)

In the generic model, Sala-i-Martin first uses the sampling distribution of the regression
coefficient β̂j to obtain an individual CDF(0), denoted by φj(0 | β̂j , σ̂2j ), for each estimated
regression model. He then calculates the aggregate CDF(0) for β as the weighted average of
all the individual CDF(0)’s:

Φ(0) =
M∑
j=1

wjφj(0 | β̂j , σ̂2j ) (5)



Marek Hlavac 5

In both the normal and the generic model, Sala-i-Martin applies weights that are proportional
to the integrated likelihood to give greater weight to models that provide a better fit:

wj =
Lj

M∑
i=1

Li

(6)

In principle, of course, the weights could be based on any other measure of the goodness of
fit. Examples used in existing research literature include McFadden’s likelihood ratio index
(McFadden 1974) used by Hegre and Sambanis (2006), or applying equal weights to each
regression model (Sturm and de Haan 2005; Gassebner et al. 2013).

3. Overview of the ExtremeBounds package

The ExtremeBounds package consists of the main function eba(), which performs the ex-
treme bounds analysis, as well as of two related methods – print() and hist() – which
produce, respectively, histograms and text output to summarize the estimation results. In
this section, I provide an overview of these functions’ capabilities, and highlight features that
make ExtremeBounds the most versatile of the available EBA estimation tools. Users can
obtain a more detailed description of the arguments and output of each function by typing,
as appropriate, ?eba, ?print.eba or ?hist.eba into the R console.

3.1. EBA estimation: Main function eba()

The main function eba() performs both Leamer’s and Sala-i-Martin’s versions of extreme
bounds analysis using variables from a data frame specified in the function’s argument data.
The user specifies the dependent variable (argument y), the free variables to be included in
all regression models (free), the focus variables that are of interest (focus), as well as the
full set of doubtful variables (doubtful). Note that the variables included in focus must be
a subset of those in doubtful. If the user does not provide any focus variables, eba() will
assume that all doubtful variables are of interest to the researcher.

If no other arguments are specified, eba() will conduct a ‘standard’ extreme bounds analysis
based on Ordinary Least Squares (OLS) regressions with unadjusted standard errors. All
hypothesis tests will be performed at the conventional 95 percent confidence level against the
null hypothesis that the relevant parameter is equal to zero. Equal weights will be applied to
results from each estimated model, and no maximum limit will be imposed on the variance
inflation factor. Following Levine and Renelt (1992), eba() will include up to three doubtful
variables in addition to the focus variable in each regression model.

The function eba(), however, also offers a great deal of flexibility for researchers who might
be interested in conducting a different kind of extreme bounds analysis. Every aspect of EBA
is fully customizable:

� eba() can estimate any type of regression model (argument reg.fun), not just Ordi-
nary Least Squares (OLS). Researchers can thus easily perform EBA using, for instance,
logistic or probit regressions. Attention can, furthermore, be restricted to regressions in
which the variance inflation factor on the examined coefficient – a rule-of-thumb indica-
tor of multicollinearity (Mansfield and Helms 1982) – does not exceed a set maximum
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(argument vif). Alternatively, users can request that eba() only use results from regres-
sion models that meet some other, user-specified condition (argument include.fun).

� Regression models can be specified very flexibly. They can contain interaction terms,
squared or cubic terms to account for non-linear relationships, as well as the lags, natural
logarithms or other functions of the included variables. These regression models can
be of any size, as the user can choose how many variables should be included in each
specification (argument k).

� Users can specify sets of mutually exclusive variables that will never be included in the
same regression model to alleviate concerns about regressor multicollinearity (argument
exclusive). Specifying which doubtful variables cannot be included together can also
be useful when several doubtful variables measure the same substantive concept.

� All hypothesis tests can be performed at any requested confidence level (argument
level). In addition, the user can specify the null hypothesis value for each regres-
sion coefficient (argument mu). eba() can thus check whether the estimated coefficients
are robustly different from any numerical value, not just from zero.

� If desired, weights can be applied to results from each estimated regression (argument
weights). The weights can be based on the regression R2, adjusted R2, McFadden’s
likelihood ratio index (McFadden 1974) or calculated by a user-provided function.

� In conjunction with other R packages, eba() can apply various types of standard errors
in its calculations (argument se.fun). It can, for instance, apply heteroskedasticity-
robust (Huber 1967; Eicker 1967; White 1980), clustered (Froot 1989; Williams 2000),
and Newey-West standard errors (Newey and West 1987) provided by the sandwich
package (Zeileis 2004, 2006), as well as panel-corrected standard errors (Beck and Katz
1995) from the pcse package (Bailey and Katz 2011). Additionally, users can also
provide eba() with their own functions to calculate standard errors.

