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Chapter 1

Theory and technicalities

This vignette for the Epi package describes the probabilistic/demographic background for
and technical implementation of the erl and yll functions that computes the expected
residual life time and years of life lost in an illness-death model.

1.1 Years of life lost (YLL)

. . . to diabetes or any other disease for that matter.
The general concept in calculation of “years lost to. . . ” is the comparison of the expected

lifetime between two groups of persons; one with and one without disease (in this example
DM). The expected lifetime is the area under the survival curve, so basically the exercise
requires that two survival curves that are deemed relevant be available.

The years of life lost is therefore just the area between the survival curves for those
“Well”, SW (t), and for those “Diseased”, SD(t):

YLL =

∫ ∞

0

SW (t)− SD(t) dt

The time t could of course be age, but it could also be “time after age 50” and the survival
curves compared would then be survival curves conditional on survival till age 50, and the
YLL would be the years of life lost for a 50-year old person with diabetes.

If we are referring to the expected lifetime we will more precisely use the label expected
residual lifetime, ERL.

1.2 Constructing the survival curves

YLL can be computed in two different ways, depending on the way the survival curve and
hence the expected lifetime of a person without diabetes is computed:

• Assume that the “Well” persons are immune to disease — using only the non-DM
mortality rates throughout for calculation of expected life time.

• Assume that the “Well” persons can acquire the disease and thereby see an increased
mortality, thus involving all three rates shown in figure 1.1.
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2 Theory and technicalities YLL

The former gives a higher YLL because the comparison is to persons assumed immune to
DM (and yet with the same mortality as non-immune prior to diagnosis), the latter gives a
more realistic picture of the comparison of group of persons with and without diabetes at a
given age that can be interpreted in the real world.

The differences can be illustrated by figure 1.1; the immune approach corresponds to an
assumption of λ(t) = 0 in the calculation of the survival curve for a person in the “Well”
state.

Calculation of the survival of a diseased person already in the “DM” state is unaffected
by assumptions about λ.

R version 3.3.3 (2017-03-06)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] Epi_2.10

loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 MASS_7.3-45 Matrix_1.2-6 plyr_1.8.4
[5] parallel_3.3.3 survival_2.41-3 etm_0.6-2 Rcpp_0.12.5
[9] splines_3.3.3 grid_3.3.3 numDeriv_2014.2-1 lattice_0.20-33

Well DM

Dead Dead(DM)

λ

µW µDM

Well DM

Dead Dead(DM)

Figure 1.1: Illness-death model describing diabetes incidence and -mortality.

1.2.1 Total mortality — a shortcut?

A practical crude shortcut could be to compare the ERL in the diabetic population to the
ERL for the entire population (that is use the total mortality ignoring diabetes status).
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Note however that this approach also counts the mortality of persons that acquired the
disease earlier, thus making the comparison population on average more ill than the
population we aim at, namely those well at a given time, which only then become more
gradually ill.

How large these effects are can however be empirically explored, as we shall do later.

1.2.2 Disease duration

In the exposition above there is no explicit provision for the effect of disease duration, but
if we were able to devise mortality rates for any combination of age and duration, this
could be taken into account.

There are however severe limitations in this as we in principle would want to have
duration effects as long as the age-effects — in principle for all (a, d) where d ≤ A, where A
is the age at which we condition. So even if we were only to compute ERL from age, say,
40 we would still need duration effects up to 60 years (namely to age 100).

The incorporation of duration effects is in principle trivial from a computational point of
view, but we would be forced to entertain models predicting duration effects way beyond
what is actually observed disease duration in any practical case.

1.2.3 Computing integrals

The practical calculations of survival curves, ERL and YLL involves calculation of
(cumulative) integrals of rates and functions of these as we shall see below. This is easy if
we have a closed form expression of the function, so its value may be computed at any time
point — this will be the case if we model rates by smooth parametric functions.

Computing the (cumulative) integral of a function is done as follows:

• Compute the value of the function (mortality rate for example) at the midpoints of a
sequence of narrow equidistant intervals — for example one- or three month intervals
of age, say.

• Take the cumulative sum of these values multiplied by the interval length — this will
be a very close approximation to the cumulative integral evaluated at the end of each
interval.

• If the intervals are really small (like 1/100 year), the distinction between the value at
the middle and at the end of each interval becomes irrelevant.

Note that in the above it is assumed that the rates are given in units corresponding to the
interval length — or more precisely, as the cumulative rates over the interval.

