
EloChoice (v. 0.29) - a brief tutorial

Christof Neumann and Andrew P. Clark

October 12, 2015

Contents

1 introduction 1

2 a worked example 2
2.1 get the data into R . 2
2.2 random data . 3
2.3 Calculating the ratings . 3

3 reliability-index 5
3.1 background . 5
3.2 application . 6

4 an empirical example 7

5 self-contests 8

1 introduction

The overall goal of this document is to provide a short manual on how to calculate Elo-ratings
for attractiveness ratings on pairwise presented stimuli. Below, we provide a worked example
(section 2) based on an artificially generated data set. We suggest you go through this example
before using the method on your own data set. Section 3 explains in a bit more detail the suggested
reliability index as means to evaluate stability in ratings. The next section (section 4) deals with
an empirical data set, which comes with the package.

In general, the underlying idea of the Elo-rating procedure is to update individual scores after
pair-wise contests based on the expected outcome of the contest before a contest actually takes
place. The more expected an outcome was, the smaller is the change in scores of the two contes-
tants. Conversely, the more unexpected an outcome was, the larger are the score changes. The
expectation of an contest outcome is expressed as the difference in Elo-ratings before the contest.
Inherent in this general philosophy is that scores of contestants change over time - think of a chess
or tennis player or an animal that at the start of her career will have a relatively low score (and/or
rank), which may increase over time and eventually will drop again.

Now, when we think of a pair of visual stimuli as ‘contestants’, for example in the context
of attractiveness ratings, the aspect of dynamics over time is much less important. Typically,
an experiment of attractiveness is conducted over a very brief period of time (at least relatively,
compared to a chess player’s career or a monkey’s life), and as such we expect such changes in
attractiveness over time to play only a negligible role. Elo-rating, as implemented in this package
and tutorial, will still result in a reliable ranking of stimuli attractiveness. The crucial aspect of
this package is that Elo-ratings are based on multiple randomized sequences of ratings, which we
refer to as mElo in the accompanying paper. Though not strictly necessary, we think this is a
prudent approach, because the order in which rating trials occur in the sequence may affect the

1

final Elo-ratings of the stimuli, at least in small data sets (small in terms of stimuli or small in
number of rating trials).

2 a worked example

The first thing to be done is to install and load the package.1 Eventually, a simple in-

stall.packages("EloChoice") will suffice (once the package is on the official R server). Also
note that we need the packages Rcpp and RcppArmadillo installed, which should be automatically
downloaded and installed if you use the install.packages("EloChoice") command.2

install.packages(EloChoice) # install package (to be done once)

library(EloChoice) # load package (every time you want to use the package)

2.1 get the data into R

If you already know how to read your raw data into R, you can skip this section. We assume that
you have your ratings organized in a table, in which each line corresponds to a rating event/trial.
There is at least a column for the stimulus that was preferred by the rater and the one that was
not. Additional columns are likely to be present and table 1 provides an example. Most likely you
will have organized this table in a spreadsheet software like Excel or OpenOffice. The perhaps
simplest way of reading a data set into R is to first save your data table from the spreadsheet
software as tab-delimited text file (File>Save as...> and then choose “Tab Delimited Text (.txt)”).

Having such a text-file, it is then easy to read that data set into R and save it as an object
named xdata3:

xdata <- read.table("c:\\datafiles\\myfile.txt", sep="\t", header=T) # Windows

xdata <- read.table("/Volumes/mydrive/myfile.txt", sep="\t", header=T) # Mac

str(xdata)

Note that you have to specify the full path to the place where the data file is saved.4 The
sep="\t" argument tells R that you used a tab to separate entries within a line. The header=T

argument tells R that the first line in your table are column headers. Finally, the str(xdata)

command gives a brief overview over the data set, which you can use to check whether the import
went smoothly (for example, as indicated by the number of lines (obs. in the output of str()),
which should correspond to the number of trials in your data set).