� To reduce the time required to complete the analysis, eba() can estimate a random
sample of any given size drawn from the full set of the regression models (argument
draws). This procedure yields unbiased estimates of the quantities of interest that can
give the researcher a good sense of the full EBA results within a reasonable time frame
(Sala-i-Martin, Doppelhofer, and Miller 2004).

The function eba() returns an object of class "eba", which can then be passed on to the
print() method to obtain a text summary of EBA results, or to the hist() method to
produce histograms that will provide a graphical illustration of the estimation results. The
object contains a bounds data frame with the results of both Leamer’s and Sala-i-Martin’s
extreme bounds analysis, as well as a coefficients data frame with various quantities of
interest: the minimum, maximum, mean and median values of coefficient estimates, along
with the individual CDF(0)’s for Sala-i-Martin’s generic EBA model.

In addition, the object stores the total number of doubtful variable combinations that include
at least one focus variable (component ncomb), the number of regressions actually estimated
in total (nreg) and by variable (nreg.variable), along with the number of coefficients used
in the extreme bounds analysis (ncoef.variable). Importantly, the "eba"-class object also
contains the estimation results from each regression model (component regressions). As a
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result, researchers can easily use the large number of regressions that EBA often produces in
their own analyses, whether those be modifications of extreme bounds analysis or an entirely
different statistical method.

3.2. Text summary: Method print()

Once the function eba() has completed its calculations, the user can obtain a text summary
of the estimation results by passing the "eba"-class object to the print() method. The
summary contains information about the number of regressions that eba() has estimated, as
well as about the distribution of regression coefficient estimates. Most importantly, it provides
a comprehensive summary of the analysis results for both Leamer’s and Sala-i-Martin’s EBA.
The user can adjust the number of decimal places to which the all numerical figures in the
output are rounded by changing the value of the digits argument.

At the top of the text output, the print() method reproduces the eba() function call,
the confidence level, as well as the total number of variable combinations, the number of
regressions that were actually estimated (in total, by variable, and as a proportion of the
number of combinations) and the number of coefficients used in the EBA (by variable). The
remainder of the output is divided into four parts, which I briefly summarize below:

� Beta coefficients: This part contains the weighted mean of the estimated regres-
sion coefficients and of their standard errors. Individual regression models receive a
weight specified by the eba() function’s argument weights. In addition, the print()

method also reports the value of the lowest and highest regression coefficients across the
estimated models, along with the corresponding standard errors.

� Distribution of beta coefficients: Here, the method reports the percentage of
regression coefficients that are lower/greater than zero, along with the proportion that
is statistically significantly different from zero at the specified confidence level. If a
different value under the null hypothesis was specified, all regressions coefficients are
compared with mu rather than with zero.

� Leamer’s Extreme Bounds Analysis: Both the lower and upper extreme bounds, at
the specified confidence levels, from Leamer’s extreme bounds analysis are reported.
Based on these bounds, each variable is classified as either robust or fragile.

� Sala-i-Martin’s Extreme Bounds Analysis: Finally, the print() method reports
results from Sala-i-Martin’s EBA. In particular, for both the normal and generic mod-
els, the text output prints out the value of the aggregate CDF(0) (or CDF(mu), if
appropriate), along with its complement 1 - CDF(0).

3.3. Histograms: Method hist

In addition to providing text output with EBA results, the ExtremeBounds package can pro-
duce histograms that summarize the distribution of estimated regression coefficients graphi-
cally for each examined variable. These histograms can, furthermore, be superimposed with
curves that depict the corresponding kernel density or a normally distributed approximation
to the coefficient distribution.
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To produce EBA histograms, the user simply passes an "eba"-class object created by the
main function eba() to the hist() method. The user can choose between histograms that
represent frequencies or probability densities (argument freq). Unless the set of variables to
be included is specified (argument variables), the method will produce histograms for all
variables included in the extreme bounds analysis.

By default, the histograms include vertical lines that indicate the parameter value under
the null hypothesis (argument mu.show), as well as a kernel density curve that relies on R’s
standard density method (argument density.show). The kernel density curve provides a
non-parametric estimate of the EBA coefficients’ probability density function. In addition,
the hist() method for "eba" objects can overlay the histograms with a density curve for a
normal distribution function that approximates the distribution of EBA coefficients (argument
normal.show).

