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The ElectroGraph package for R collects a number of network analysis algorithms and

presentation styles. While this includes standard measures for distances based on geodesic

path lengths, there is also a great deal to be gained from the inclusion of alternative

measures of distance such as social conductance (also known as the inverse of Ohmic or

“resistance” distance, as seen in Klein and Randic [1993] among others), and the extension

of this method to considering antagonistic relationships (as in Thomas [2009]).

This guide contains installation instructions as well as directions for the use of the

package to compare, analyze and display relational data of various types, primarily data

that are more complicated than simple binary relations.

1 Installation Instructions

ElectroGraph is available on the Comprehensive R Archive Network (or CRAN), so that

the installation of ElectroGraph is as simple as running the command

> install.packages("ElectroGraph")

though the package and this manual can also be obtained from the CRAN URL.

2 Initializing an ElectroGraph object

To process a relational data set into an object that ElectroGraph can analyze, the electrograph

function/constructor is used. The object to load can either be an n-by-n sociomatrix, or

an n-by-k edge list, where k can take one of three values:
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• k = 2: The two columns represent arcs of value 1 to enter into the system. The

resulting system will have as many nodes as there are unique identifiers in the two

columns. By default, the edges produced will be undirected. For example, the

command sequence

ssinks <- c("Carol","Alice","Alice")

ources <- c("Bob","Ted","Bob")

e.graph <- electrograph(cbind(sources,sinks))

will create a four-node social network with three arcs.

• k = 3: The two columns represent source-sink pairs, and the third equals the value

of this arc, which can be any real number (though caution is advised with nega-

tive values.) By default, the edges produced will be undirected. For example, the

command sequence

sources <- c("Bob","Ted","Bob")

sinks <- c("Carol","Alice","Alice")

vals <- c(3,2,1)

e.graph <- electrograph(cbind(sources,sinks,vals))

creates a four-node social network with three undirected edges of varying value.

• k = 4: The two columns represent source-sink pairs, and the third and fourth

columns are the values for each arc in the dyad, for forward and reverse respectively.

For example,

sources <- c("Bob","Ted","Bob")

sinks <- c("Carol","Alice","Alice")

val1 <- c(1,2,5)

val2 <- c(3,2,0)

e.graph <- electrograph(cbind(sources,sinks,val1,val2))

creates an asymmetric directed sociomatrix, where among other relations, Bob pines

for Alice but is not reciprocated.
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2.1 Tie Fidelities and “Enemy” Ties

ElectroGraph has the capacity to include not only positively real-valued ties, but to have

ties that are imperfect carriers of information. The range for a tie fidelity is (−1, 1), so that

a tie with fidelity 1 is considered a perfect transmitter of information (or a regular friend),

fidelity −1 is considered a perfect inverter of information (or an enemy), and values in

between have varying degree of amity or enmity respectively. Standard geodesic measures

are not affected by fidelities, only current-based measures. The concept of network tie

fidelity is defined in Thomas [2009].

To include fidelity measures for each tie in the data set, use the “fidelities” option,

which takes either a length-k column vector, k-by-2 matrix or n-by-n matrix depending

on the input type for the dyads:

sources <- c("Bob","Ted","Bob")

sinks <- c("Carol","Alice","Alice")

val1 <- c(1,2,5)

val2 <- c(3,2,0)

fids <- cbind(c(1,1,1),c(1,-1,1))

e.graph <- electrograph(cbind(sources,sinks,val1,val2), fidelities=fids)

vals <- c(3,2,1)

fid2 <- c(1,1,-1)

e.graph <- electrograph(cbind(sources,sinks,vals), fidelities=fid2)

2.2 Analyses

When an ElectroGraph object is initialized, several analyses are conducted automatically:

• The system is divided into disconnected components. The placement of each node

into each component is given in the ElectroGraph element component.vector.

• The (geodesic) shortest paths between all nodes in each component are calculated

using the Floyd-Warshall algorithm [Floyd, 1962]. This is controlled by the option

solve.for.shortest.paths, and is set to TRUE by default. This can be slow on

large (1000+ nodes) graphs.

• The Ohmic social conductance is calculated between each pair of nodes in each

component, and by connection the Ohmic/resistance distance. This is controlled by
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the option ohmic.properties, and is set to TRUE by default. Note that this can be

very slow on large graphs (500+ nodes), considerably slower than finding the lengths

of shortest paths.