Table 1: A possible data set layout. Note that R replaces space in column names with periods.
preferred stimulus losing stimulus rater date time

ab cf A 2010-01-01 14:34:01
cf xs A 2010-01-01 14:34:08
ab xs A 2010-01-01 14:34:11
dd cf A 2010-01-01 14:34:15
ab cf B 2010-01-04 09:17:20

If the import was successful, the only thing you need to know is that for the functions of the
package to work we need to access the columns of the data table individually. This can be achieved
by using the dollar character. For example xdata$preferred.stimulus returns the column with
the preferred stimuli (as per table 1). If you are unfamiliar with this, it will become clear while
going through the examples in the next section.

1Installing has to be done once, while loading the package has to be done each time you restart R
2install.packages("Rcpp") and install.packages("RcppArmadillo") will install the two packages by hand
3you can name this object any way you like, xdata is just a personal convention
4You can also use setwd() to define a new root directory or you can use (the freely available) RStudio, which

offers nice options to work in projects that facilitate reading of files among others.

2

2.2 random data

Throughout this first part of the tutorial, we will use randomly generated data sets. We begin
by creating such a random data set with the function randompairs(), which we name xdata.5

set.seed(123)

xdata <- randompairs(nstim = 20, nint = 500, reverse = 0.1)

head(xdata)

index winner loser

1 1 p x

2 2 t v

3 3 r s

4 4 n z

5 5 w t

6 6 k u

The command set.seed(123) simply ensures that each time you run this it will create the
same data set as it shown in this tutorial. If you want to create a truly random data set, just
leave out this line.

The function as is created a data set with 20 different stimuli (nstim=20), which were presented
in 500 presentations/trials (nint=500). The head() command displays the first six lines of the
newly created data set.6 You can see the stimulus IDs: the winner-column refers to the preferred
stimulus (the ‘winner’ of the trial) and the loser-column to the second/unpreferred stimulus (the
‘loser’). The index-column simply displays the original order in which the stimuli were presented.
Note also that the data set is generated in a way such that there is always a preference for the
stimulus that comes first in alphanumeric order, which is reversed in 10% of trials (reverse=0.1).
This ensures that a hierarchy of stimuli actually arises.

2.3 Calculating the ratings

We then can go on to calculate the actual ratings from this sequence. Again, to enable you to
obtain the exact results as presented in this tutorial, I use the set.seed() function.

set.seed(123)

res <- elochoice(winner = xdata$winner, loser = xdata$loser, runs = 500)

summary(res)

Elo ratings from 20 stimuli

total (mean/median) number of rating events: 500 (50/50)

range of rating events per stimulus: 33 - 61

startvalue: 0

k: 100

randomizations: 500

The two code pieces winner = xdata$winner and loser = xdata$loser specify the two columns
in our data table that represent the winning (‘preferred’) and losing (‘not preferred’) stimuli, re-
spectively. The runs = 500 bit indicates how many random sequences of presentation order we
want to calculate.

5You are by no means bound to use the name xdata for this object, this is just a personal convention
6If you want to see the entire data set, simply type xdata

3

We saved the results in an object named res, from which can we can get a brief summary with
the summary(res) function. From this, we can see that there were 20 stimuli in the data set,
each appearing between 33 and 61 times. Also note that we randomized the original sequence 500
times. In case you have larger data sets, you may want to reduce the number of randomizations
to reduce the computation time and to explore whether everything runs as it should.7

Next, we obviously want to see what the actual Elo-ratings are for the stimuli used in the data
set. For this, we use the function ratings().

ratings(res, show="original", drawplot=FALSE)

a h g b j c n k o p r s u q w v

423 376 360 312 262 236 221 76 25 17 -6 -88 -123 -124 -146 -202

t y x z

-264 -337 -470 -548

The show="original" argument specifies that we wish to see the ratings as obtained from the
initial (original) data sequence. If we want to have the ratings averaged across all randomizations
(‘mElo’), we change the argument to show="mean".

ratings(res, show="mean", drawplot=FALSE)

a h b c g j k o

450.486 386.924 360.402 313.614 240.978 231.416 167.092 103.174

n p q r s t w u

96.060 49.672 -39.202 -103.966 -112.190 -174.578 -185.730 -214.558

v y x z

-276.592 -322.028 -441.000 -529.974

Similarly, you can also request all ratings from all randomizations, using show="all" or return
the ranges across all randomizations with show="range".