Many formatting options are available. Users can change the colors and widths of the vertical
lines for null hypothesis values (arguments mu.col and mu.lwd), of the kernel density curves
(density.col and density.lwd), and of the density curves for the normally distributed
approximation (normal.col and normal.lwd). The user also has complete control over a
variety of other visual properties of the histograms. These include the histograms’ title
labels (argument main), horizontal and vertical axis labels (xlab), the range of values on
the horizontal axis (xlim), as well as the color of the histogram bars (col).

4. Example: The fuel economy of automobiles

In this section, I demonstrate the capabilities of the ExtremeBounds package using an em-
pirical example. In particular, I identify robust determinants of the fuel economy of selected
automobiles using data from the data frame mtcars. This data frame is included in the
datasets package, which is part the standard R distribution (R Core Team 2013) and is
therefore readily available to the beginning ExtremeBounds user.

The information in mtcars was extracted from the 1974 Motor Trend magazine, and com-
prises the fuel consumption and ten aspects of vehicle design and performance for a selection
of 1973–1974 automobile models. Existing research literature has already taken advantage
of these data for the purpose of demonstrating various statistical methods and procedures
(Hocking 1976; Henderson and Velleman 1981). The mtcars data set is particularly well-
suited for a demonstration of extreme bounds analysis, as its small size allows me to highlight
the ExtremeBounds package’s most important features without having to perform lengthy
estimations of a very large number of regressions.

The data frame mtcars contains 32 observations. Each observation is one particular model of
automobile (e.g., "Mazda RX4", "Cadillac Fleetwood" or "Fiat X1-9"). For each model,
the data frame contains information on its fuel economy, expressed as the vehicle’s miles per
gallon (variable mpg), and about its engine – the number of cylinders (cyl) and carburetors
(carb), its displacement in cubic inches (disp), its gross horsepower (hp), as well as whether
it is a V- or a straight engine (vs). In addition, we are given information about each model’s
rear axle ratio (drat), weight in thousands of pounds (wt), and quarter-mile time in seconds
(qsec). The variable gear contains the number of forward gears, while am indicates whether
the automobile has an automatic or manual transmission, with a value of 1 denoting a manual
transmission.
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4.1. Näıve EBA with all combinations of doubtful variables

First, I would like to get a basic sense of which determinants might be most robustly associated
with the dependent variable mpg (miles per gallon). I therefore begin by conducting an EBA
that estimates all possible combinations of doubtful variables across the ten automobile design
and performance characteristics included in mtcars. Since I am interested in the robustness
or fragility of all the doubtful variables, I regard all of them as focus variables.

From a statistical point of view, this type of EBA is somewhat näıve, as it does not take into
account the possibility of high multicollinearity among the included variables. Neither does
it account for the possibility that some variables measure similar concepts. The number of
cylinders (cyl) and the gross horsepower (hp) might, for example, both be seen as measures
of the engine’s overall performance. Researchers interested in examining the fuel economy of
automobiles would thus, in contrast to my näıve EBA, be unlikely to include both explanatory
variables in the same regression model.

An extreme bounds analysis with all combinations of doubtful variables might nevertheless
yield some valuable insights. In particular, it provides a particularly strong test for a deter-
minant’s robustness. As McAleer et al. (1985) suggest, such an EBA might indicate which
variables variables should be treated as free, and therefore be included in all regression models
in further EBA analyses.

I estimate the näıve EBA by calling the eba() function:

> naive.eba <- eba(data = mtcars, y = "mpg", doubtful = c("cyl", "carb",

"disp", "hp", "vs", "drat", "wt", "qsec", "gear", "am"), k = 0:9)

Since the focus argument is not specified, all the doubtful variables will be treated as focus
variables. The argument k = 0:9 ensures that, on top of the focus variable, up to nine
doubtful variables will be included in each regression model. As a result, regressions with all
possible combinations of the ten doubtful variables will be estimated. The eba() function
will return an object of class "eba" that will be stored in naive.eba.

Next, I ask ExtremeBounds to produce a set of histograms that summarize the EBA estima-
tion results. To do so, I simply pass the naive.eba object to the hist() method:

> hist(naive.eba)

The resulting histograms are reproduced in Figure 1. The gray bins contain the Ordinary
Least Squares (OLS) coefficients on each examined variable from all of the estimated regres-
sion models. Superimposed over each histogram is a thick blue curve that represents the
corresponding kernel density, a non-parametric approximation of the regression coefficients’
distribution. There is also a red vertical line at zero, the default coefficient value under the
null hypothesis.

