DescTools

A Hardworking Assistant for Descriptive Statistics

<preliminary blueprint version>

by Andri Signorell

Helsana Versicherungen AG, Health Sciences, Zurich
HWZ University of Applied Sciences in Business Administration, Zurich

andri@signorell.net

November, 5t, 2016

R sometimes makes ordinary tasks difficult. Virtually every data analysis project starts with
describing data. The first thing to do will often be calculating summary statistics for all variables
while listing the occurrence of nonresponse and missing data and producing some kind of
graphics. This is a three-click process in SPSS, but regardless of the normality of this task, base R
does not contain higher level functions for quickly describing huge datasets (meant regarding
the number of variables, not records) adequately in a more or less automated way. Sure, there
are facilities like summary (base), describe (Hmisc), stat.desc (library pastecs), but all of them
are lacking some functionality or flexibility we would have expected. What we in particular
missed ever since is a combination of numerical and graphical description of data.

R comes with several functions for computing summary statistics, including mean, var, median,
range and others. But then there are quite a few commonly used functions, which curiously are
missing in the stats package, think of e.g. skewness, kurtosis but also the Gini-coefficent, Cohen’s
Kappa or Somers’ delta. This led to a rank growth of libraries implementing just one specific
missing thing. There are plenty of “misc”-libraries out there, containing these functions and
tests. We would normally end up using a dozen libraries, each time using just one single function
out of it and suffering huge variety concerning NA-handling, recycling rules and so on.

R has been developed in a university environment. This will be clear at the latest then when you
find yourself working in a corporate environment, where Word document format is pretty
ubiquitous and you realize that only MS-Office (and no LATEX) is installed on your system (and
the IT guys won’t give you admin rights). We were forced in this situation to write code for
doing our reporting in MS-Word. (This works quite well for Windows, but not for Mac
unfortunately.)

The first version of “DescTools” arose after completion of a project, where we had to describe a
dataset under deadline pressure, and we started to gather our newly created functions and put
them together.

This collection has meanwhile grown to a considerably versatile toolset for descriptive
statistics, providing rich univariate and bivariate descriptions of data without expecting the user
to say much.

There are numerous basic statistic functions and tests, possibly flexible and enriched with
different approaches (if existing). Confidence intervals are extensively provided.

Recognizing that most problems can be satisfactorily visualized with bar-, scatter- and dotplots,
still some more specific plot types are used in special cases and thus included in the library.
Some of them are rather new, and some of them are based on types found scattered in the
myriads of R packages found out there (partly rewritten to meet the design goals of the
package).

The aim of this document is to show how data description can be accomplished with relative
ease compared to the standard R interface.

A 1Y 4 e o (¥ Tt T o PP 4
2 Categorical Variablesccooieeeeeeeeeiiiiiirecceerccess e s reenceeeeee s s e s e e ennnssssssssesneennnnnnnans 5
3 Numerical Variables.......ccooiiiiiiiiiiiiiiiininiiininininnsinsssssssssssssssssssses 6

3.1 INUITIETIC crvuveeseuseessersessesssessssssssse s ssse bbb s bR AR 6

3.2 Numeric data with few unique Values ... 10

3.3 COUNL AALA (AISCIELE) ..rreurreeueeeseersreseersseesssesssessssesssssssssssssesssassssessssesssasssssss s s sssessssesssassasassnseas 10
4 LOBICAl VAlUES....cccveeeueiiiiiiiiiiiinniniiiieiiiiiesssasiseeniiiessssssssssessinessssssssssssssassssssssssssnss 11
5 Time variablesccceeeuviiiiiiiiiiiininniiiiiiiiiiiesiiessssniiisssssssssissssssssnes

5.1 Dates ..ot

5.2 Timeseries PlotACF
6 data.framesccciiiiiiiiiinii s s s s s s s s s s s s 13
7 Pairwise Numeric ~ Categorical.........cccoiiiiieeeeeniciiiiiieeccerccie s e e rrenneessesssseseeennnnnes 14

7.1 Boxplot and DesSignplotoeeeeesmsesssesssessssesssssessens

7.2 Comparing distributions

7.3 TTEILIS covureteetreeeetse st s s bR R s
8 Pairwise Categorical ® NUMEIIC...cccccciiiiiiiiiennnniiiiiiniiieenmeiiiinniiisesssesiniimsessssssss 19
9 Pairwise Categorical ~ Categorical.........ccceeeuuniiiiiiiiiienneiiiiinniiieennieeesses 19
10 Pairwise NUMeric ¥ NUMEIIC...cccceiiiieeiiiiieeiiiiieeniiieneisireneistrenessssrsasssssesnssssssanes 20

10.1 Boxplot and Designplot

10.2 Boxplot on 2 dimensions: PIOtBag......coueeeeeeeneesseesseesseesessssesssessesssssssssesssesssssssees 20
T I 1 ¢ (=0 TP PPPPPPPPP 21
12 MUltiple PAIFWISESccieieieeeeecceiiriieernenseeeeereresnnnsssseesseeesnanssssssssseeeennnsssssssssnenens 22
13 Plot MisSiNg dataccceiiiiiieeeciciiriiiirrrrreee s reereens s ssees s e e e s nanssssssssseeennnnsssnssssnanennn 13
7 S 00Ty Vol =T 41 4) N 22
15 Multivariate graphical descriptionccceeeeriieiiiiiieniiieeenenieeeseeereneseeeeennseeesennns 23

15.1 Correlation plot

15.2 PlotPolar (RAAArPIOt) . ceeeeesseersessseesssesseesssesssessssssssssssssssssssssssssesssesssssssssesssessssssssssssssssssssssess 23

TS T S (o] o 2 Vo YOO SN 25

154 PlOtTTEEIMAD ..cceureeeermeeseeesseessseesseessessseessseessessssesssesssessssessssssssessssssssessssesssessssassssesssessssssssessssassssesssees 25
16 Supplements to base R Plots.....ccciiiieiiiiiieiiiiiicniiiieniniresis e reeneesseensessennes 26

16.1 Lineplots......

16.2 “Bumpchart”
16.3 Barplot horizontal
16.4 Barplot VEItiCal... i crsersrersssesssesssssssssssasssas
16.5 Barplot (specials)
16.6 PlotPyramid
16.7 PlotHorizBar
16.8 PlotCandlesticK......emermmeeesnserssnserneenns
16.9 Combination of barplot and lineplot

16.10 PlotDot
16.11 PlotBubble

16.12 Venn plots ..eeenneesseeeseessssesseesnens

16.13 Areaplot..... .

16.14 PLOTTEITIATY weereeeseereesseessseesseessseeseessseesssesssesssssssessssessssesssesssssssssesssesssssssssesssessssssssesssssssessssessaseens
16.15 33 (o LY = o D=3 L3PPSR
16.16 Polar plots

16.17 PlOt FUNCHOMNS c.outevrertserssresssssssssssssssssss s sssssessssss s ssanes
16.18 Legends and COLOUT STIIPS ...reereseerseesessssessssssssessssesssssssesssssssssssssssssssssssssssssssessssssssssess

17 Format, Strings and Date functions

17.1 Formatting NUMDETrsS and dates.....c.eeereereeeeeseeseessesssesssesssessssesssesssessssssssssssesssssssess
17.2 Date functions...........
17.3 Strings ...

T T4 0T o Lo T o SRl 5 4's Yo o

18.1 Import data via Excel
18.2 Import SAS datalines

I T 0 T<TYoll o To] £ 0 o1 4 o 13N 46
20 REfEIENCES..ccuuueciiiiiiieiieeieeeeteeeeenaeeeeeeseeeeenasssessesaeeesnnnssssssssaseesnnnssssssssssessnnnnnnnn 49

Users, even expert statisticians, do not always screen the data.
B. D. Ripley, Robust statistics (2004)

1 Introduction

The analyst’s sacred duty before beginning any sort of statistical analysis is to take a preliminary
look at the data with three main goals in mind: first, to check for errors and anomalies; second,
to understand the distribution of each of the variables on its own; and third, to begin to
understand the nature and strength of relationships among variables.