If you wish to export ratings, you can use the write.table() function, which saves your data
in a text file that can easily be opened in a spreadsheet program. First, we save the rating results
into a new object, myratings, which we then export. Note that the resulting text file will be in a
‘long’ format, i.e. each stimulus along with its original or mean rating will appear as one row.

myratings <- ratings(res, show="mean", drawplot=FALSE)

Windows

xdata <- write.table(myratings, "c:\\datafiles\\myratings.txt", sep="\t",

header=T)

Mac

xdata <- write.table(myratings, "/Volumes/mydrive/myratings.txt", sep="\t",

header=T)

If you want to export the ratings from each single randomization (i.e. show="all") or the
range of ratings across all randomizations (show="range"), the layout of the text file will be
‘wide’, i.e. each stimulus appears as its own column with each row representing ratings after one
randomization or two rows representing the minimum and maximum rating values. By default, R
appends row names to the text output, which is not convenient in this case so we turn this option
off with row.names=F.

7On my laptop PC, the calculations of this example take less than a second, but this can drastically increase if
you have larger data sets and/or want to use larger number of randomizations.

4

stimulus

E
lo

−
ra

tin
g

a h b c g j k o n p q r s t w u v y x z

−600

−400

−200

0

200

400

600

Figure 1: Elo ratings of 20 stimuli after 500 rating events and 500 randomizations of the sequence.
The black circles represent the average rating at the end of the 500 generated sequences for each
stimulus, and the black lines represent their ranges. The grey circles show the final ratings from
the original sequence.

myratings <- ratings(res, show="all", drawplot=FALSE)

Windows

xdata <- write.table(myratings, "c:\\datafiles\\myratings.txt", sep="\t",

header=T, row.names=F)

Mac

xdata <- write.table(myratings, "/Volumes/mydrive/myratings.txt", sep="\t",

header=T, row.names=F)

Finally, the ratings() function also allows you to take a first graphical glance at how the
randomizations affected the ratings.

ratings(res, show=NULL, drawplot=TRUE)

Figure 1 shows the average ratings across the 500 randomizations as black circles, while the
ratings from the original/initial sequence are indicated by the smaller red circles The vertical bars
represent the ranges of Elo-ratings across the 500 randomizations for each stimulus.

3 reliability-index

3.1 background

We define an reliability-index as R = 1−
∑

u
N , where N is the total number of rating events/trials

for which an expectation for the outcome of the trial existed8 and u is a vector containing 0’s and
1’s, in which a 0 indicates that the preference in this trial was according to the expectation (i.e.
the stimulus with the higher Elo-rating before the trial was preferred), and a 1 indicates a trial
in which the expectation was violated, i.e. the stimulus with the lower Elo-rating before the trial
was preferred (an ‘upset’). In other words, R is the proportion of trials that went in accordance
with the expectation. Note that trials without any expectation, i.e. those for which ratings for
both stimuli are identical, are excluded from the calculation. Subtracting the proportion from 1 is

8Consequently, the maximum value N can take is the number of trials minus one, because for at least the very
first trial in a sequence, no expectation can be expressed

5

done to ensure that if there are no upsets (
∑

u = 0), the index is 1, thereby indicating complete
agreement between expectation and observed rating events. For example, in table 2 there are ten
rating events/trials, four of which go against the expectation (i.e. they are upsets), yielding an
reliability-index of 1 − 4/10 = 0.6.