A visual inspection of the histograms allows me to get a quick overview of the EBA estimation
results. If most of the histogram bins’ area lies to the right of zero, a majority of the regression
coefficient estimates on the corresponding variables are positive. A positive coefficient indi-
cates that, holding all else equal, a higher value of the examined variable is associated with
more miles per gallon, as given by the dependent variable mpg). The results of the näıve EBA
suggests that straight engines (vs), a greater rear axle ratio (drat), a slower quarter-mile
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time (qsec), a greater number of forward gears (gear) and a manual transmission (am) are
associated with greater fuel economy.

Conversely, if most of the bins’ area lies to the left of zero, greater values of the correspond-
ing variable are associated with lower miles per gallon, ceteris paribus, in most estimated
regressions. Näıve EBA estimation results indicate that engines with more cylinders (cyl),
curburetors (carb) and with greater gross horsepower (hp) achieve worse fuel economy. The
vehicle’s greater weight (wt) is consistently associated with greater fuel consumption. In fact,
wt is the only variable for which all of the estimated regression coefficients have the same (in
this case, negative) sign.

Engine displacement (code disp) appears to be an interesting case, as the distribution of the
regression coefficients appears to be bimodal. Some are negative, while others are positive.
The bimodal nature of the distribution can be easily seen from the two different peaks of the
histogram bins, as well as from the double hump of the kernel density curve.
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Figure 1: Histograms that summarize the estimation results of the näıve EBA.
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4.2. A more sophisticated EBA

Having inspected the results of my näıve EBA, I can now use the ExtremeBounds package’s
capabilities to make my analysis more sophisticated. In particular, I make the following
changes to the eba() function call:

� Results from the näıve EBA have indicated that the regression coefficients on the ve-
hicle’s weight (variable wt) are negative, regardless of the model specification. For this
reason, I treat wt as a free variable to be included in all regression models, and therefore
include it in eba’s free argument.

� Some of the doubtful variables measure similar concepts, and were therefore inappropri-
ately included together in regression models by the näıve EBA. To prevent conceptual
overlap, I use the exclusive parameter to specify two sets of mutually exclusive vari-
ables:

– One set consists of variables that might be construed as measuring the performance
of the engine: the number of cylinders (cyl), the number of carburetors (carb),
engine displacement (disp) and the gross horsepower (hp).

– The other set consists of the two doubtful variables that have to do with the car’s
transmission: the am indicator of an automatic vs. manual transmission, and the
number of forward gears (gear).

� I am only interested in estimation results for the four variables that measure engine
performance: cyl, carb, disp and hp. Using the focus argument, I specify them as
the focus variables.

� Rather than estimating all possible combinations of the doubtful variables as I did in
the näıve EBA, I only add combinations of up to three doubtful variables to the focus
variable in each specification. The value of the k argument will thus remain at its default
value of 0:3.

� To eliminate the influence of coefficient estimates from model specifications that suffer
from high multicollinearity, I specify a maximum acceptable variance inflation factor by
setting vif = 7.

� I use heteroskedasticity-robust standard errors (White 1980), as calculated by the
sandwich package (Zeileis 2004, 2006). To be able to do this, I define the se.robust

function (below) that calculates the standard errors, and pass it to the eba() function:

library("sandwich")

se.robust <- function(model.object) {

model.fit <- vcovHC(model.object, type = "HC")

out <- sqrt(diag(model.fit))

return(out)

}

� Finally, I give more weight to estimation results from regression models that provide a
better fit to the data. More specifically, I set the argument weights to "lri", and thus
weight each model’s results by its likelihood ratio index (McFadden 1974).
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I execute the following R code to estimate this more sophisticated extreme bounds analysis:

> doubtful.variables <- c("cyl", "carb", "disp", "hp", "vs",

+ "drat", "wt", "qsec", "gear", "am")

> engine.variables <- c("cyl", "carb", "disp", "hp")

> transmission.variables <- c("am", "gear")

> sophisticated.eba <- eba(data = mtcars, y = "mpg", free = "wt",

+ doubtful = doubtful.variables,

+ focus = engine.variables,

+ exclusive = list(engine.variables,

+ transmission.variables),

+ vif = 7, se.fun = se.robust, weights = "lri")

Again, I produce a set of histograms that will allow me to get an initial sense of the results
of my analysis. This time, I include the hist() method’s variables argument to request
histograms only for the four focus variables that I am interested in. Additionally, I use the
main argument to make each histogram’s main title more descriptive and the normal.show

argument to request that hist() superimpose a density curve with a normally distributed
approximation to the coefficient distribution.