1.3 Survival functions in the illness-death model

The survival functions for persons in the “Well” state can be computed under two
fundamentally different scenarios, depending on whether persons in the “Well” state are
assumed to be immune to the disease (λ(a) = 0) or not.
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1.3.1 Immune approach

In this case both survival functions for person in the two states are the usual simple
transformation of the cumulative mortality rates:

SW (a) = exp

(
−
∫ a

0

µW (u) du

)
, SD(a) = exp

(
−
∫ a

0

µD(u) du

)
1.3.1.1 Conditional survival functions

If we want the conditional survival functions given survival to age A, say, they are just:

SW (a|A) = SW (a)/SW (A), SD(a|A) = SD(a)/SD(A)

1.3.2 Non-immune approach

For a diseased person, the survival function in this states is the same as above, but the
survival function for a person without disease (at age 0) is (see figure 1.1):

S(a) = P {Well}(a) + P {DM}(a)

In the appendix of the paper [2] is an indication of how to compute the probability of being
in any of the four states shown in figure 1.1, which I shall repeat here:

In terms of the rates, the probability of being in the “Well” box is simply the probability
of escaping both death (at a rate of µW (a)) and diabetes (at a rate of λ(a)):

P {Well} (a) = exp

(
−
∫ a

0

µW (u) + λ(u)

)
du

The probability of being alive with diabetes at age a, is computed given that diabetes
occurred at age s (s < a) and then integrated over s from 0 to a:

P {DM} (a) =

∫ a

0

P {survive to s, DM diagnosed at s}

× P {survive with DM from s to a} ds

=

∫ a

0

λ(s) exp

(
−
∫ s

0

µW (u) + λ(u) du

)
× exp

(
−
∫ a

s

µD(u) du

)
ds

Sometimes we will use a version where the mortality among diabetes patients depend both
on age a and duration of diabetes, d, µD(a, d), in which case we get:

P {DM} (a) =

∫ a

0

λ(s) exp

(
−
∫ s

0

µW (u) + λ(u) du

)
× exp

(
−
∫ a

s

µD(u, u− s) du

)
ds

because the integration variable u is the age-scale and the second integral refers to
mortality among persons diagnosed at age s, that is, with duration u− s at age u.

The option of using duration-dependent mortality rates among diseased individuals is
not implemented yet.
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1.3.2.1 Conditional survival functions

Unlike the immune approach, the conditional survival function in the more realistic case is
not just a ratio of the unconditional to the value at the conditioning age, A, say. This
would amount to conditioning on being merely alive at age A, but what we want is to
condition on being in the “Well” state at age A.

The formulae for the conditional probabilities of being either in “Well” or “DM”, given
being in “Well” at age A are basically replicates of the unconditional, albeit with changes in
integration limits:

P {Well|Well at A} (a) = exp

(
−
∫ a

A

µW (u) + λ(u)

)
du

P {DM|Well at A} (a) =

∫ a

A

λ(s) exp

(
−
∫ s

A

µW (u) + λ(u) du

)
× exp

(
−
∫ a

s

µD(u, u− s) du

)
ds

The calculation of these conditional survival functions is implemented but not allowing for
duration-dependence. Thus it is only implemented assuming µD(a, d) = µD(a).



Chapter 2

Analyses for DM in Denmark

The rates we use as basis for the following calculations are derived from the NDR, where
we have omitted the blood-glucose criteria, because there is compelling evidence that these
have quite a low specificity (particularly in the younger ages among women), and do not
substantially contribute to the sensitivity.

As noted above the calculations of YLL requires access to (age-specific) rates of
incidence of DM and mortality for persons with and without DM.

2.1 Modeling mortality and incidence data

We read in the dataset of DM and population mortality and incidence, DMepi:

> data( DMepi )

The dataset DMepi contains diabetes events, deaths and person-years for persons without
diabetes and deaths and person-years for persons with diabetes:

> str( DMepi )

'data.frame': 4000 obs. of 8 variables:
$ sex : Factor w/ 2 levels "M","F": 1 2 1 2 1 2 1 2 1 2 ...
$ A : num 0 0 1 1 2 2 3 3 4 4 ...
$ P : num 1996 1996 1996 1996 1996 ...
$ X : num 1 9 4 7 7 2 6 5 9 4 ...
$ D.nD: num 28 19 23 19 7 8 8 8 6 7 ...
$ Y.nD: num 35454 33095 36451 34790 35329 ...
$ D.DM: num 0 0 0 0 0 0 0 0 0 0 ...
$ Y.DM: num 0.476 3.877 4.92 7.248 12.474 ...