These items are the basis for several summary statistics that can be obtained for each

node. If we have an ElectroGraph object e.graph, then the command summary(e.graph)

will produce the following quantities for each node:

• Out-degree and in-degree, defined as the column- and row-sums of the sociomatrix

respectively. These terms are of course identical in a symmetric sociomatrix.

• The fraction of possible transitive triples and three-cycles that are formed at each

node, if the sociomatrix is binary, generalized from the clustering statistic of Watts

and Strogatz [1998]; labelling the sociomatrix Y , the terms take the form

Ti =

∑
j 6=i

∑
k 6=j,i YijYikYjk∑

j 6=i

∑
k 6=j,i YijYik

,

Li =

∑
j 6=i

∑
k 6=j,i YijYkiYjk∑

j 6=i

∑
k 6=j,i YijYki

.

• Harmonic closeness centralities for each node, defined as

C1/C,out(i) =
∑

j

1

d(i, j)

C1/C,in(i) =
∑

j

1

d(j, i)

where d(i, j) is the geodesic distance from node i to node j. These quantities are

only displayed if the geodesic matrix has been calculated.

• Ohmic closeness centralities for each node, defined as

CΩ,out(i) =
∑

j

1

dΩ(i, j)
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CΩ,in(i) =
∑

j

1

dΩ(j, i)

where dΩ(i,j) is the resistance distance defined in Klein and Randic [1993] (among

others), or as extended to the asymmetric case as in Thomas [2009]. 1/dΩ(i,j) can

also be expressed as Geq
ij , or the equivalent conductance from node i to j. These

quantities are only displayed if the Ohmic procedures have been run.

• Ohmic betweenness centralities for each node, defined according to the scheme used

to estimate the type of signal being used – fixed power, voltage or current:

CP =
∑

a

∑
b 6=a

1√
Geq

ab

∑
j 6=i

Iab
ij

CV =
∑

a

∑
b 6=a

∑
j 6=i

Iab
ij

CP =
∑

a

∑
b6=a

1

Geq
ab

∑
j 6=i

Iab
ij

Iab
ij is the current we would observe along edge (i, j) if the sociomatrix edge strengths

are interpreted as electrical conductances, and a potential difference of 1 Volt were

applied across the node pair (a, b) – this is defined fully in Thomas [2009]. These

quantities are only displayed if the Ohmic procedures have been run.

2.3 Included Data Sets

There are three data sets included for demonstration purposes in the ElectroGraph pack-

age. Two are the fraternities studied by Bernard et al. [1980] and Newcomb [1961] respec-

tively, available in the command

data(electro.frats)
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The data set bernard.killworth.b is a weighted edgelist that indicates the number

of times an observer noticed two people communicating with one another during a short

period of time. The data set can be prepared as an electrograph object with the command

bk.graph <- electrograph(bernard.killworth.b)

The data set newcomb is a three-dimensional array, where each slice indicates a rank-

order of each member’s preferences towards the others during one week. The total period

of observation is 15 weeks.

Because this encompasses 15 separate social interaction periods, it is recommended to

load each week’s observations into its own ElectroGraph object in this fashion:

newcomb.e <- list(NA)

for (kk in 1:15) newcomb.e[[kk]] <- electrograph(newcomb[,,kk])

Separate analyses can then be conducted on each year’s results.

The third data set is a ten-node network synthesized for this guide, termed the Alpha-

bet class: ten people with 14 friendships and two antagonistic connections. This can be

loaded with the command

data(alphabet.class)

and immediately load this as an ElectroGraph object with

alphabet.graph <- electrograph(alphabet.class)

3 Graph Plots

By default, an ElectroGraph object can be automatically plotted by the command

plot(bk.graph)

though depending on the object being plotted, this may not prove to be the most aesthet-

ically pleasing presentation of the data.

There are several important features to consider when plotting graphs:

• Relative node position and distance. Are the geometric distances on the plot meant

to reflect topological distance along a graph?
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• Node shape, size and color. Are these indicative of isolated properties of the node,

or perhaps other characteristics that only have meaning within a network ensemble?

• Edge color, thickness and presence. Which edges do we wish to show and which to

omit for the sake of illumination?