> hist(sophisticated.eba, variables = engine.variables,

+ main = c(cyl = "number of cylinders", carb = "number of carburetors",

+ disp = "engine displacement", hp = "gross horsepower"),

+ normal.show = TRUE)

As the histograms in Figure 2 show, the more sophisticated EBA leads to more clear-cut
predictions about the signs of regression coefficients than the näıve EBA estimated earlier.
The coefficients on all four focus variables are consistently negative. This result suggests
that, across a wide variety of reasonably well-specified regression models, a greater number of
cylinders and carburetors, as well as greater engine displacement and gross horsepower, are
associated with worse fuel economy (i.e., with fewer miles per gallon).

It is, moreover, evident that the blue kernel density curve and the green normally distributed
approximation are quite different from each other. This lack of alignment suggests that
regression coefficients are not normally distributed across model specifications.
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Figure 2: Histograms that summarize the estimation results of the sophisticated EBA.

In addition to histograms, ExtremeBounds allows users to examine EBA results through the
text output produced by the print() method. This method produces a wealth of detailed
information about the estimation results from both Leamer’s and Sala-i-Martin’s extreme
bounds analysis. In the interest of clarity, I reproduce only the portions of print() output
that are most relevant to my empirical example in the paragraphs that follow. ExtremeBound
users can type ?print.eba in the R console to obtain a complete description of the text
output.

I obtain a text summary of my analysis results by passing the "eba"-class object to the
print() method:

> print(sophisticated.eba)
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At the top of the print() method’s text output, we find information about the number
of specifications that were estimated. In total, there are 148 possible combinations of the
examined doubtful variables that contain at least one focus variable. Since the parameter
draws is not specified, no random sampling of estimated model occurs. As a result, eba()
estimates all of the available combinations.

The free variable wt occurs, of course, in all 148 regression models. The focus variables
are included in fewer specifications since each of them does not appear in some doubtful
variable combinations. The four focus variables have, furthermore, been specified as mutually
exclusive (in the eba() function’s argument exclusive) and cannot therefore be included
together in the same regression model. The print() method reports that the focus variables
cyl, carb, disp and hp appear in 37 specifications each. The output also indicates that
only 26 and 14 coefficient estimates (rather than all 37) were used in the extreme bounds
analysis for the variables cyl and disp, respectively. The reduction in coefficient used occurs
because the variance inflation factors on some cyl and disp coefficients exceed the specified
maximum of 7.

Number of combinations: 148

Regressions estimated: 148 (100% of combinations)

Number of regressions by variable:

(Intercept) wt cyl carb disp hp

148 148 37 37 37 37

Number of coefficients used by variable:

(Intercept) wt cyl carb disp hp

148 148 26 37 14 37

Next, the print() method reports the weighted means of coefficient and standard error
estimates for the free and focus variables across the estimated regression models. The weights
are specified in the eba() function’s weights argument. In the sophisticated analysis I ran,
I weight regression models by the likelihood ratio index.

The table reproduced below shows that, on average, a vehicle weight (wt) that is greater by a
thousand pounds is associated with 3.623 fewer miles per gallon (mpg). An additional cylinder
(cyl) or carburetor (carb) is correlated with a fuel consumption that is lower by 1.370 and
0.822 miles per gallon, respectively. One cubic inch of additional engine displacement (disp)
correlates with 0.016 fewer miles per gallon. Finally, a gallon of fuel yields 0.027 fewer miles
with each unit of gross horsepower (hp). Relative to the size of the coefficients, the weighted
standard errors are relatively small.
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Beta coefficients:

Type Coef (Wgt Mean) SE (Wgt Mean)

(Intercept) free 26.199 6.286

wt free -3.623 0.902

cyl focus -1.370 0.403

carb focus -0.822 0.327

disp focus -0.016 0.008

hp focus -0.027 0.008

The text output from print() proceeds to summarize the distribution of coefficient estimates.
It reports the proportions, expressed as percentages, of estimated regression coefficients that
are lower or greater than zero. In our example, the coefficients on wt, cyl, carb, disp and
hp are all negative, while the coefficients on the intercept term in the linear regression are
always positive. These statistics are, of course, consistent with the information displayed in
the histograms in Figure 2.