> head( DMepi )

sex A P X D.nD Y.nD D.DM Y.DM
1 M 0 1996 1 28 35453.65 0 0.4757016
2 F 0 1996 9 19 33094.86 0 3.8767967
3 M 1 1996 4 23 36450.73 0 4.9199179
4 F 1 1996 7 19 34789.99 0 7.2484600
5 M 2 1996 7 7 35328.92 0 12.4743326
6 F 2 1996 2 8 33673.43 0 8.0951403

For each combination of sex, age, period and date of birth in 1 year age groups, we have
the person-years in the “Well” (Y.nD) and the “DM” (Y.DM) states, as well as the number of
deaths from these (D.nD, D.DM) and the number of incident diabetes cases from the “Well”
state (X).

6
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In order to compute the years of life lost to diabetes and how this has changed over time,
we fit models for the mortality and incidence of both groups (and of course, separately for
men and women). The models we use will be age-period-cohort models [1] providing
estimated mortality rates for ages 0–99 and dates 1.1.1996–1.1.2016.

First we transform the age and period variables to reflect the mean age and period in
each of the Lexis triangles. We also compute the total number of deaths and amount of
risk time, as we are going to model the total mortality as well. Finally we restrict the
dataset to ages over 30 only:

> DMepi <- transform( subset( DMepi, A>30 ),
+ D.T = D.nD + D.DM,
+ Y.T = Y.nD + Y.DM )
> head(DMepi)

sex A P X D.nD Y.nD D.DM Y.DM D.T Y.T
63 M 31 1996 21 51 43909.32 0 291.4107 51 44200.73
64 F 31 1996 33 16 41376.91 2 287.4969 18 41664.41
65 M 32 1996 26 67 43159.94 0 299.6571 67 43459.59
66 F 32 1996 20 23 40706.49 1 275.2615 24 40981.75
67 M 33 1996 35 54 41251.06 4 321.0397 58 41572.10
68 F 33 1996 32 23 39102.29 1 277.4463 24 39379.74

With the correct age and period coding in the Lexis triangles, we fit models for the
mortalities and incidences. Note that we for comparative purposes also fit a model for the
total mortality, ignoring the

> # Knots used in all models
> ( a.kn <- seq(40,95,,6) )

[1] 40 51 62 73 84 95

> ( p.kn <- seq(1997,2015,,4) )

[1] 1997 2003 2009 2015

> ( c.kn <- seq(1910,1976,,6) )

[1] 1910.0 1923.2 1936.4 1949.6 1962.8 1976.0

> # Check the number of events between knots
> ae <- xtabs( cbind(D.nD,D.DM,X) ~ cut(A,c(30,a.kn,Inf)) + sex, data=DMepi )
> ftable( addmargins(ae,1), col.vars=3:2 )

D.nD D.DM X
sex M F M F M F

cut(A, c(30, a.kn, Inf))
(30,40] 8899 4525 564 269 9912 8622
(40,51] 24686 15296 2886 1399 31668 20769
(51,62] 57747 38968 10276 4916 53803 34495
(62,73] 102877 78771 24070 13008 51000 38731
(73,84] 154804 153842 31006 25414 25444 26804
(84,95] 97698 175484 13972 21231 4726 7852
(95,Inf] 5800 20563 545 1522 74 238
Sum 452511 487449 83319 67759 176627 137511

> pe <- xtabs( cbind(D.nD,D.DM,X) ~ cut(P,c(1990,p.kn,Inf)) + sex, data=DMepi )
> ftable( addmargins(pe,1), col.vars=3:2 )

D.nD D.DM X
sex M F M F M F

cut(P, c(1990, p.kn, Inf))
(1990,1997] 51901 54162 6012 5378 12477 10030
(1997,2003] 145418 157768 21028 17976 43749 34255
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(2003,2009] 133175 144717 25172 20595 56556 43891
(2009,2015] 122017 130802 31107 23810 63845 49335
(2015,Inf] 0 0 0 0 0 0
Sum 452511 487449 83319 67759 176627 137511

> ce <- xtabs( cbind(D.nD,D.DM,X) ~ cut(P-A,c(-Inf,c.kn,Inf)) + sex, data=DMepi )
> ftable( addmargins(ce,1), col.vars=3:2 )

D.nD D.DM X
sex M F M F M F

cut(P - A, c(-Inf, c.kn, Inf))
(-Inf,1.91e+03] 19912 49797 1784 3731 536 1143
(1.91e+03,1.92e+03] 130691 190012 18160 23709 9765 13519
(1.92e+03,1.94e+03] 154227 146284 32435 24876 34897 32481
(1.94e+03,1.95e+03] 93397 67909 22921 11437 65012 44292
(1.95e+03,1.96e+03] 40948 26234 6724 3326 46155 29891
(1.96e+03,1.98e+03] 12534 6810 1245 654 19293 15311
(1.98e+03, Inf] 802 403 50 26 969 874
Sum 452511 487449 83319 67759 176627 137511