Errors should, of course, be corrected, since even a small percentage of erroneous data values
can drastically influence the results and might completely invalidate the analysis. Understanding
the distribution of the variables, especially the outcomes, is crucial to choosing the appropriate
multipredictor regression method. Finally, understanding the nature and strength of
relationships is the first step in building a more formal statistical model from which to draw
conclusions.

To prevent the analyst to bypass these steps the describing process must be quick and simple.
So the principal goal of DescTools is to make data description easier, less costly, less time
consuming and less error-prone. One outstanding feature of the package is the combination of
numerical results and graphical representation which can mostly be automated and reported to
the console, but as well quite easily be exported to a Word Document.

The proper description of data depends on the nature of the measurement. The key distinction
for statistical analysis is between numerical and categorical variables. The temperature of the
pizza is a numerical variable, while the driver delivering it is categorical. The delivery time is
numerical, whereas the area of the customer is categorical. A secondary but sometimes
important distinction within numerical variables is whether the variable can take on a whole
continuum or just a discrete set of values. So the temperature would be continuous, while
number of pizzas ordered (count) would be discrete.

A numerical variable taking on a continuum of values is called continuous and one that only
takes on a discrete set of values is called discrete. A secondary distinction sometimes made with
regard to categorical variables is whether the categories are ordered or unordered. So, for
example, categories of quality (low, medium, high) would be ordered, while the operator would
be unordered.

A categorical variable is ordinal if the categories can be logically ordered from smallest to
largest in a sense meaningful for the question at hand (we need to rule out silly orders like
alphabetical); otherwise it is unordered or nominal. Some overlap between types is possible. For
example, we may break a numerical variable (such as exact total amount) into ranges or
categories. Conversely, we may treat a categorical variable as a numerical score, for example, by
assigning values one to three to the ordinal responses Low, Medium, High. Most of the basic
analysis methods for numerical scores (e.g, linear regression or t-tests) have interpretations
based on average scores. So assigning scores to a categorical variable is effective if average
scores are readily interpretable. [3]

A describing procedure has to take all these types and properties into account. The function
Desc has been designed to describe variables depending on their type with some reasonable
statistic measures and an adequate graphic representation. It includes code for describing
logical variables, factors (ordered and unordered), integer variables (typically counts), numeric
variables, dates and tables and matrices.

Data frames will be split into their variables and the single variable will be described. A formula
interface is implemented to easily describe variables in dependence of others.

The output can either be sent to the R-console or as well directly redirected to a MS-Word
document.

The latter works only in Windows with MS-Office installed, but Mac users can leave the wrd
argument away and add a plotit = TRUE argument to have the full results in the console.

Note: For all the following examples in this document, library(DescTools) must be declared.

2 Categorical Variables

The first variable to be described is an unordered factor. Factors are typically best detailed by a
frequency table of their levels. The default order of the output table is following a pareto rule,
the most frequent levels first.

Ordered factors would be sorted after their natural order by default. The default order can be
changed by setting the ord argument to either "desc" (for descending frequency order), "asc"
(ascending order), "name" (alphabetical order) or "level" (order of the levels).

Factors sometimes tend to have lots of levels. Listing all of them might not be informative. Thus
the frequency table is by default truncated in the case that there are more than a dozen values.
This can be avoided by setting the argument maxrows=Inf. The same argument can also be used
to list either only a defined number of levels by setting maxrows to the desired number or
restricting the maximum number by defining the maximum cumulative percentage. If e.g.
maxrows=0.7 is set, then as much levels will be displayed as are needed to just exceed the
cumulative percentage of 70%.

The number formats are controlled by the options "fmt.abs" and "fmt.perc". These formats
define the representation of the counts and of the percentages. For getting the following results,
the options must be set to:

options(fmt.abs=structure(list(digits=0, big.mark=""'"), class="fmt"))
options(fmt.per=structure(list(digits=5, leading="drop"), class="fmt"))

The argument plotit can be set to produce a plot in one step. This value can also be defined as
options(plotit=TRUE) in order to save the pains to request it every time.
(See: ?DescToolsOptions and ?Desc.factor for more details).

Desc(d.pizza$driver, plotit=TRUE)

length n NAs levels unique dupes
1'209 1'204 5 7 7 y
Carpenter
Carter
level freq perc cumfreq cumperc Taylor
1 Carpenter 272 .226 272 .226 Hunter
2 Carter 234 .194 506 .420 Miller
3 Taylor 204 .169 710 .590
4 Hunter 156 .13@ 866 .719 Farmer
5 Miller 125 .104 991 .823 Butcher
6 Farmer 117 .097 1'108 .920 J J ! I ! f T ! J T !
7 Butcher 96 .080 1'204 1.000 50 100 200 300 00 02 04 06 08 1.0

frequency percent

Figure 10.2 Frequency plot of a categorical variable

If there are missing values, they will be listed in the first row, together with the length of the
vector and the number of levels.

Synopsis
length total number of elements in the vector, NAs are included here
n number of valid cases, NAs, NaNs, Inf etc. are not counted here

-5-

Desc

NAs number of missing values

levels number of levels

unique number of unique (observed) values.
Note: This is not necessarily the same number as levels, as there might
be empty levels. Thus the number of levels might be higher than the
number of unique values (but not conversely).

dupes y(es) or n(o0), reporting if there are any duplicate values in the vector. If
“n” (for no) is reported then there are only unique values in the
variable. This might typically be the case for identifiers.

freq the count (absolute frequency) of the specific level. The order of a
factors frequency table is by default chosen as “absolute frequency-
decreasing”.

perc the relative frequency of the specific level

cumfreq the cumulative frequencies of the levels

cumperc the same for the percentage values

The graphical representation consists of two horizontal barplots. The left one is displaying the
absolute frequencies with truncated x-axis. The left plot will always display the percentages
with fixed x-axis limits set to 0 and 1. The cumulative frequencies can be displayed or be left
away.

The plot can be customized with several arguments:

25, type = c("bar", "dot"),
TRUE))

plot(Desc(d.pizza$driver), main = NULL, maxlablen
col = NULL, border = NULL, xlim = NULL, ecdf

If the labels exceed a certain length, they will be truncated. The length where this happens can
be controlled with the argument maxlablen. The cumulative bars can be blown off with
ecdf=FALSE. The other arguments follow the meaning of those in the function barplot.

3 Numerical Variables

3.1 Numeric

The next variable, the temperature of the delivered pizza, is numeric. Numeric variables are
described by the most common statistical measures for location, variation and shape.

Several features of the output are worth some consideration. The largest and smallest values
should be scanned for outlying or incorrect values. In real world data erroneous (or awkwardly
coded) values are often found at the ends of a variable. Therefore the values and their
frequencies (numbers in brackets) are reported. In the example below “(2)” means that the
value 20.2 can be found twice in the variable.

The mean (or median) and standard deviation (or interquartile range IQR, resp. the median
absolute deviation mad) should be assessed as general measures of the location and spread of
the data. The quantiles deliver a good overall impression of the distribution. In the current
example we note that 90% of the data lie between 26 and 60 degrees and the inner 50%
between 42 and 55.

The skewness and kurtosis are usually more easily assessed by graphical means, though their
numerical values are included in the output. A large difference between the mean and median is
another cue for the skewness. In right-skewed data with a positive value of the skewness, the
mean is larger than the median, while in left-skewed data (skewness < 0), the mean is smaller
than the median.