Distribution of beta coefficients:

Type Pct(beta < 0) Pct(beta > 0)

(Intercept) free 0 100

wt free 100 0

cyl focus 100 0

carb focus 100 0

disp focus 100 0

hp focus 100 0

Even though all the free and focus variables’ coefficients are negative, some of the point esti-
mates may not be distinguishable from zero in a statistically significant way. The text output
also includes the percentages of regression coefficients that are both statistically significant
and lower/greater than zero. We find that only in the case of the free variable wt are all the
coefficients statistically significant. A very large majority of coefficient estimates are signif-
icant for the cyl and hp variables (92.3 and 81.1 percent, respectively). By contrast, only
about 60 percent of coefficients on carb and disp are statistically significant.

Distribution of beta coefficients:

Type Pct(signif & beta < 0) Pct(signif & beta > 0)

(Intercept) free 0.000 79.73

wt free 100.000 0.00

cyl focus 92.308 0.00

carb focus 59.459 0.00

disp focus 57.143 0.00

hp focus 81.081 0.00
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The print() method then goes on to summarize results from Leamer’s extreme bounds
analysis. It produces a table that includes the lower and upper extreme bounds of regression
coefficient estimates, and – based on these bounds – classifies determinants as robust or fragile.
The only variable that is found to be robust using Leamer’s EBA is the free variable wt. Since
the upper and lower extreme bounds of all the focus variables have opposite signs, they are
declared to be fragile.

Leamer's Extreme Bounds Analysis (EBA):

Type Lower Extreme Bound Upper Extreme Bound Robust/Fragile?

(Intercept) free -19.521 55.021 fragile

wt free -7.495 -0.659 robust

cyl focus -2.295 0.101 fragile

carb focus -2.197 0.358 fragile

disp focus -0.034 0.009 fragile

hp focus -0.052 0.002 fragile

Finally, the text output includes results from Sala-i-Martin’s extreme bounds analysis. The
histograms in Figure 2 suggest that the normally distributed approximation of the regression
coefficients’ distribution does not provide a good fit to the data. For this reason, I focus on
EBA results from the generic model, which does does not assume any particular distribution
of coefficient estimates across different specifications.

As the table presented below indicates, results from Sala-i-Martin’s EBA suggest very little
fragility of the coefficient estimates. For variables wt, cyl and hp, more than 99 percent of
the cumulative distribution of regression coefficients lies below zero. The same can be said of
more than 95 percent of the cumulative distributions for variables carb and disp. According
to results from Sala-i-Martin’s EBA, all of the free and focus variables appear to be robustly
(and negatively) associated with the automobiles’ miles per gallon (mpg). In contrast to
Leamer’s EBA in which a single insignificant coefficient implies fragility, the less stringent
Sala-i-Martin’s EBA classifies more variables as robust determinants of fuel economy.

Sala-i-Martin's Extreme Bounds Analysis (EBA):

Type G: CDF(beta <= 0) G: CDF(beta > 0)

(Intercept) free 2.756 97.244

wt free 99.957 0.043

cyl focus 99.521 0.479

carb focus 95.315 4.685

disp focus 95.200 4.800

hp focus 99.047 0.953

All in all, the extreme bounds analysis in this empirical example suggests that the examined
automobiles’ weight and engine performance are robustly associated with the vehicles’ fuel
economy. In conducting the analysis, I have demonstrated some of the most important fea-
tures of the ExtremeBounds package. Specifically, I have shown how researchers can estimate
Leamer’s and Sala-i-Martin’s EBA using the fully customizable eba() function. The estima-
tion results can then be visually inspected with the help of the hist() method that produces
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histograms of each examined variable’s coefficient estimates. Finally, the print() method
provides users with text output that contains a detailed summary of EBA estimation results.
In the next section, I conclude.

5. Concluding remarks

In this paper, I have introduced the ExtremeBounds package for the R statistical programming
language. The package allows researchers to perform extreme bounds analysis (EBA), a sen-
sitivity test that calculates how robustly a regression model’s dependent variable is associated
with a variety of possible determinants.

ExtremeBounds represents a significant improvement over existing software implementations
of extreme bounds analysis, as it supports not only Leamer’s version of extreme bounds
analysis, but also Sala-i-Martin’s EBA. Furthermore, the package allows users to customize
every aspect of the analysis: the type of regression model, its size and functional form, as well
as the standard errors and weights.