> # Fit an APC-model for all transitions, seperately for men and women
> mW.m <- glm( D.nD ~ -1 + Ns(A ,knots=a.kn,int=TRUE) +
+ Ns( P,knots=p.kn,ref=2005) +
+ Ns(P-A,knots=c.kn,ref=1950),
+ offset = log(Y.nD),
+ family = poisson,
+ data = subset( DMepi, sex=="M" ) )
> mD.m <- update( mW.m, D.DM ~ . , offset=log(Y.DM) )
> mT.m <- update( mW.m, D.T ~ . , offset=log(Y.T ) )
> lW.m <- update( mW.m, X ~ . )
> # Model for women
> mW.f <- update( mW.m, data = subset( DMepi, sex=="F" ) )
> mD.f <- update( mD.m, data = subset( DMepi, sex=="F" ) )
> mT.f <- update( mT.m, data = subset( DMepi, sex=="F" ) )
> lW.f <- update( lW.m, data = subset( DMepi, sex=="F" ) )

2.2 Residual life time and years lost to DM

We now collect the estimated years of life lost classified by method (immune assumption or
not), sex, age and calendar time:

> a.ref <- 30:90
> p.ref <- 1996:2016
> aYLL <- NArray( list( type = c("Imm","Tot","Sus"),
+ sex = levels( DMepi$sex ),
+ age = a.ref,
+ date = p.ref ) )
> str( aYLL )

logi [1:3, 1:2, 1:61, 1:21] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ type: chr [1:3] "Imm" "Tot" "Sus"
..$ sex : chr [1:2] "M" "F"
..$ age : chr [1:61] "30" "31" "32" "33" ...
..$ date: chr [1:21] "1996" "1997" "1998" "1999" ...

> system.time(
+ for( ip in p.ref )
+ {
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+ nd <- data.frame( A = seq(30,90,0.2)+0.1,
+ P = ip,
+ Y.nD = 1,
+ Y.DM = 1,
+ Y.T = 1 )
+ muW.m <- ci.pred( mW.m, nd )[,1]
+ muD.m <- ci.pred( mD.m, nd )[,1]
+ muT.m <- ci.pred( mT.m, nd )[,1]
+ lam.m <- ci.pred( lW.m, nd )[,1]
+ muW.f <- ci.pred( mW.f, nd )[,1]
+ muD.f <- ci.pred( mD.f, nd )[,1]
+ muT.f <- ci.pred( mT.f, nd )[,1]
+ lam.f <- ci.pred( lW.f, nd )[,1]
+ aYLL["Imm","M",,paste(ip)] <- yll( int=0.2, muW.m, muD.m, lam=NULL,
+ A=a.ref, age.in=30, note=FALSE )[-1]
+ aYLL["Imm","F",,paste(ip)] <- yll( int=0.2, muW.f, muD.f, lam=NULL,
+ A=a.ref, age.in=30, note=FALSE )[-1]
+ aYLL["Tot","M",,paste(ip)] <- yll( int=0.2, muT.m, muD.m, lam=NULL,
+ A=a.ref, age.in=30, note=FALSE )[-1]
+ aYLL["Tot","F",,paste(ip)] <- yll( int=0.2, muT.f, muD.f, lam=NULL,
+ A=a.ref, age.in=30, note=FALSE )[-1]
+ aYLL["Sus","M",,paste(ip)] <- yll( int=0.2, muW.m, muD.m, lam=lam.m,
+ A=a.ref, age.in=30, note=FALSE )[-1]
+ aYLL["Sus","F",,paste(ip)] <- yll( int=0.2, muW.f, muD.f, lam=lam.f,
+ A=a.ref, age.in=30, note=FALSE )[-1]
+ } )

user system elapsed
16.951 0.000 16.955

> round( ftable( aYLL[,,seq(1,61,10),], col.vars=c(3,2) ), 1 )