Desc(d.pizza$temperature, main="", plotit=TRUE)

-6-

0.05

length n NAs unique 0s mean meanSE a6
1'209 1'170 39 375 0 47.937 0.291 ’
0.03
.05 .10 .25 median .75 .90 .95 0.02 -
26.700 33.290 42.225 50 55.300 58.800 60.500 0014
range sd vcoef mad IQR skew kurt 0.00
45.500 9.938 ©.207 9.192 13.075 -0.842 0.051 P I:]:} __________ 1
lowest : 19.3, 19.4, 20, 20.2 (2), 20.35 et
highest: 63.8, 64.1, 64.6, 64.7, 64.8 -gg'
00+ v : . . .
10 20 30 40 50 60 70
Andri2016-06-08
Figure 3.1 Distribution of a numeric variable.
The plot in figure 3.1 as produced by the function PlotFdist combines a histogram with a PlotFdist

density plot, a boxplot and the plot of the empirical distribution function (ECDF). The scale for
the x-axis is synchronized over all plots. The median can thus be found on the boxplot as also in
the ecdf-plot.

The maximum and the minimum value are tagged with a tiny vertical dash upon the ecdf-line.
The mean is shown in the boxplot as grey cross, the grey bar is its confidence interval.

Let’s enumerate the features in detail. The first measures length, n, NAs, unique have again the
same meaning as above. NAs are silently removed from all subsequently calculations.

0s total number of zero values.
mean the arithmetic mean of the vector.
meanSE standard error of the mean, sd(x) / sqrt(n). (See also: function MeanCI(...))

This can be used to construct the confidence intervals for the mean,
defined as qt(p = 0.025, df = n-1) * sd(x) / sqrt(n).
.05, .., .95 quantiles of x, starting with 5%, 10%, 1. quartile, median etc.

rng range of x, max(x) - min(x)

sd standard deviation

vcoef variation coefficient, defined as sd(x) / mean(x)

mad median absolute deviation

IQR inter quartiles range

skew skewness of x

kurt kurtosis of x

lowest the smallest 5 values. If there are bindings, the frequency of each
value will be reported in brackets.

highest same as lowest, but on the other end

Transformations can easily be entered in place.

Desc(1/d.pizza$temperature, digits=3, main="")
title(expression(frac(1,x)))

-
=
o
x| =

length n NAs unique @s mean meanSE 120 -
1'209 1'170 39 375 0 0.022 0.000 100 4
80
.05 .10 .25 median .75 .90 .95 23
0.017 0.017 0.018 0.020 0.024 0.030 0.037 20
5
range sd vcoef mad IQR skew kurt ;E':} P ———
0.036 0.006 0.289 0.004 0.006 2.027 4.244 1.00 7
0]
lowest : 0.015, 0.015, 0.015, 0.016, 0.016 .25 y
highest: ©.049, 0.050 (2), ©.050, 0.052, 0.052 L e mo e s b

Andrif2016-08-08

Figure 3.2 Distribution of a numeric variable.

There are several approaches commonly used for graphical comparing the variable’s
distribution to a reference distribution. The two most seen are firstly superposing the reference
density curve over the variable’s histogram and the second using a Q-Q-plot. A Q-Q-plot is used
to compare the shapes of distributions, providing a graphical view of how properties such as
location, scale, and skewness are similar or different in the two distributions.

z <- LinScale(z, newlow=0, newhigh = 32)[,1]

PlotFdist(z, args.curve = list(expr="dchisq(x, df=5)", col="darkgreen"),
args.boxplot=NA, args.ecdf=NA)

legend(x="topright", legend=c("kernel density", expression(chi["df=5"]*2-distribution)),
fill=c(getOption("coll", hred), "darkgreen"), text.width = 5)

We get
0.20 — R —
| kernel density
B 72 - distribution
0.15
0.10
0.05 —
0.00 ~ ———
f T T T T T T |
0 5 10 15 20 25 30 35

Figure 3.3 Overlay of fitted y2-function.

This makes it clear, that this is not the best way to decide, whether the red curve follows our
hypothesized distribution or not. Where does random start?

The better approach is to use a QQ-plot, which by the way solves the x-axis scaling problem we
had in the overlay solution. The function P1otQQ is a wrapper for plotting QQ-plots with other
than normal distributions.

A qqline is inserted on which the points are likely to lie (approximately) if the two distributions
being compared are similar.

It sometimes might be hard to judge, if the points are (too) far away from the ggline or not.

An idea to check the general variability is to use simulated sets with the desired distribution. If
our points exceed the confidence intervals, something is likely to be wrong.

In our example everything’s fine, of course, as we sampled from the tested distribution.

Q-Q plot for -)(2‘=3

Sample Quantiles

T T T T
0 5 10 15

Theoretical Quantiles

Andri/2018-06-01

Figure 3.4 QQ plot for a y2-distributed variable.

LinScale

PlotQQ

set.seed(159)
z <- rchisq(100, df=5)

PlotQQ(z, function(p) qchisq(p, df=5), type="n", main=NA, args.qqline = NA)

X <- qdist(ppoints(z))

y <- replicate(1000, sort(rchisq(100, df=5)))

ci <- apply(y, 1, quantile, c(0.025,0.975))

DrawBand(x = c(x, rev(x)), y = c(ci[1,], rev(ci[2,])), col=SetAlpha(hblue, 0.3))

PlotQQ(zz, function(p) qchisq(p, df=5), add=TRUE,
args.qqline=1list(col=hred, lwd=2, probs=c(0.1, 0.6)))

title(main=expression("Q-Q plot for" ~~ {chi”2}[nu == 3]))

What do the tests say about ozone being gamma distributed?

AndersonDarlingTest(na.omit(ozone), "pgamma", shape = m"2/v, scale = v/m)

#it Anderson-Darling test of goodness-of-fit

Null hypothesis: Gamma distribution

with parameters shape = 1.6310, scale = 25.8300
##

data: na.omit(ozone)
An = 0.66365, p-value = 0.5896

The observation seems compatible with the hypothesis.
Let’s superpose the model distribution curve to both, the histogram and the cumulative
distribution function.

ozone <- airquality$0zone; m <- mean(ozone, na.rm = TRUE); v <- var(ozone, na.rm = TRUE)

PlotFdist(ozone, args.hist = list(breaks=15),
args.curve = list(expr="dgamma(x, shape = m*2/v, scale = v/m)", col=hecru),
args.curve.ecdf = list(expr="pgamma(x, shape = m*2/v, scale = v/m)", col=hecru),
na.rm = TRUE, main = "Airquality - Ozone")

legend(x="topright",
legend=c(expression(plain(“"gamma: ") * Gamma * " " * bgroup("(", k * " = " *
over(bar(x)”2, s~2) * " , " * theta * plain(" = ") * over(s”2, bar(x)), ")")),
"kernel density"),
fill=c(hecru, getOption("coll", hred)), text.width = 0.25)

Airquality - Ozone

0.025 4

7y

i 22 57|
0.020 /\ O gamma: Fnk:i,ezj.
\ S XJ'

0015 B kernel density
0.010
00051 ’\

0.000 — T =

1.00
758
50
25
.00

0 50 100 150 200

Figure 3.5 Compare empirical distribution with a gamma distribution.

3.2 Numeric data with few unique values

If there’s a numeric variable with only one or two handfuls of unique values then a description
by means of a histogram and a density curve is not really adequate. The density curve will start
oscillating and the bins in the histograms would lose their continuous nature.

Therefore we change the graphic representation from a histogram to a histogram like h-type
plot leaving the density curve off.

In the numerical results the extreme values will be replaced by a full frequency representation
with absolute values and percentages.

Desc(d.pizza$weekday, plotit=TRUE)

length n
1'209 1'177
.05 .10
1.00 1.00
range sd
6.00 2.02
level freq
1 1 144
2 2 117
3 3 134
4 4 147
5 5 171
6 6 244
7 7 220

NAs
32

.25
3.00

vcoef
0.45

uniq

ue
7

median

5.

00

mad

2.

97

cumfreq

1

144
261
395
542
713
957
‘177

3.3 Count data (discrete)

0s

.7

0

5

6.00

IQR
3.00

m
a

7

S
-0

cumperc

1

12.
22.
33.
46.
60.

81
00

2%
2%
6%
0%
6%
.3%
. 0%

ean
.44

.90
.00

kew
.34

meanSE
0.06

.95
7.00

kurt
-1.17

0.20 ~

0.15

0.10

Figure 3.6 Distribution of a numeric variable.