I have showcased many of these customizable features through an empirical example that
focused on the determinants of selected automobiles’ fuel economy. Along the way, I have also
demonstrated the package’s ability to produce histograms of estimated regression coefficients
via the hist() method, and to print out a detailed text summary of the EBA estimation
results through the print() method.

Acknowledgments

I would like to thank Rebecca Goldstein, Daniel Yew Mao Lim and Christopher Lucas for
helpful comments and suggestions.

References

Achen CH (2005). “Let’s Put Garbage-Can Regressions and Garbage-Can Probits Where
They Belong.” Conflict Management and Peace Science, 22(4), 327–339.

Angrist JD, Pischke J (2010). “The Credibility Revolution in Empirical Economics: How
Better Research Design Is Taking the Con out of Econometrics.” Journal of Economic
Perspectives, 24(2), 3–30.

Aptech Systems (2013). GAUSS Statistical Software: Release 14. Aptech Systems, Inc.,
Chandler, AZ, USA. URL http://www.aptech.com.

Bailey D, Katz JN (2011). “Implementing Panel-Corrected Standard Errors in R: The pcse
Package.” Journal of Statistical Software, 42(1), 1–11.

Bartley WA, Cohen MA (1998). “The Effect of Concealed Weapons Laws: An Extreme
Bounds Analysis.” Economic Inquiry, 36(2), 258–265.

Beck N, Katz JN (1995). “What to Do (and Not to Do) with Time-Series Cross-Section Data.”
American Political Science Review, 89, 634–647.

http://www.aptech.com


Marek Hlavac 19

Bjørnskov C, Dreher A, Fischer JAV (2008). “Cross-country Determinants of Life Satisfaction:
Exploring Different Determinants Across Groups in Society.” Social Choice and Welfare,
30, 119–173.

Breusch TS (1990). Modelling Economic Series, chapter Simplified Extreme Bounds. Oxford
University Press, New York, NY, USA.

Comprehensive R Archive Network (CRAN) (2014). “Comprehensive R Archive Network
(CRAN).” URL http://cran.us.r-project.org/.

Doan T (2004). “EBA: RATS Procedure to Perform Extreme Bounds Analysis.” Statistical
Software Components.

Eicker F (1967). “Limit Theorems for Regression with Unequal and Dependent Errors.”
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
pp. 59–82.

Estima (2013). RATS Statistical Software: Release 8.3. Estima, Evanston, IL, USA. URL
http://www.estima.com/.

Fowles R (1988). “Micro Extreme Bounds Analysis.” The American Statistician, 42(4), 274.

Fowles R, Merva M (1996). “Wage Inequality and Criminal Activity: An Extreme Bounds
Analysis for the United States, 1975-1990.” Criminology, 34(2), 163–182.

Froot KA (1989). “Consistent Covariance Matrix Estimation with Cross-Sectional Dependence
and Heteroskedasticity in Financial Data.” Journal of Financial and Quantitative Analysis,
24, 333–355.

Gassebner M, Lamla MJ, Vreeland JR (2013). “Extreme Bounds of Democracy.” Journal of
Conflict Resolution, 57(2), 171–197.

Granger CW, Uhlig HF (1990). “Reasonable Extreme Bounds Analysis.” Journal of Econo-
metrics, 44, 159–170.

Hafner-Burton EM (2005). “Right or Robust? The Sensitive Nature of Repression to Global-
ization.” Journal of Peace Research, 42(6), 679–698.

Hegre H, Sambanis N (2006). “Sensitivity Analysis of Empirical Results on Civil War Onset.”
Journal of Conflict Resolution, 50(4), 508–535.

Henderson HV, Velleman PF (1981). “Building Multiple Regression Models Interactively.”
Biometrics, 37(2), 391–411.

Hendry DF, Krolzig HM (2004). “We Ran One Regression.” Oxford Bulletin of Economics
and Statistics, 66(5), 799–810.

Hocking R (1976). “The Analysis and Selection of Variables in Linear Regression.” Biometrics,
32(1), 1–49.

Huber PJ (1967). “The Behavior of Maximum Likelihood Estimates Under Nonstandard
Conditions.” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, pp. 221–233.

http://cran.us.r-project.org/
http://www.estima.com/


20 ExtremeBounds: Extreme Bounds Analysis in R

Impavido G (1998). “EBA: Stata Module to Perform Extreme Bound Analysis.” Statistical
Software Components.

Leamer EE (1985). “Sensitivity Analysis Would Help.” American Economic Review, 57(3),
308–313.