age 30 40 50 60 70 80 90
sex M F M F M F M F M F M F M F

type date
Imm 1996 11.7 10.8 9.8 9.7 7.8 8.2 5.6 6.3 3.4 3.9 1.5 1.6 0.0 0.0

1997 11.5 10.6 9.7 9.4 7.7 7.9 5.6 6.1 3.4 3.9 1.4 1.6 0.0 0.0
1998 11.3 10.3 9.6 9.2 7.6 7.7 5.5 5.9 3.4 3.8 1.4 1.5 0.0 0.0
1999 11.1 10.0 9.4 9.0 7.5 7.5 5.4 5.7 3.3 3.7 1.4 1.5 0.0 0.0
2000 10.9 9.8 9.3 8.7 7.4 7.3 5.4 5.6 3.3 3.6 1.4 1.5 0.0 0.0
2001 10.7 9.5 9.1 8.5 7.3 7.1 5.3 5.4 3.3 3.4 1.4 1.4 0.0 0.0
2002 10.5 9.2 9.0 8.3 7.1 6.9 5.2 5.2 3.2 3.3 1.3 1.4 0.0 0.0
2003 10.3 9.0 8.8 8.1 7.0 6.7 5.1 5.1 3.1 3.2 1.3 1.3 0.0 0.0
2004 10.0 8.8 8.6 7.8 6.8 6.5 5.0 4.9 3.1 3.1 1.3 1.3 0.0 0.0
2005 9.7 8.5 8.4 7.6 6.6 6.3 4.8 4.8 3.0 3.0 1.2 1.3 0.0 0.0
2006 9.4 8.3 8.1 7.5 6.5 6.2 4.7 4.6 2.9 2.9 1.2 1.2 0.0 0.0
2007 9.1 8.1 7.9 7.3 6.3 6.0 4.6 4.5 2.8 2.8 1.1 1.2 0.0 0.0
2008 8.9 7.9 7.7 7.1 6.1 5.9 4.4 4.3 2.7 2.7 1.1 1.1 0.0 0.0
2009 8.6 7.7 7.5 6.9 6.0 5.7 4.3 4.2 2.7 2.6 1.1 1.1 0.0 0.0
2010 8.4 7.5 7.3 6.8 5.9 5.6 4.2 4.1 2.6 2.5 1.1 1.1 0.0 0.0
2011 8.3 7.3 7.2 6.7 5.8 5.5 4.2 4.0 2.6 2.5 1.0 1.0 0.0 0.0
2012 8.1 7.2 7.1 6.5 5.7 5.4 4.1 4.0 2.6 2.4 1.0 1.0 0.0 0.0
2013 8.0 7.1 7.0 6.4 5.6 5.3 4.1 3.9 2.5 2.4 1.0 1.0 0.0 0.0
2014 7.8 6.9 6.9 6.3 5.6 5.3 4.1 3.8 2.5 2.3 1.0 0.9 0.0 0.0
2015 7.7 6.8 6.8 6.2 5.5 5.2 4.0 3.8 2.5 2.2 1.0 0.9 0.0 0.0
2016 7.6 6.7 6.7 6.1 5.5 5.1 4.0 3.7 2.5 2.2 1.0 0.9 0.0 0.0

Tot 1996 11.1 10.4 9.3 9.2 7.3 7.7 5.2 5.9 3.1 3.7 1.3 1.5 0.0 0.0
1997 10.9 10.1 9.1 9.0 7.2 7.5 5.1 5.7 3.1 3.6 1.3 1.5 0.0 0.0
1998 10.7 9.8 9.0 8.7 7.0 7.3 5.0 5.5 3.1 3.5 1.3 1.4 0.0 0.0
1999 10.5 9.6 8.8 8.5 6.9 7.1 5.0 5.4 3.0 3.4 1.3 1.4 0.0 0.0
2000 10.3 9.3 8.6 8.3 6.8 6.9 4.9 5.2 3.0 3.3 1.3 1.4 0.0 0.0
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2001 10.0 9.0 8.5 8.0 6.6 6.6 4.8 5.0 2.9 3.2 1.2 1.3 0.0 0.0
2002 9.8 8.8 8.3 7.8 6.5 6.4 4.7 4.8 2.9 3.1 1.2 1.3 0.0 0.0
2003 9.5 8.5 8.1 7.6 6.3 6.2 4.5 4.7 2.8 2.9 1.2 1.2 0.0 0.0
2004 9.3 8.2 7.8 7.3 6.1 6.0 4.4 4.5 2.7 2.8 1.1 1.2 0.0 0.0
2005 9.0 8.0 7.6 7.1 5.9 5.9 4.3 4.3 2.6 2.7 1.1 1.1 0.0 0.0
2006 8.7 7.8 7.4 6.9 5.8 5.7 4.1 4.2 2.5 2.6 1.0 1.1 0.0 0.0
2007 8.4 7.5 7.1 6.7 5.6 5.5 4.0 4.1 2.4 2.5 1.0 1.1 0.0 0.0
2008 8.1 7.3 6.9 6.6 5.4 5.4 3.8 3.9 2.3 2.4 1.0 1.0 0.0 0.0
2009 7.8 7.1 6.7 6.4 5.2 5.2 3.7 3.8 2.3 2.3 0.9 1.0 0.0 0.0
2010 7.6 7.0 6.5 6.3 5.1 5.1 3.6 3.7 2.2 2.2 0.9 0.9 0.0 0.0
2011 7.4 6.8 6.4 6.1 5.0 5.0 3.5 3.6 2.2 2.2 0.9 0.9 0.0 0.0
2012 7.3 6.6 6.3 6.0 4.9 4.9 3.5 3.5 2.1 2.1 0.9 0.9 0.0 0.0
2013 7.1 6.5 6.1 5.9 4.8 4.8 3.4 3.4 2.1 2.0 0.9 0.8 0.0 0.0
2014 7.0 6.3 6.0 5.8 4.8 4.7 3.4 3.4 2.0 2.0 0.8 0.8 0.0 0.0
2015 6.8 6.2 5.9 5.6 4.7 4.6 3.3 3.3 2.0 1.9 0.8 0.8 0.0 0.0
2016 6.7 6.1 5.8 5.5 4.6 4.6 3.3 3.2 2.0 1.9 0.8 0.7 0.0 0.0