The next variable is a count variable, whose nature is somewhat between numeric and factors as
far as descriptive measures are concerned. In fact, if there are only just a few unique values, then
the factor representation (frequencies) might be more appropriate than the numeric description
(with densities etc.). We draw the line between factor and numeric representation at a dozen of
unique values in x. Beyond that number, the numeric description will be reported and for fewer

values the factor representation will be used.

Desc(d.pizza$count, plotit=TRUE)

length n
1'209 1'197
.05 .10

1 2

rng sd

7 1.556

NAs unique

12

8

.25 median

2

vcoef

3

mad

0.452 1.483

I

level freq perc cumfreq cumperc

108
259
300
240
152

97

34

ONOUVIA WNBE
ONOUVIAWNBRE

.090
.216
.251
.201
.127
.081
.028
.006

108
367
667
907
1059
1156
1190
1197

.090
.307
.557
.758
.885
.966
.994
1.

000

QR

3

mean
.444

.90
6

skew

meanSE
0.045

.95
6

kurt

2 0.454 -0.363

-10 -

m =~ @® ;s W M

- e
- L
-] L]
L] L]
(-] -]
-] (-]
o @
o o
T T 1 T T T T
0 50 150 250 00 02 04 06 08 10
frequency percent

Figure 3.7 Distribution of a count variable.

The plot is produced as a (horizontal) dotchart. More than 12 unique values are truncated (a
warning is placed in the plot area). The maxrows argument can be used to override this default
(Inf for all).

Two dotcharts are created, the left one shows the absolute frequencies, the right one the
percentages. On the left plot the x-axis might be adapted to the data (as R does by default). The
percentages will always be displayed on a 0:1-range.

The plot width is adapted to the length of the labels. If the labels get too long, they will be
truncated and displayed with ellipsis (...).

4 Logical values

Dichotomous variables do not have real dense (univariate) information. The variable
wine_ordered for example contains only two values, 0 and 1. Still it is usually interesting to
know, how many NAs there are, besides the frequencies of course. The individual frequencies
are reported together with a confidence interval, calculated by BinomCI using the option
"Wilson".

Desc(d.pizza$wine_ordered, plotit=TRUE)

length n NAs unique 0 1
1'209 1'197 12 2

freq perc 1ci.95 uci.95? il_

0 1010 .844 .822 .863
1 187 .156 .137 .178

o.¢i.99 8 ¢i.95 8¢i.90
1 95%-CI Wilson

0.0 0.2 04 0.6 0.8 1.0

Figure 4.1 Distribution of a numeric variable.

This is basically a univariate horizontal stacked barplot, with confidence intervals on the
confidence levels of 0.90, 0.95 and 0.99. The vertical line denominates the point estimator.

5 Time variables

5.1 Dates

A date variable is harder to describe in a univariate context. What characteristics would one
want to know from a date? We would normally choose a description similar to numeric values,
supplemented by an analysis of the weekday and month for grasping anomalies concerning
extreme, invalid or missing values.

Desc(d.pizza$date, plotit=TRUE)

length n NAs unique
1'209 1'177 32 31

lowest : 2014-03-01 (42), 2014-03-02 (46), 2014-03-03 (26), 2014-03-04 (19)
highest: 2014-03-28 (46), 2014-03-29 (53), 2014-03-30 (43), 2014-03-31 (34)

-11 -

Weekdays:
level
Montag
Dienstag
Mittwoch
Donnerstag
Freitag
Samstag
Sonntag

NOuhs,wNeR

freq
144
117
134
147
171
244
220

perc cumfreq cumperc

.122
.099
.114
.125
.145
.207
.187

144
261
395
542
713
957
1177

.122
.222
.336
.460
.606
.813
1.000

exp re
168.1 -1.
168.1 -3.
168.1 -2.
168.1 -1.
168.1 .
168.1 5.
168.1 4.

Chi-squared test for given probabilities

data:

table(xd)

X-squared = 78.8785, df = 6, p-value =

level freq perc cumfreq cumperc

Months:

1 Januar
2 Februar
3 Marz
4 April
5 Mai
6 Juni
7 Juli
8 August
9 September
10 Oktober

11 November
12 Dezember

(<]
(<]
1177

()

[ORORGE R RCRORN)

(4]

OO0

(]

(]
1177
1177
1177
1177
1177
1177
1177
1177
1177
1177

RPRRRRPRRRRRLRRLROO®

6.09e-15

S

@OV NGOV Y

exp prs.res
-10.
-9.
107.
-9.
-10.
-9.
-10.
-10.
-9.
-10.
-9.
-10.

99.7

O
o}
NUNUNNUN U W

Chi-squared test for given probabilities

data: tab

X-squared = 12719.19, df = 11, p-value < 2.2e-16

5.2 Timeseries ACF-plot

00 O®0O®O®0O®WUOVN

Montag
Dienstag
Mittwoch

Donnerstag
Freitag
Samstag
Sonntag

Januar
Februar
Marz
April

Mai

Juni

Juli
August
September
Oktober
November
Dezember

>
=] .
(=]
T T
100 150 200 250
. O
L =]
=] .
L
- o
- o]
. o
e O
- Q
. 0
LI
- (=}
T T T T T
[} 200 400 GO0 800 1000 1200

This produces a combined plot of a time series and its autocorrelation and partial
autocorrelation, which is used in every introductory course for time-series.

PlotACF (AirPassengers)

4?0

AirPassengers

390

-0.5

6 data.frames

6.1 Overview
After that, every single variable will be described according to the type of its class.

Let's start with a quick description of some variables out of the integrated data. frame
d.pizza.

library(DescTools)

the results (and the plots) will either be displayed in the console

Desc(d.pizza[,c("driver", "temperature",“count", "weekday","wine_ordered", "date")],
plotit=TRUE)

... or we can start a new word instance and send the results directly to a word document
wrd <- GetNewWrd()
Desc(d.pizza[,c("driver

","temperature", "count", "weekday", "wine_ordered","date")], wrd=wrd)

'data.frame’: 1209 obs. of 4 variables:

1 $ driver : Factor w/ 7 levels "Butcher","Carpenter",..: 7117377773 ...
2 $ temperature : num 53 56.4 36.5 NA 50 27 33.9 54.8 48 54.4 ...

3 $ count :int 5232514NA3G6 ...

4 $ weekday :num 6666666666 ...

5 $ wine_ordered: int 00600 001NAO 1 ...

6 $ date : Date, format: "2014-03-01" "2014-03-01" "2014-03-01" "2014-03-01" ...

First a simple Str() of the data.frame is performed. The result is no more than that of a str()
command, extended with an enumeration of the variables.

6.2 Missing data

An interesting idea for creating a visual representation of missing data was brought to my
attention by Henk Harmsen. The following plot symbolizes each missing value with a vertical
line. The x-axis represents the index of the record. On the right side are the numbers of missings
noted.

Missing pizza data

index 0
ae || ||| | | [| 32
week |||]l I — -
weekday | | [| . >
area | | | 10
count \ \ \ \ | 12
rabate ‘ ‘ ‘ ‘ | 12
price \ \ \ \ | 12
operator ‘ ‘ 8
driver | | | 5
delivery_min 0
temperaie | R NI
wine_ordered \ \ ‘ ‘ | 12
wine_delivered ‘ ‘ ‘ ‘ | 12
wrongpizza | ‘ | | 4
auality | [T EAREE 0 T T TP AR R 201

T T T T T T !

0 200 400 600 800 1000 1200

-13 -

Str

The missing values can be clustered such as to display several areas of missing values. This can
be helpful for detecting dependencies or patterns within the missings.