There are several options available to be customized to suit these needs. Among them:

• connectivity.mode: By default, the distances between nodes are set to be "sociomatrix",

which sets the ideal distances as the inverses of the unprocessed sociomatrix terms,

when they are less than There are three other options: "shortest.path", which

sets the preferred distance to be the geodesic distances; "ohmic" sets the plotting

algorithm to use the inverse of the equivalent Ohmic conductance for the ideal dis-

tance between points on a plot; and "ohmic.socio" sets the preferred distance to

be the inverse Ohmic conductance for non-zero dyads, ignoring the indirect Ohmic

conductance between node pairs that do not have a direct connection.

• force.mode: ElectroGraph makes use of two force-energy direction algorithms to

put an n-dimensional object into two-dimensional space. The default selection

is "fruchterman.reingold" [Fruchterman and Reingold, 1991], which will work

with all four connectivity modes; the other option is "kamada.kawai" [Kamada and

Kawai, 1989], which will work with either "shortest.path" or "ohmic". The work-

ings of these algorithms is given in the appendix.

• source.sink.pair: If selected, the Ohmic current flow from the source to the sink

will form the basis for the thickness of the edges and the inclusion of arrowheads.

(ElectroGraph does not support arrowheads explicity for directed edges.)

• previous.electrograph.plot.object: If included, the points in the active plot

will be placed close to those in the “previous” plot. This command is useful for

animation purposes.

Figure 1 demonstrates several of these plots in sequence.

3.1 Separating Components

ElectroGraph will place each disconnected component into its own separate unit in the

resulting figure. Examples of this can be seen in Figure 2.
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Figure 1: Three forms for the plotting of network data with ElectroGraph, demonstrating
on the synthetic data set alphabet.class. Top: standard plotting with sociomatrix terms
defining the total connectivity. Middle: Plotting with Ohmic conductances defining the
connectivity between dyads. Bottom: a demonstration of the Ohmic current flow from
one node to another in the presence of antagonistic ties.8



4 Dynamic Graph Plots

ElectroGraph contains two built-in methods for producing useful animations for display

purposes.

4.1 Wedding Cake Plots of Valued Graphs

Because a single plot can be extremely dense with ties, the “wedding cake” method for

plotting valued-edge graphs is presented to demonstrate various layers of network connec-

tivity. The method is to take various lower and upper bounds for edges that should be

displayed, plot the system with each set of bounds in sequence, then display the plots

in order through static views or by using a movie-making program. The coordinates for

these points are fixed at the outset according to whichever distance and plot methods are

selected to operate on the raw data.

By entering a valued ElectroGraph object directly, we can produce a series of plots

through

plot.wedding.cake(bk.graph)

that will produce a series of plots where the lower bound varies through the range of edges

up to the maximum, and no upper bound is present; this is as if we continually remove

the bottom layers from a tower structural representation of the model.

If we wish to take a tomographic scan of a 2-dimensional network projection, one

possibility is to calculate the desired quantiles directly. For example, to take only 10% of

a graph’s edges at a time:

edge.vals <- bk.graph$grand.sociomatrix; edge.vals <- edge.vals[edge.vals>0]

lower.bound <- quantile(edge.vals,(1:90)/100)

upper.bound <- quantile(edge.vals,(11:100)/100)

plot.wedding.cake(bk.graph, lower.bound=lower.bound, upper.bound=upper.bound)

plot.wedding.cake will save a series of images to disk, currently only in the Portable

Network Graphics (.png) format. The routine will also output a shell script for automat-

ically creating the movie in the freeware program ImageMagick.

4.2 Plotting a Graphical Time Series with animate.plot.series

Given a series of ElectroGraph plots with identical node sets, ElectroGraph can produce

a set of plots with animated transitions between each plot.
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For this, we much save the outcome of each plot into an R object. Suppose we have

the Newcomb data preloaded:

data(electro.frats)

newcomb.electro <- list(NA)

for (kk in 1:dim(newcomb)[3]) {

newcomb.electro[[kk]] <- electrograph(newcomb[,,kk])

}

We can then pre-plot the objects using the following sequence:

newcomb.plot <- list(NA)

newcomb.plot[[1]] <- plot(newcomb.electro[[1]],

distance.mode="electro.social", just=TRUE)

for (kk in 2:length(newcomb.electro))

newcomb.plot[[kk]] <- plot(newcomb.electro[[kk]],

distance.mode="electro.social",

just.coordinates=TRUE, previous.elec=newcomb.plot[[kk-1]])

This sets up a series of plots of the Newcomb sequence where the nodes are aligned to

be as close to their previous positions as possible.