Sus 1996 10.7 10.1 8.9 9.0 7.1 7.6 5.2 5.9 3.2 3.8 1.4 1.6 0.0 0.0
1997 10.5 9.8 8.8 8.8 7.0 7.4 5.1 5.7 3.2 3.7 1.4 1.5 0.0 0.0
1998 10.3 9.6 8.7 8.5 6.9 7.2 5.1 5.5 3.2 3.6 1.4 1.5 0.0 0.0
1999 10.2 9.3 8.5 8.3 6.8 7.0 5.0 5.4 3.1 3.5 1.4 1.5 0.0 0.0
2000 10.0 9.0 8.4 8.1 6.7 6.8 4.9 5.2 3.1 3.4 1.4 1.4 0.0 0.0
2001 9.7 8.8 8.2 7.8 6.5 6.6 4.8 5.0 3.1 3.3 1.3 1.4 0.0 0.0
2002 9.5 8.5 8.1 7.6 6.4 6.4 4.7 4.9 3.0 3.2 1.3 1.4 0.0 0.0
2003 9.2 8.3 7.8 7.4 6.2 6.2 4.6 4.7 2.9 3.1 1.3 1.3 0.0 0.0
2004 8.9 8.0 7.6 7.2 6.0 5.9 4.5 4.5 2.9 3.0 1.2 1.3 0.0 0.0
2005 8.6 7.7 7.3 6.9 5.8 5.8 4.3 4.4 2.8 2.8 1.2 1.2 0.0 0.0
2006 8.3 7.5 7.1 6.7 5.6 5.6 4.2 4.2 2.7 2.7 1.1 1.2 0.0 0.0
2007 8.0 7.2 6.8 6.5 5.4 5.4 4.0 4.1 2.6 2.6 1.1 1.1 0.0 0.0
2008 7.7 7.0 6.6 6.3 5.2 5.2 3.9 3.9 2.5 2.5 1.1 1.1 0.0 0.0
2009 7.4 6.8 6.4 6.2 5.1 5.1 3.8 3.8 2.4 2.4 1.0 1.1 0.0 0.0
2010 7.3 6.6 6.2 6.0 5.0 5.0 3.7 3.7 2.4 2.4 1.0 1.0 0.0 0.0
2011 7.1 6.5 6.2 5.9 4.9 4.9 3.7 3.7 2.4 2.3 1.0 1.0 0.0 0.0
2012 7.0 6.4 6.1 5.8 4.9 4.9 3.6 3.6 2.3 2.3 1.0 1.0 0.0 0.0
2013 7.0 6.3 6.0 5.8 4.9 4.8 3.6 3.6 2.3 2.2 1.0 0.9 0.0 0.0
2014 6.9 6.3 6.0 5.7 4.9 4.8 3.6 3.5 2.3 2.2 1.0 0.9 0.0 0.0
2015 6.8 6.2 6.0 5.7 4.9 4.8 3.6 3.5 2.3 2.1 1.0 0.9 0.0 0.0
2016 6.8 6.1 6.0 5.6 4.9 4.7 3.6 3.5 2.3 2.1 1.0 0.8 0.0 0.0

We now have the relevant points for the graph showing YLL to diabetes for men and
women by age, and calendar year, both under the immunity and susceptibility models for
the calculation of YLL.