PlotMiss(d.pizza, main="Missing pizza data", clust = TRUE)

Missing pizza data

index 0
date [} 32
week . 32
weekday [Jj 32
area | 10
count I 12
rabate I 12
price | 12
operator | 8
driver | 5
delivery_min 0
temperature | | B 3
wine_ordered | 12
wine_delivered || 12
wrongpizza | 4
quaity | | | oo
T T T T T T 1
0 200 400 600 800 1000 1200

Andrif2016-08-15

7 Pairwise Numeric ~ Categorical
7.1 Boxplot and Designplot

Desc implements a formula interface allowing to define bivariate descriptions straight forward.

A numeric variable vs. a categorical is best described by group wise measures. Here the valid
pairs are reported first. Missing values in the single groups are documented in the results table
and missing values on the grouping factor are mentioned with a warning at the end of the table,
if existing at all.

Desc(temperature ~ driver, d.pizza, digits=1, plotit=TRUE)

Summary:
n pairs: 1'209, valid: 1'166 (96%), missings: 43 (4%), groups: 7

Butcher Carpenter Carter Farmer Hunter Miller Taylor
mean 49.6 43.5* 50.4 50.9 52.12 47.5 45.1
median 51.4 44.8* 51.8 54.1 55.12 49.6 48.5
sd 8.8 9.4 8.5 9.0 8.9 8.9 11.4
IQR 12.0 12.5 11.3 11.2 11.6 8.8 18.4
n 96 253 226 117 156 121 197
np 0.082 0.217 0.194 0.100 0.134 0.104 0.169
NAs 0 19 8 0 0 4 7
0s 0 0 0] 0 0 0

1 min, 2 max

Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 141.9349, df = 6, p-value < 2.2e-16

-14 -

Warning:
Grouping variable contains 5 NAs (0.414%).

n=96 n=253 n=226 n=117 n=156 n=121 n=197 means

. Hunter -+

60
L

Farmer +
Carter -+

Butcher -+

50
L

40
48

A : i : ; i Miller -+

30
46
1

—é,— g , Taylor +

oo

o

20
o0 a@
44

e =2 & —_

Carpenter —

; driver
Butcher Carpenter Carter Farmer Hunter Miller Taylor

a boxplot combined with a means-plot as used in anova

7.2 Comparing distributions

How should we compare distributions graphically, moving beyond a simple boxplot? PlotViolin
serves the same utility as a side-by-side boxplot, but provides more detail about the single
distribution. We started with John Verzani’s Violinplot and rewrote it so that it takes exactly the
same parameters as the boxplot-function.

Another idea is to plot several densities within the same plot. PlotMultiDens does this while
setting the xlim- and ylim-values to an appropriate value, ensuring all density lines are fully
visible. For a smaller number of variables, say up to two handfuls, this will be the most direct
way to compare their distributions. (Note: For violins this limit lies much higher as they do not
overlap and so mutually hide.)

PlotViolin(temperature ~ driver, data=d.pizza, col = SetAlpha(hblue,0.5),
main="Temperature ~ Driver")

PlotMultiDens(temperature ~ driver, data=d.pizza, xlab="temperature",

main="Temperature ~ Driver", panel.first=grid(),
col=PalHelsana(), Iwd=2)

-15 -

Temperature ~ Driver Temperature ~ Driver

S0
I

N\

30 40
| |
density
000 001 002 003 004 005 006 007
L |
y
%‘

20
I

M
\
\

10
1

B Butcher
B Carpenter
O Carter
O Farmer
B Hunter
o Miler

B Tayior

T T T T T T T
Butcher Carpenter Carter Farmer Hunter Miller Taylor 0 20 40

temperature

60
I

Taylor

i Ak

Farmer

ST
il

PB4 &
Wt

Carter

Carpenter

temperature
40 50
Il Il
) o " T
- -
ERRE AL L T T L

Carpenter Farmer Hunter Taylor

temperature

For small datasets a stripchart might be the best way to plot the data.
The conditional density-plot at the right allows grasping the proportions within the total
density.

stripchart(temperature ~ driver, d.pizza, vertical=TRUE,
method="jitter", pch=16, col=SetAlpha(hred,0.4))

d.frm <- na.omit(d.pizza[,c(temperature”, driver')])

par(las=2, mar=c(4.1,10.1,5.1, 5.1))

cdplot(x=d.frm$temperature, y=d.frm$driver, ylab=""", xlab="temperature”,
col=SetAlpha(PalHelsana(), 0.6))

7.3 Trellis

The classic way is to spend a full plot for every single variable. There’s an interesting link,
demonstrating this technique: http://www.statmethods.net/advgraphs/trellis.html.
But first or all, let’s readjust Deepayan’s rather peculiar default colours. (Sorry Deepayan!)

library(lattice)
trellis.par.set(strip.background = list(col = gray(0.5)),
add.text = list(col = "white"))

myStripStyle <- function(which.panel, factor.levels, ...) {
panel _.rect(0, -0.5, 1, 1,
col = "grey",
border = 1)
panel .text(x = 0.5, y = 0.25,
font=2,
lab = factor.levels[which.panel],
col = "black"™)
¥

.
B f;
: Miller ros
. # ~ Hunter
ce 3 by - 06
%
v

Butcher Carter Miller 0o

histogram(~ temperature | driver, data=d.pizza, col="steelblue', strip=myStripStyle)

-16 -

| | 1 | | | | | | | 1 |
Hunter Miller Taylor
B 20
B]
B 10
=
o
[- Fo
'S
= Butcher Carpenter Carter Farmer
2
@
o
a0 L
20 -
10 F
o4 L
T T T T T T T T T T T T T T T T T T T T
20 20 40 50 60 20 30 40 50 &0
temperature

Again here a scatterplot is highly informative.

xyplot(temperature ~ delivery_min | area, d.pizza,
main="temperature ~ delivery_min | area®, col=hred, strip=myStripStyle)

temperature ~ delivery_min | area

0 20 a0 40 50 &0
1 1 1 1 1 1 | | | | | | 1 1 1 | | |
a0
0
x
2
o
2
an
E
=
2
20 -
T T T T T T T T T T T T T T T T T T
0 20 0 40 50 &0 0 20 0 4 &0
delivery_min

-17 -

Another nice combination of several elements like rug, grid and Imline:

library(lattice)

displacement <- equal.count(mtcars$disp, number=3, overlap=0)

mypanel <- function(x, y) {

panel .xyplot(x, y, pch=19)

panel _.rug(x, y)
panel _.grid(h=-1, v=-1)

panel.Imline(x, y, col="red"”, lwd=1, lty=2)
3
xyplot(mpg ~ wt | displacement, data=mtcars,
layout = c(3, 1),
aspect = 1.5,
main = "Miles per Gallon vs. Weight by Engine Displacement”,
xlab = "Weight",
ylab = "Miles per Gallon",
panel = mypanel)
Miles per Gallon vs. Weight by Engine Displacement
2 3 4
1 1 1 | 1 1 |
displacement displacement displacement
35
= -
L\ .
30 —"3\
\\ .
— 0\\ \\
g (— 0\\\ \\\
T % \\\ — \\ *
(2 ~ .l e \\\
8 = * .\\\ = 0\0\\ .
w - - -
o 20 1 * N
= . —] - *
= " = £ - ¢
\\ = .-\ ~L
n [~ B .
" (— - \\ E ¢ :’:‘n_
15 \\\ “ = .
by = *
\\\
10 B B
[. T [1T
T T T T T T T
2 3 4 5 3 4
Weight

-18 -

8 Pairwise Categorical ~ Numeric

No, it’s not the same as numeric ~ categorical. The design is such, that the response variable is
categorical and the predictor numeric. With a model one would set up a multinomial regression
(or logistic in the case of 2 categories).

Desc(area ~ temperature, data=d.pizza, digits=1, wrd=wrd)

Summary:

n pairs: 1'209, valid: 1'161 (96%), missings: 48 (4%), groups: 3

Brent
mean 51.12
median 53.42
sd 8.7
IQR 10.5
n 467
np 0.402
NAs 7
s 0

1 min, 2 max

47 .4
50.3
10.1
12.2
335
0.289
9

(<]

Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 115.83, df = 2, p-value < 2.2e-16

Warning:

Camden Westminster

44 .31
45,91
9.8
13.2
359
0.309
22
(]

Grouping variable contains 10 NAs (0.827%).