To create a series of images, run the command

animate.plot.series(newcomb.plot)

Like the Wedding Cake plot, this will produce a series of images that can then be

assembled into a movie using software such as ImageMagick; a shell script is provided that

will perform the assembly assuming the software is installed.

5 Force-Energy Graph-Drawing Algorithms

The plotting methods in ElectroGraph use either Fruchterman-Reingold [Fruchterman

and Reingold, 1991] or Kamada-Kawai [Kamada and Kawai, 1989], the two most common

methods for placing graph objects in a two-dimensional space for easy viewing. These algo-

rithms take one of several choices for the “ideal” distance between any pair of nodes: basing

forces on the sociomatrix (sociomatrix), the geodesic path length (shortest.path), the

Ohmic conductance (ohmic), or the Ohmic conductance only where there are ties present

(ohmic.socio).
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Figure 2: Two identical binary networks plotted under the defaults Fruchterman-Reingold
(top) and Kamada-Kawai (bottom) force-directed placement schemes. Because the
Fruchterman-Reingold scheme was designed to induce repelling forces between clusters,
there is considerably more separation between the two stars than in the Kamada-Kawai
version of this network. To compare the relative distances, note that each graph has an
associated three-node disconnected component, also with binary ties; the repulsive effect
stretches the prime tie (1,2) far more in the former case.
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Here I review the original definitions of the algorithms, noting how the regular use of

weighted tie strengths impacts these algorithms, and how thinking of forces in terms of

connectivity or closeness rather than distance allows for more generalization.

5.1 Fruchterman-Reingold Algorithm

In this implementation, Fruchterman and Reingold [1991] assume that all nodes have a

repulsive force between them that decays with distance, and that only nodes with a con-

nection exhibit an attraction to each other. Forces are designed to balance for a pair of

nodes at their “ideal” distance in the absence of any other effects; in practice, the repul-

sive forces that come about through the addition of neighbouring nodes cause connected

communities to appear closer to each other, and that non-members are pushed farther

away. In this way, the Fruchterman-Reingold algorithm is optimal for quick community

detection; this is enhanced further if the ohmic.socio option is used, which enhances the

connectivity for node pairs with alternative indirect paths.

Following experimentation with various functional forms, Fruchterman and Reingold

[1991] suggest setting an “ideal” distance for connected nodes equal to k. Given the ideal

distance dij, the force magnitudes are specified to be Fa =
d2

ij

k
and Fr = − k2

dij
. Under this

scheme, the forces balance when d2
ij/k = k2/dij, or when the observed distance dij equals

the ideal distance k. In the case of unconnected nodes, there is no attractive force present

between these pairs. However, this specification is insufficient for graphs with differentially

weighted edges.

The implementation in ElectroGraph is slightly different to allow for this. Letting aij

be the connectivity between two nodes (from the sociomatrix, inverse geodesic distance or

Ohmic conductance), and dij be the distance between the two nodes, the net attractive

force is set to be

Fij = a3
ijd

2
ij −

1

dij

so that the nodes that have no connectivity always exert a repulsive force.

5.2 Kamada-Kawai Algorithm

This implementation [Kamada and Kawai, 1989] begins with the premise that all pairs

of points have an ideal separation that must be respected whether or not the node pairs

have a non-zero connectivity. The forces between nodes are then governed by a spring
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that pulls or pushes on the points when the ideal separation distance is not maintained;

that is, that
(

N
2

)
springs are present in the system.

In the social network context, this separation distance is typically taken to be the

shortest geodesic distance between two nodes along the network. A spring between these

individuals, with “spring constant” kij
1 exerts a restoring force on each proportional to

the difference between their actual and preferred distance apart.

The connectivity factor to be respected is aij, though in this case it can only be the

inverse geodesic path length shortest.path or the Ohmic conductance ohmic. Setting

the spring constant to be a2
ij specifies that stronger forces apply between more highly

connected nodes.

The attractive force is then equal to

Fij = (dij −
1

aij

)a2
ij,

so that the force is repulsive if the distance between the nodes is less than that prescribed

by the connectivity factor.