> plyll <- function(wh){
+ par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
+
+ matplot( a.ref, aYLL[wh,"M",,],
+ type="l", lty=1, col="blue", lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
+ abline(v=50,h=1:10,col=gray(0.7))
+ text( 90, 11, "Men", col="blue", adj=1 )
+ text( 40, aYLL[wh,"M","40","1996"], "1996", adj=c(0,0), col="blue" )
+ text( 43, aYLL[wh,"M","44","2016"], "2016", adj=c(1,1), col="blue" )
+
+ matplot( a.ref, aYLL[wh,"F",,],
+ type="l", lty=1, col="red", lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
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+ abline(v=50,h=1:10,col=gray(0.7))
+ text( 90, 11, "Women", col="red", adj=1 )
+ text( 40, aYLL[wh,"F","40","1996"], "1996", adj=c(0,0), col="red" )
+ text( 43, aYLL[wh,"F","44","2016"], "2016", adj=c(1,1), col="red" )
+ }
> plyll("Imm")

> plyll("Tot")

> plyll("Sus")
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Figure 2.1: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes, assuming the persons without diabetes at a
given age remain free from diabetes (immunity assumption — not reasonable). The lines
refer to date of evaluation; the top lines refer to 1.1.1996 the bottom ones to 1.1.2016. Blue
curves are men, red women.

From figure 2.2 we see that for men aged 50 the years lost to diabetes has decreased from
a bit over 8 to a bit less than 6 years, and for women from 8.5 to 5 years; so a greater
improvement for women.
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Figure 2.2: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes, allowing the persons without diabetes at a
given to contract diabetes and thus be subject to higher mortality. The lines refer to date of
evaluation; the top lines refer to 1.1.1996 the bottom ones to 1.1.2016. Blue curves are men,
red women.
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Figure 2.3: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes. Allowance for susceptibility is approximated
by using the total population mortality instead of non-DM mortality. The lines refer to date
of evaluation; the top lines refer to 1.1.1996 the bottom ones to 1.1.2016. Blue curves are
men, red women.



Chapter 3

Practical implementation

We have devised functions that wraps these formulae up for practical use.

3.1 Function definitions

When using the functions it is assumed that the functions µW , µD and λ are given as
vectors corresponding to equidistantly (usually tightly) spaced ages from 0 to K where K is
the age where everyone can safely be assumed dead.
surv1 is a simple function that computes the survival function from a vector of mortality

rates, and optionally the conditional survival given being alive at prespecified ages:

> surv1

function( int, mu, age.in=0, A=NULL )
{
# Computes the survival function from age A till the end, assuming
# that mu is a vector of mortalities in intervals of length int.
# int and mu should be in compatible units that is T and T^-1 for
# some unit T (months, years, ...)

# age-class boundaries
age <- 0:length(mu)*int + age.in

# cumulative rates and survival at the boundaries
Mu <- c( 0, cumsum( mu )*int )
Sv <- exp( -Mu )
surv <- data.frame( age=age, surv=Sv )

# if a vector of conditioning ages A is given
if( cond <- !is.null(A) )
{
j <- 0
# actual conditioning ages
cage <- NULL
for( ia in A )

{
j <- j+1
# Where is the age we condition on
cA <- which( diff(age>ia)==1 )
surv <- cbind( surv, pmin( 1, surv$surv/(surv$surv[cA]) ) )
cage[j] <- surv$age[cA]
}

14
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}
names( surv )[-1] <- paste( "A", c( age.in, if( cond ) cage else NULL ), sep="" )
rownames( surv ) <- NULL
return( surv )
}

erl1 basically just expands the result of surv1 with a column of expected residual life
times:

> erl1

function( int, mu, age.in = 0 )
{
# Computes expected residual life time at all ages
age <- 0:length(mu)*int + age.in

# Small utility: cumulative cumulative sum from the end of a vector
musmuc <- function( x ) rev( cumsum( rev(x) ) )

# The survival function with a 0 at end, and the integral from the upper end
surv <- surv1( int = int, mu = mu, age.in = age.in )[,2]
cbind( age = age,

surv = surv,
erl = c( musmuc( ( surv[-1]-diff(surv)/2 ) ) /

surv[-length(surv)], 0 ) * int )
}

We also define a function, surv2, that computes the survival function for a non-diseased
person that may become diseased with rate lam and after that die at a rate of muD
(corresponding to the formulae above). This is the sane way of handling years of life lost to
a particular illness:

> surv2

function( int, muW, muD, lam, age.in=0, A=NULL )
{
# check the vectors
if( length(muW) != length(muD) |

length(muD) != length(lam) )
stop( "Vectors with rates must have same length:\n",