Proportions of area in the quantiles of temperature:

Q@ Q2 Q@ o4
Brent 0.244 ©.345 0.4085 0.618
Camden 0.289 0.266 0.363 0.236

Westminster 0.467 0.389 0.232 0.146

=467 n=338 n=359

40
L

Brent

Camden

‘Westminster

(o] Qz Q3 04

9 Pairwise Categorical ~ Categorical

Two categorical variables are described by a contingency table, as shown in the vignette Tables.

-19 -

10 Pairwise Numeric ~® Numeric

10.1 Boxplot and Designplot
Two numerical variables have no obvious standard description as their relationship can have
manifold forms. Thus we’re going to report only the simple correlation coefficients (Pearson,

Spearman and Kendall) and a hopefully helpful scatterplot.

The variables are plotted as xy-scatterplots with interchanging mutual dependency,
supplemented with either a LOESS or a spline smoother.

Desc(temperature ~ delivery_min, d.pizza, plotit=TRUE)

Summary:
n pairs: 1'209, valid: 1'170 (97%), missings: 39 (3%)

Pearson corr. : -0.575
Spearman corr.: -0.573
Kendall corr. : -0.422

Scatterplots for two numeric variables:

temperature ~ delivery_min

50
1
#

temperalure
40

20
1

T T T T
10 20 30 40 50 &0

delivery_min

Figure 10.2 Mosaicplot of Eye colour ~ Hair colour.

10.2 Boxplotin 2 dimensions: PlotBag

This function transposes the boxplot idea in the 2-dimensional space. The points are outliers,
the lightblue area is the area within the fences in a normal boxplot and the darkblue area is the
inner quartile range.

The median is plotted as orange point in the middle.

This code is taken verbatim from Peter Wolf’s aplpack package.

d.frm <- d.pizza[complete.cases(d.pizza[,c(""temperature”,"delivery_min")]),]

PlotBag(x=d.frm$delivery_min, y=d.frm$temperature, xlab="delivery_min",
ylab=""temperature', main="Two-dimensional Boxplot')

-20 -

Two-dimensional Boxplot

60

50
1

temperature
40

30
|

20

delivery_min

11 Table One

Create a table summarizing continuous, categorical and dichotomous variables, optionally
stratified by one or more variables, while performing adequate statistical tests.

define some special formats for count data, percentages and numeric results
(those will be supported by TOne)
options(fmt.abs=structure(list(digits=0, big.mark=""'"), class="fmt"))
options(fmt.per=structure(list(digits=1, fmt="%"), class="fmt"))
options(fmt.num=structure(list(digits=1, big.mark=""'"), class="fmt"))
ToWrd(TOne(x=d.pizza[, c("temperature","delivery_min","driver","wine_ordered")],
grp=d.pizza$quality),
wrd=GetNewWrd())

will produce the following table:

var total low medium high
n 1'008 156 (15.5%) 356 (35.3%) 496 (49.2%)
temperature 47.9 (9.9) 32.9(7.8) 45.6 (7.4) 53.6(6.5) ***1
delivery_min 25.7(10.8) 33.9(11.7) 26.5(10.1) 22.6(9.5) ***1
driver *xk 3

Butcher 79 (8.0%) 10 (6.5%) 36 (10.1%) 33 (6.7%)

Carpenter 225(22.6%) 59(38.1%) 90(25.4%) 76 (15.4%)

Carter 196 (19.4%) 11(7.1%) 72 (20.3%) 113 (22.9%)

Farmer 94 (9.7%) 10 (6.5%) 26 (7.3%) 58 (11.7%)

Hunter 130 (13.0%) 8(5.2%) 43(12.1%) 79 (16.0%)

Miller 109 (10.4%) 16 (10.3%) 35(9.9%) 58 (11.7%)

Taylor 171(16.9%) 41(26.5%) 53 (14.9%) 77 (15.6%)
wine_ordered (= 1) 161 (16.1%) 32 (20.8%) 63 (17.9%) 66 (13.4%) L3

') Kruskal-Wallis test, 2) Fisher exact test, 3) Chi-Square test

-21-

12 Multiple pairwises

The formula supports the dot symbol, meaning every variable in the data besides the ones
already present in the formula. The following code produces a plot for driver, operator and area
versus the response variable temperature:

Desc(temperature ~ ., data=d.pizza[,c('"temperature”,"driver", " operator",area')],
digits=1)

This can as well be reversed in the sense that the dot is defined as response variable and so all
the variables will be plotted against one predictor variable.

13 Concentration

Lorenz-curves can be found in other libraries. This implementation starts with that from the
library ineq, adding some value by calculating confidence intervals for the Gini coefficient.

x <- c(10, 10, 20, 20, 500, 560)

Ic <- Lc(X)

plot(lc)

points(lcp, IcL, cex=1.5, pch=21, bg="white", col="black"™, xpd=TRUE)

Gini(x)
Gini(X, unbiased = FALSE)

Gini(x, conf.level = 0.95)

Lorenz curve

08

06

04

02

0.0 ¥ T T T T

> Gini(x)
[1] ©.7535714

> Gini(x, unbiased = FALSE)
[1] ©.6279762

> Gini(x, conf.level=0.95)

gini lwr.ci upr.ci
0.7535714 0.2000000 0.8967742

-22 -

14 Multivariate graphical description

14.1 Correlation plot

These functions produce a graphical display of a correlation matrix. In the classic matrix

representation the cells of the matrix can be shaded or coloured to show the correlation value.
In the right circular representation the correlations are coded in the line width of the connecting

lines. Red means a negative correlation, blue a positive one.

par(mfrow=c(1,2))

m <- cor(d.pizza[,which(sapply(d.pizza, is.numeric))], use="pairwise.complete.obs")

PlotCorr(m, col=PalDescTools(''RedWhiteBluel™, 100), border="grey",
args.colorlegend=list(labels=Format(seq(1,-1,-.25), 2), frame="grey'))

PlotWeb(m, col=c(hred, hblue))

wine_ordered

weekday
count

price
delivery_min
temperature
wine_delivered

1.00
index .. weekday

count
weekday 050

count .. 0-25

price .. 0.00 price \

¥
delivery_min .. 0.25 \
.. delivery_min

-0.50

wine_ordered ..

-0.75
wine_delivered ..

-1.00

temperature

14.2 PlotPolar (Radarplot)

This function produces a polar plot but can also be used to draw radarplots or spiderplots.

A)
d.car <- scale(mtcars[1:6,1:7], center=FALSE)

let's have a palette with thransparent colors
cols <- SetAlpha(colorRampPalette(c("red","yellow","blue"), space = "rgb")(6), 0.25)

PlotPolar(d.car, type="1", fill=cols, main="Cars in radar")

PolarGrid(nr=NA, ntheta=ncol(d.car), alabels=colnames(d.car), lty="solid", col="black")
legend(x=2, y=2, legend=rownames(d.car), fill=SetAlpha(cols, NA))

-23-

temperature

0.75 T index
week

wine_delivered

wine_ordered

— -0.009
1

Spring

Cars in radar
= 1960
disp B Mazda RX4 B 1970
E Mazda RX4 Wag 0O 1980
O Datsun710
O Homnet 4 Drive
E Hornet Sportabout
B Valiant
Aégzsgggﬁthg\‘
Summer 500% 1000 Winter
R//V’
\/
Autumn
A) B)

B)

m <- matrix(UKgas, ncol=4, byrow=TRUE)

cols <- c(SetAlpha(rep(“green", 10), seq(0,1,0.1)),
SetAlpha(rep("blue", 10), seq(0,1,0.1)),

SetAlpha(rep(“"orange", 10), seq(0,1,0.1)))

PlotPolar(r=m, type="1", col=cols, lwd=2)
PolarGrid(ntheta=4, alabels=c("Winter","Spring","Summer","Autumn"), lty="solid")

legend(x="topright", legend=c(1960,1970,1980), fill=c("green","blue","orange"))

A barplot in polar coordinates can be produced by means of the function DrawAnnulusSector.