This approach can be extended to calculate a weighted reliability index, where the weight
is given by the absolute Elo-rating difference, an index we denote R′ and which is defined as
R′ = 1 −

∑N
i=1

ui∗wi∑
w , where ui is the same vector of 0’s and 1’s as described above and wi is

the absolute Elo-rating difference, i.e. the weight. Following this logic, stronger violations of
the expectation contribute stronger to the reliability index than smaller violations. For example,
column 3 in table 2 contains fictional rating differences, which for illustrative purposes are assigned
in a way such that the four largest rating differences (200, 200, 280, 300) correspond to the four
upsets, which should lead to a smaller reliability index as compared to the simpler version described
earlier. Applying this leads to R′ = 1 − 0.57 = 0.43. In contrast, if we apply the smallest rating
differences (90, 100, 120, 140, as per column 4 in table 2) to the upsets, this should lead to a larger
reliability-index, which it does: R′ = 1 − 0.26 = 0.74.

Table 2: 10 rating decisions that were either in accordance with the prediction or not. Two
different rating differences are given to illustrate the weighted upset index. Note that the values
are the same, just their assignment to different interactions is changed and consequently the
column means are the same for both (173).

higher rated = preferred upset rating difference 1 rating difference 2
1 yes 200 90
1 yes 300 100
0 no 100 300
0 no 150 280
1 yes 200 120
0 no 140 200
1 yes 280 140
0 no 90 150
0 no 150 200
0 no 120 150

3.2 application

To calculate the reliability-index, we use the function reliability(). Note that we calculated
our initial Elo-ratings based on 500 randomizations, so to save space, I’ll display only the first six
lines of the results (the head(...) function).

upsets <- reliability(res)

head(upsets)

upset upset.wgt totIA

1 0.8154158 0.8749464 493

2 0.8174442 0.8721155 493

3 0.7991886 0.8731617 493

4 0.8056680 0.8732986 494

5 0.8185484 0.8769738 496

6 0.8165323 0.8686285 496

Each line in this table represents one randomization.9 The first column represents the un-
weighted and the second the weighted reliability index (R and R′), which is followed by the total
number of trials that contributed to the calculation of the index. Note that this number cannot

9the first line corresponds to the actual original sequence

6

reach 500 (our total number of trials in the data set) because at least for the very first trial we
did not have an expectation for the outcome of that trial.

We then calculate the average values for both the unweighted and weighted upset indices.

mean(upsets$upset)

[1] 0.811623

mean(upsets$upset.wgt)

[1] 0.87683

Remember that our data set contained a fairly low number of ‘reversals’, i.e. 10% of trials went
against the predefined preference (e.g. ‘A’ is preferred over ‘K’). As such, the R and R′ values are
fairly high (∼ 0.8 − 0.9). If we create another data set, in which reversals are more common, we
can see that the values go down.

set.seed(123)

xdata <- randompairs(nstim = 20, nint = 500, reverse = 0.3)

res <- elochoice(winner = xdata$winner, loser = xdata$loser, runs = 500)

upsets <- reliability(res)

mean(upsets$upset)

[1] 0.6009882

mean(upsets$upset.wgt)

[1] 0.6462721

4 an empirical example

In the following, we go through an empirical example data set. Here, 56 participants were asked
to choose the one out of two presented bodies which depicted the stronger looking male. Each of
the 82 stimuli appeared 112 times, resulting in a total of 4,592 rating trials.