"length(muW)=", length(muW),
", length(muD)=", length(muD),
", length(lam)=", length(lam) )

# First the workhorse that computes the survival function for a
# person in Well assuming that the mortality rate from this state is
# muW, disease incidence is in lam, and mortality in the diseased
# state is muD, and that all refer to constant rates intervals of
# length int starting from age.in, conditional on survival to A
wsurv2 <-
function( int, muW, muD, lam, age.in=0, A=0 )
{
# age-class boundaries - note one longer that rate vectors refers to
# boundaries of intervals not midpoints
age <- 0:length(muW)*int + age.in

# cumulative rates at the boundaries, given survival to A
MuW <- cumsum( c( 0, muW ) * ( age > A ) ) * int
MuD <- cumsum( c( 0, muD ) * ( age > A ) ) * int
Lam <- cumsum( c( 0, lam ) * ( age > A ) ) * int
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# probability of being well
pW <- exp( -( Lam + MuW ) )

# probability of diagnosis at s --- first term in the integral for
# P(DM at a). Note that we explicitly add a 0 at the start so we get a
# probability of 0 of transition at the first age point
Dis <- c(0,lam) * ( age > A ) * exp( -(Lam+MuW) ) * int

# for each age (age[ia]) we compute the integral over the range
# [0,age] of the product of the probability of diagnosis and the
# probability of surviving from diagnosis till age ia
pDM <- Dis * 0
for( ia in 1:length(age) )

pDM[ia] <- sum( Dis[1:ia] * exp( -(MuD[ia]-MuD[1:ia]) ) )
# 1st term as function of s (1:ia)

# 2nd term integral over range s:age
# upper integration limit is age (ia) and the lower
# limit is the intermediate age (at DM) (1:ia)

# Finally, we add the probabilities of being in Well resp. DM to get
# the overall survival:
surv <- data.frame( age = age, surv = pDM + pW )
return( surv )
}

# survival from start
surv <- wsurv2( int, muW, muD, lam, age.in=age.in, A=0 )

# add columns for conditioning ages
if( !is.null(A) )

{
for( j in 1:length(A) )

{
surv <- cbind( surv,

wsurv2( int, muW, muD, lam, age.in=age.in, A=A[j] )[,2] )
}

}
Al <- A
for( i in 1:length(A) ) Al[i] <- max( surv$age[surv$age <= A[i]] )
colnames( surv )[-1] <- paste( "A", c( age.in, Al ), sep="" )

# done!
return( surv )
}

Finally we devised a function using these to compute the expected residual lifetime at
select ages:

> erl

function( int,
muW,
muD,
lam = NULL,

age.in = 0,
A = NULL,

immune = is.null(lam),
yll = TRUE,
note = TRUE )

{
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# Computes expected residual life time for Well and Dis states
# respectively in an illness-death model, optionally ignoring
# the well->ill transition

# Utility to integrate a survival function from the last point where
# it is 1, assuming points are 1 apart
trsum <-
function( x )
{
x[c(diff(x)==0,TRUE)] <- NA
sum( ( x[-length(x)] + x[-1] ) / 2, na.rm=TRUE )
}

# Check sensibility
if( !immune & is.null(lam) ) stop( "'lam' is required when immune=FALSE\n" )

# Survival functions
sD <- surv1( int=int, muD, age.in = age.in, A = A )

if( immune ) sW <- surv1( int=int, muW, age.in = age.in, A = A )
else sW <- surv2( int=int, muW, muD, lam, age.in = age.in, A = A )

# Area under the survival functions
erl <- cbind( apply( sW[,-1], 2, trsum ),

apply( sD[,-1], 2, trsum ) ) * int
colnames( erl ) <- c("Well","Dis")
rownames( erl ) <- colnames( sW )[-1]

# Should we compute years of life lost?
if( yll ) erl <- cbind( erl, YLL = erl[,"Well"] - erl[,"Dis"] )

# Cautionary note
if( immune )
{
attr( erl, "NOTE" ) <- "Calculations assume that Well persons cannot get Ill (quite silly!)."
if( note ) cat("NOTE:", attr( erl, "NOTE" ), "\n" )
}

return( erl )
}

. . . and a wrapper for this if we only want the years of life lost returned:

> yll

function( int,
muW,
muD,
lam = NULL,

age.in = 0,
A = NULL,

immune = is.null(lam),
note = TRUE ) erl( int = int,

muW = muW,
muD = muD,
lam = lam,

age.in = age.in,
A = A,

immune = immune,
yll = TRUE,
note = note )[,"YLL"]
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