Some data

Andri/2016-08-01

x <- c(4,8,2,8,2,6,5,7,3,3,5,3)

-24 -

theta <- (0:12) * pi / 6
PlotPolar(x, type = "n", main="Some data")
PolarGrid(nr = ©:9, ntheta = 24, col="grey", 1lty=1, rlabels = NA, alabels = NA)
DrawAnnulusSector(x=0, y=0, radius.in=@, radius.out=x,
angle.beg = theta[-length(theta)], angle.end = theta[-1],

col=SetAlpha(rainbow(12), ©.7), border=NA)

segments(x0 = -10:10, y0 = -.2, yl1=0.2)
segments(x0=-10, x1=10, y0 = 0)
segments(yo = -10:10, x0 = -.2, x1=0.2)

segments(y0=-10, yl=10, x0 = 0)

BoxedText(x=0, y=c(0,3,6,9), labels = c(0,3,6,9), xpad = .3, ypad=.3, border="grey35")

14.3 PlotFaces

A nice idea for the concrete representation of your customer’s profile is to produce a Chernoff
faces plot. The rows of a data matrix represent cases and the columns the variables.

m <- data.frame(lapply(

d.pizza[,c("temperature","price","delivery_min","wine_ordered", "weekday")]
, tapply, d.pizza$driver, mean, na.rm=TRUE))

PlotFaces(m, ncol=7, nrow=1, main="Driver's characteristics")

Driver's characteristics

Butcher Carpenter Carter Farmer Hunter Miller Taylor
® @ G @ ‘ @, @ l

L , 40 b | 447
L] '.‘ =4

14.4 PlotTreemap
This function produces a treemap.

get some data

data(GNI2010, package="treemap")

gn <- GNI2@10[,c("iso3","population”,"continent","GNI")]
gn <- gn[gn$GNI!=0,]

define a color
gn$coll <- SetAlpha("steelblue", LinScale(gn$GNI, newlow=0.1, newhigh=0.6))

b <- PlotTreemap(x=gn$population, grp=gn$continent, col=gn$coll, labels=gn$iso3,
main="Gross national income (per capita) in $ per country in 2010",
labels.grp=NA, cex=0.7)

-25-

get the midpoints
mid <- do.call(rbind, lapply(lapply(b, "[", 1), data.frame))

and write the continents’ text

DrawBoxedText (x=mid$grp.x, y=mid$grp.y, labels=rownames(mid), cex=1.5, bold=TRUE,
border=NA, col=SetAlpha("white",0.7))

Gross national income (per capita) in § per country in 2010

e ﬂ@ WD | v R Oceania_ s
T . {1 el
- o oo [P
K mziscw R
uzs
Az h can for
AZE | ES 08
. Ll - ER VEN
uvs - e MNorth America South America
THa
WO
AFG ®a e e
0L ARG
- - o o e T EY
L. I — n - L
o = o ot (WS e uoa
- CHE oW | SV N
. Ll T T
N L GG (118
Asia - - |—— Europe
fMa L]
RUS
fRA)

cHi

15 Supplements to base R plots
15.1 Lineplots

There are many flavours of line plots. Most (all?) of them can be handled by the function
matplot.
We generally desist from defining own functions, that only set suitable arguments for another

already existing function, as we fear we would run into a forest of new functions, loosing
overview.

Yet the parametrization of matplot can be a haunting experience and so we integrate some
common examples here in the sense of a “How-To” tutorial.

Let’s for example have a horizontal profile of the driver’s characteristics.

m <-

data.frame(lapply(d.pizza[,c("temperature”,"price","delivery_min","wine_ordered", "weekday")],
tapply, d.pizza$driver, mean, na.rm=TRUE))
(ms <- data.frame(lapply(m, scale))) # lets scale that

-26 -

temperature price delivery_min wine_ordered weekday

Butcher 0.3605689 -0.69917381 -0.98046684 -1.0738446 1.9826284
Carpenter -1.5481318 1.74805901 1.54851320 1.5445402 0.1389367
Carter 0.6105633 -0.82596309 0.02841316 -1.0840337 -0.8062020
Farmer 0.7718643 0.36562860 -0.74842415 0.6105001 -0.7800183
Hunter 1.1473246 -1.16829499 -1.04738479 -0.7792855 -0.7038441
Miller -0.2918676 0.52072004 0.23662429 0.3794541 0.4596817
Taylor -1.0503216 0.05902424 0.96272512 0.4026695 -0.2911825

X <- 1l:ncol(ms)
y <- t(ms)

windows(8.8,5)
par(mar=c(5,4,4,10)+.1)
matplot(x, y, type="1", col=rainbow(nrow(ms)), xaxt="n", las=1, lwd=2, frame.plot=FALSE,
ylim=c(-2,2),
xlab="", main="Horizontal profile")
abline(h=0, v=1:5, lty="dotted", col="grey")
par(xpd=TRUE)
legend(x=5.5, y=2, legend=rownames(ms), fill=rainbow(nrow(ms)))
axis(side=1, at=1:5, labels=colnames(ms), las=1, col="white")

Horizontal profile

Butcher
Carpenter
Carter
Farmer
Hunter
Miller
Taylor

EEEODOON

2 -

temperature price delivery_min wine ordered weekday

The same, but with less code and a nifty and better readable legend at the right side.

PlotLinesA(t(ms), col=PalTibco(), lwd=2)

20 = Butcher
15
1.0 4
P,
05 SN, Miller
= \ > SN |-
00 { Carpenter
" Taylor
0.5 1 Hunter
= = Farmer
10 / TSNS | = Carter
1.5
T T T T T
temperature price delivery_min wine_ordered weekday

Andri/2018-04-27

-27 -

And again the same, but on the vertical axis. (A)

par(mar=c(8,8,5,2))

matplot(x=y, y=x, type="1", pch=1:5, frame.plot=FALSE, axes=FALSE, xlab="", ylab="",

lty="solid",

col=rainbow(nrow(ms)), xlim=c(-3,3), ylim=c(0.5,ncol(ms)), main="Driver's profile",

lwd=2)

matpoints(x=y, y=x, col=rainbow(nrow(ms)), pch=16)
grid(ny=NA)

axis(side=1, las=1)

mtext(colnames(ms), side=2, at=1:ncol(ms), las=2)
par (xpd=TRUE)

legend(x=0, y=-1, legend=rownames(ms), fill=rainbow(nrow(ms)), xjust=0.5, ncol=4, cex=0.8)

Driver's profile

weekday /

wine_ordered
delivery_min

price \

temperature

B Butcher B Carter B Hunter B Taylor
O Carpenter @ Farmer B Miller

A)
15.2 “Bumpchart”

Plot B is sometimes called bumpchart (Jim Lemon).

example from plotrix (bumpchart)

Anchaorage AK

1990

Boston MA

Washington DC

Houston TX
MNew York NY
Los Angeles CA
New Orleans LA
Louisville KY
Chicago IL
Philadelphia PA

edu <- matrix(c(90.4,90.3,75.7,78.9,66,71.8,70.5,70.4,68.4,67.9,

67.2,76.1,68.1,74.7,68.5,72.4,64.3,71.2,73.1,77.8), ncol=2, byrow=TRUE)

rownames(edu) <- c("Anchorage AK","Boston MA","Chicago IL",
"Houston TX","Los Angeles CA","Louisville KY","New Orleans LA",
"New York NY","Philadelphia PA","Washington DC")

colnames(edu) <- c(1999,2000)

par(mar=c(5,10,5,10))

matplot(x=1:2, y=t(edu), type="1", frame.plot=FALSE, axes=FALSE, xlab="",

ylab="", 1lty="solid", col=rainbow(10))

matpoints(x=1:2, y=t(edu), pch=16, frame.plot=FALSE, axes=FALSE, xlab="",

ylab="", 1lty="solid", col=rainbow(10))

sapply(1:2, function(i) mtext(rownames(edu), side=2%*i,

at=SpreadOut(edu[,i], mindist=1.1), line=1, las=1))

mtext(colnames(edu), side=3, at=1:2, line=-3.5, las=1)