Dimensionality

It should be noted that these algorithms will work in any integer dimension, and have been

coded as such in the ElectroGraph source. However, because plotting methods are limited

in ElectroGraph to two dimensions, I leave the creation of higher-dimensional plotting

mechanisms as an exercise to the user and have these algorithms available to any who try.

5.3 Solutions for Ideal Plot Points

These two methods can be expressed either in terms of the cancellation of forces or the

minimization of energies (which are equivalent conditions); for ease of solution, the im-

plementation in ElectroGraph takes the force-directed approach. Namely, the following

Newton-like algorithm is used:

• Take a node and assess the forces acting on it.

• Move the node a tiny amount in the direction the force would carry it, and reassess

the forces applied to it.

1As the spring law that follows is known as Hooke’s Law, kij is also known as Hooke’s constant.
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• If the total force has decreased, move the node to a position where the force would

be zero if the force were a linear function. If the total force has increased, move the

node proportionally to the amount of force being applied in order that the next step

will permit the finding of a local minimum.

• Repeat for each point in the graph.

• If the maximum distance moved is greater than a predetermined “tolerance” dis-

tance, repeat this procedure until the maximum distance moved in any one iteration

is less than the tolerance distance.

This is a blending of the approaches used by [Kamada and Kawai, 1989] and [Fruchter-

man and Reingold, 1991], though with any optimization algorithm for highly multi-modal

data, it can stand to be improved and tinkered beyond the current standard.

6 Future Developments

As with all worthwhile software projects, there are inevitably suggestions from the commu-

nity that can provide substantial improvements, as well as features whose implementation

would be useful to a select few. With that in mind, there are a few areas that can stand

to be improved in the next iteration, which will take considerable thinking on the part of

the network graphics community to implement properly.

6.1 Animation

ElectroGraph’s animation capabilities are proof-of-concept in nature and not meant to be

especially sophisticated. The wedding cake plot, for example, is provided to show that it

is not necessary to “threshold” a graph in order to plot it nicely [Thomas and Blitzstein,

2009], and can certainly be enhanced beyond the current display method.

The package rSoNIA [Bender-deMol et al., 2007] has been designed to implement the

animation of social network data using the algorithms and methods of the statnet suite

[Handcock et al., 2008]. The method animate.plot.series was designed to mimic this

functionality with the enhancements provided in the ElectroGraph approach, but can

stand either to be improved on its own or integrated with the rSoNIA methodology de-

pending on the stated needs of users.
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6.2 Combined Force-Energy Direction Methods

Previous implementations of force-energy algorithms typically take one of two approaches

when finding ideal positions, starting with a randomly determined configuration:

• All-energy. Take a random perturbation of a node’s position, and compare the to-

tal energy of the new configuration to the old one. If the new energy is smaller,

accept the new configuration. This has been improved with the introduction of sim-

ulated annealing techniques, in which a larger energy can be accepted with nonzero

probability as a function of the “temperature” of a system, which is slowly lowered

throughout the process.

• All-force. A node is chosen and all resulting forces on it are added up; the node is

then moved in the direction of the force, for a distance proportional to the force.

This approach benefits from the directionality of forces but does not have the global-

energy-minimum properties of the first approach.

The implementation currently in ElectroGraph is an improvement on the all-force

method, but there are cases when the benefits of simulated annealing may be useful as

well [Kirkpatrick et al., 1983; Davidson and Harel, 1996]. For that, I propose a class of

algorithm that incorporates elements of tempering methods with force-direction. Namely,

two features should be present:

1. “Swap”: Select a node and exchange its position with another node. Calculate the

resulting energy difference and accept the swap if the new energy configuration is

smaller in magnitude, or if an acceptance-rejection step is satisfied in a simulated

annealing setting, where the acceptance probability varies with the temperature of

the system.

2. “Step”: Rather than simply step in the direction of the node to an estimated position

of zero force, add a random perturbation proportional to the temperature of the

system.

This approach has the benefit of directed searches as well as finding global energy

minima.

At the present time, this is not implemented in ElectroGraph for the reason that it

does not appear to be necessary in any of the applications I have considered, and requires

considerably more computing time to execute. This application may be worthwhile for

cases I have not studied, however, and its addition is most certainly possible.
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