Leamer EE, Leonard H (1983). “Reporting the Fragility of Regression Estimates.” Review of
Economics and Statistics, 65(2), 306–317.

Levine R, Renelt D (1992). “A Sensitivity Analysis of Cross-Country Growth Regressions.”
American Economic Review, 82(4), 942–963.

Levine R, Zervos SJ (1993). “What We Have Learned About Policy and Growth from Cross-
Country Regressions?” The American Economic Review, 83(2), 426–430.

Mansfield ER, Helms BP (1982). “Detecting Multicollinearity.” The American Statistician,
36(3), 158–160.

McAleer M, Pagan AR, Volker PA (1985). “What Will Take the Con Out of Econometrics?”
American Economic Review, 75(3), 293–307.

McFadden DL (1974). Frontiers in Econometrics, chapter Conditional Logit Analysis of
Qualitative Choice Behavior. Academic Press, New York, NY, USA.

Moosa IA, Cardak BA (2006). “The Determinants of Foreign Direct Investment: An Extreme
Bounds Analysis.” Journal of Multinational Financial Management, 16, 199–211.

Moosa IA, Smith L (2004). “Economic Development Indicators as Determinants of Medal
Winning at the Sydney Olympics: An Extreme Bounds Analysis.” Australian Economic
Papers, 43(3), 288–301.

Moser C, Sturm JE (2011). “Explaining IMF Lending Decisions After the Cold War.” Review
of International Organizations, 6(2–3), 307–340.

Newey WK, West KD (1987). “A Simple, Positive Semi-definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix.” Econometrica, 55(3), 703–708.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.

Reed WR (2009). “The Determinants of U.S. State Economic Growth: A Less Extreme
Bounds Analysis.” Economic Inquiry, 47(4), 685–700.

Sala-i-Martin X (1997). “I Just Ran Two Million Regressions.” American Economic Review,
87(2), 178–183.

Sala-i-Martin X, Doppelhofer G, Miller RI (2004). “Determinants of Long-Term Growth:
A Bayesian Averaging of Classical Estimates (BACE) Approach.” American Economic
Review, 94(4), 813–835.

SHAZAM Analytics (2013). SHAZAM Statistical Software: Release 11. SHAZAM Analytics
Ltd, London, UK. URL http://www.econometrics.com.

http://www.R-project.org
http://www.econometrics.com


Marek Hlavac 21

Shiba T (1992). “MICRO-EBA: Leamer’s Extreme Bounds Analysis on Gauss.” Journal of
Applied Econometrics, 7(1), 101–103.

StataCorp (2013). Stata Statistical Software: Release 13. StataCorp LP, College Station, TX,
USA. URL http://www.stata.com.

Sturm JE, de Haan J (2005). “Determinants of Long-Term Growth: New Results Applying
Robust Estimation and Extreme Bounds Analysis.” Empirical Economics, 30(3), 597–617.

Wang EC (2010). “Determinants of R&D Investment: The Extreme-Bounds-Analysis Ap-
proach Applied to 26 OECD Countries.” Research Policy, 39(1), 103–116.

White H (1980). “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct
Test for Heteroskedasticity.” Econometrica, 48, 817–838.

Williams RL (2000). “A Note on Robust Variance Estimation for Cluster-Correlated Data.”
Biometrics, 56, 645–646.

Zeileis A (2004). “Econometric Computing with HC and HAC Covariance Matrix Estimators.”
Journal of Statistical Software, 11(10), 1–17.

Zeileis A (2006). “Object-Oriented Computation of Sandwich Estimators.” Journal of Statis-
tical Software, 16(9), 1–16. URL http://www.jstatsoft.org/v16/i09/.

Affiliation:

Marek Hlavac
Harvard University
John F. Kennedy School of Government
79 John F. Kennedy Street
Cambridge, MA 02138
United States of America
E-mail: hlavac@fas.harvard.edu

http://www.stata.com
http://www.jstatsoft.org/v16/i09/
mailto:hlavac@fas.harvard.edu

	Introduction
	Extreme bounds analysis (EBA)
	Leamer's EBA
	Sala-i-Martin's EBA

	Overview of the ExtremeBounds Package
	EBA estimation: Main function eba()
	Text summary: Method print()
	Histograms: Method hist

	Example: The fuel economy of automobiles
	Naïve EBA with all combinations of doubtful variables
	A more sophisticated EBA

	Concluding remarks