We start by loading the data set. Then we calculate the Elo-ratings, show the average ratings
and plot them (figure 2).

data(physical)

set.seed(123)

res <- elochoice(winner = physical$Winner, loser = physical$Loser, runs = 500)

summary(res)

Elo ratings from 82 stimuli

total (mean/median) number of rating events: 4592 (112/112)

range of rating events per stimulus: 112 - 112

startvalue: 0

k: 100

randomizations: 500

ratings(res, show = "mean", drawplot = FALSE)

P012 P070 P076 P142 P168 P013 P169 P150

634.890 594.636 564.144 564.084 489.200 454.752 444.490 438.770

P060 P143 P161 P017 P016 P061 P003 P027

420.564 411.304 380.524 349.902 346.874 330.388 320.228 286.242

P002 P046 P148 P006 P103 P007 P038 P075

7

stimulus

E
lo

−
ra

tin
g

P012 P143 P148 P151 P047 P040 P165 P058 P134 P144

−500

0

500

Figure 2: Elo ratings of 82 stimuli after 4,592 rating events and 500 randomizations of the sequence.
The black circles represent the average rating at the end of the 500 generated sequences, and the
black lines represent their ranges. The grey circles show the final ratings from the original sequence.
Note that not all stimulus IDs fit on the x-axis, so most are omitted.

235.422 235.164 226.182 218.364 210.590 175.764 160.536 139.222

P089 P119 P053 P151 P147 P050 P126 P129

137.570 121.326 109.632 108.052 105.076 96.488 66.296 59.824

P044 P020 P155 P008 P047 P117 P014 P004

59.592 59.228 55.650 55.564 26.126 17.458 14.410 4.172

P078 P166 P092 P112 P083 P040 P034 P121

-31.650 -34.438 -57.890 -68.312 -71.590 -74.642 -80.666 -82.202

P021 P110 P163 P132 P015 P090 P165 P036

-87.140 -91.170 -96.086 -99.912 -116.514 -144.022 -157.626 -157.668

P171 P124 P018 P057 P077 P079 P125 P058

-159.726 -167.988 -177.456 -178.644 -195.106 -208.544 -220.562 -221.670

P031 P127 P128 P052 P098 P123 P172 P029

-255.682 -258.202 -261.508 -287.894 -290.642 -294.466 -295.756 -300.986

P134 P086 P019 P170 P140 P080 P042 P159

-307.024 -345.188 -374.590 -402.974 -422.570 -435.016 -462.394 -534.958

P085 P144

-544.016 -673.610

ratings(res, show=NULL, drawplot=TRUE)

5 self-contests

Depending on how the stimulus presentation is prepared, there may be cases (trials) in the final
data set in which a stimulus is paired with itself (‘self-contest’). As long as the presentation is
indeed of pairs of stimuli this is not a problem because such self-contests are irrelevant to refine the
true rating of a stimulus (as opposed to pairs of two different stimuli). If there are three or more
stimuli presented in one trial, the situation becomes different if for example two ‘A’s are presented
with one ‘B’. However, this is an issue to be dealt with later, when presentation of triplets or more
stimuli is properly implemented in the package (currently under development).

For now, self-contests are excluded from analysis of stimulus pairs for the reason mentioned
above. However, a message that such self-contests occur in the data will be displayed in such

8

cases.10

total of seven trials with two 'self-trials' (trials 6 and 7)

w <- c(letters[1:5], "a", "b"); l <- c(letters[2:6], "a", "b")

res <- elochoice(w, l)

ratings(res, drawplot=FALSE)

a b c d e f

50 7 1 0 0 -58

summary(res)

Elo ratings from 6 stimuli

total (mean/median) number of rating events: 5 (1.67/2)

range of rating events per stimulus: 1 - 2

startvalue: 0

k: 100

randomizations: 1

total of five trials without 'self-trials'
w <- c(letters[1:5]); l <- c(letters[2:6])

res <- elochoice(w, l)

ratings(res, drawplot=FALSE)

a b c d e f

50 7 1 0 0 -58

summary(res)

Elo ratings from 6 stimuli

total (mean/median) number of rating events: 5 (1.67/2)

range of rating events per stimulus: 1 - 2

startvalue: 0

k: 100

randomizations: 1

10In this document the actual message does not show, but if you run the code yourself you should be able to see
it.

9

	introduction
	a worked example
	get the data into R
	random data
	Calculating the ratings

	reliability-index
	background
	application

	an empirical example
	self-contests