-28 -

Anchorage AK

Boston MA
Washington DC
Louisville KY
MNew Orleans LA
MNew York NY
Chicago IL

Philadelphia PA
Houston TX

Los Angeles CA

15.3 Barplot horizontal

A simple barplot, once with absolute values, once with percentages.

windows(height=3, width=11); par(mfrow=c(1,3))

col <- SetAlpha(PalHelsana(), ©.6)

tab <- matrix(c(401,216,221,254,259,169), nrow=2, byrow=TRUE,
dimnames=1ist(wool=c("A","B"), tension=c("L","M","H")))

ptab <- prop.table(tab, 2)

A)
barplot(tab, beside = TRUE, horiz=TRUE, main="A)",
col = col[1:2], las = 1, legend = rownames(tab))
B)
barplot(tab, beside = FALSE, horiz=TRUE, main="B)",
col = col[1:2], las = 1, legend = rownames(tab))
C)
b <- barplot(ptab, beside = FALSE, horiz=TRUE, main="C)",
col = col[1:2], las = 1, legend.text = rownames(tab),
args.legend = list(x=1, y=4.4, bg="white", ncol=2))

x <- t(apply(ptab, 2, Midx, incl.zero=TRUE, cumulate=TRUE))
text(Format(t(ptab), fmt="%", digits=1), x=x, y=b, col="white")

15.4 Barplot vertical

This same as above but with vertical bars.

A)
barplot(tab, beside = TRUE, main="A)",
col = col[1:2], legend = rownames(tab))
B)
barplot(tab, beside = FALSE, main="B)",
col = col, legend = rownames(tab))
C)
barplot(ptab, beside = FALSE, main="C)",
col = col, legend.text = rownames(tab),
args.legend = list(x=3.6, y=1.2, bg="white", ncol=2))

A)

300 400
I 1
om
o

500

300

100
1

o 100

s

-29 -

02 04 0B 08 10

on

Q)

Op @ &

15.5 Barplot (specials)

Some specials like overlapping bars, connecting lines or error bars in combination with a
barplot.

A) B)

C)
o I

@ - N\ LY = —

A ,/ Ay
© - » Y B

. 1
- ~ - \‘{fj o o
o -
o - o o

1 t2 13 t1 t2 t3

10
|

-1

4

2

windows(height=3,11)
par(mfrow=c(1,3))

A) Overlapping bars ------------cocmmmmmmeean
blue <- rbind(c(5, 3, 4, 3),
c(3, 2, 5, 1))
dimnames(blue) <- list(c("A","B"),c("t1","t2","t3","t4"))
red <- rbind(c(1.7,3.5,1.6,1.1),
c(2.1,1.0,1.7,0.5))
dimnames(red) <- list(c("A","B"),c("t1","t2","t3","t4"))

Set parameters
osp <- 0.5 # overlapping part in %
sp <- 1 # spacing between the bars

nbars <- dim(blue)[2] # how many bars do we have?

Create first barplot
b <- barplot(blue, col=SetAlpha(hblue, c(©0.5,1)), main="A)"
, beside=FALSE, ylim=c(0,10), axisnames=FALSE
, xlim=c(@, nbars*2-osp) # enlarge x-Axis
, space=c(9@, rep(sp, nbars-1)) # set spacing=1, starting with o
)
Draw the red series
barplot(red, col=c(PalHelsana()[5], hred), beside=FALSE
, space=c(l-osp, rep(1l, nbars-1)) # shift to right by 1-osp
, axisnames=FALSE, add=TRUE)

Create axis separately, such that labels can be shifted to the left
axis(1, labels=colnames(red), at=b+(1-osp)/2, tick=FALSE, las=1)

B) Connecting lines -----------------—-----o----
barplot(blue, col=SetAlpha(hblue, c(0.5,1)), space=1.2, main="B)")
ConnLines(blue, lwd=2, lty="dashed", space=1.2)

C) Add error bars --------------ciccoocieeeao

cred <- apply(red, 2, sum)

b <- barplot(cred, col=horange, space=1.2, ylim=c(0,5), main="C)")
ErrBars(from=cred * .90, to=cred * 1.1, pos=b)

-30 -

15.6 PlotPyramid

A special kind of horizontal barplot is a “pyramid plot”, where the bars are plotted back to back.
This is sometimes needed, when your boss has specific and strict ideas how his presentation
should look like.

d.sda <- data.frame(
Kt_x c("NW","TG", "UR", "AL", "OW", "GR", "BE", "SH", "AG", "BS", "FR"),
apon=c(8, 11, 9, 7, 9, 24, 19, 19, 20, 43, 27),
sda_n = c(127, 125, 121, 121, 110, 48, 34, 33, o, o, 0))

PlotPyramid(1x=d.sda[,c("apo_n","sda_n")], ylab=d.sdag$kt_x,
col=c("lightslategray", "orange2"), border = NA, ylab.x=0, xlim=c(-110,250),
gapwidth = NULL, cex.lab = 0.8, cex.axis=0.8, xaxt = TRUE,
1xlab="Drugstores", rxlab="General practitioners",
main="Density of general practitioners and drugstores",
space=0.5, args.grid=list(lty=1))

Density of general practitioners and drugstores

FR
BS
AG
SH
BE
GR
ow
Al
UR
TG
NW

o IIIIIIIIIII

50

o

50 100 150

Drugstores General practitioners

15.7 PlotHorizBar

This is a simple function for plotting flowing horizontal or vertical bars.

PlotHorizBar(from=c(1,2,3), to=c(2,5,4), grp=c(1,2,3), col=PalHelsana()[1:3])

-31-

15.8 PlotCandlestick
This plot is used primarily to describe price movements of a security, derivative or currency
over time. Candlestick charts are a visual aid for decision making in stock, foreign exchange,

commodity, and option trading.

example(PlotCandlestick)
PlotCandlestick(x=as.Date(rownames(nov)), y=nov, border=NA, las=1, ylab="")

iy .
iy h

68

T T 1 T T T T 1 T T T 1
2013-05-28 2013-06-03 2013-06-07 2013-06-11 2013-06-17 2013-06-21

15.9 Combination of barplot and lineplot

It's normally not recommended to use two axes, resp. combine two plots into one. However for
displaying clima diagrams, consisting of a rain barplot and a temperature lineplot, this type is
quite popular and often seen.

The used plot has a few special format features, that cost me much of time to find a solution.
This includes the rug with positive and negative parts, the outside legend, the two axes with a
suitable dimensions and the colouring of the background.

get some data

d.temp <- data.frame(
month=c("Jan","Feb", "Mrz", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez")
,nieder_96=c(9, 50, 41, 49, 141, 99, 161, 119, 52, 115, 123, 70)
,nhieder_mittel=c(67, 65, 67, 85, 103, 135, 136, 130, 101, 81, 74, 76)
,temp_96=c(-1.9, -2.1, 3.8, 9.3, 11.8, 17.1, 17.3, 16.8, 10.2, 9.8, 5.4, 0.5)
,temp_mittel=c(-1, o, 4.5, 7.3, 11.9, 15, 16.5, 15.5, 13.9, 8.1, 3.7, 0.2)

)

define a few colors

hellblau <- rgb(red=204,green=255,blue=255, max=255)
dunkelblau <- rgb(red=51,green=204,blue=204, max=255)
dunkelgrau <- rgb(red=128,green=128,blue=128, max=255)
mittelgrau <- rgb(red=192,green=192,blue=192, max=255)
hellgrau <- rgb(red=227,green=227,blue=227, max=255)

set the parameters

windows(width=7.2, height=5.5)

par(mar=c(5.1,4.1,7.1,16.1)) # set margins, default: c(5.1, 4.1, 4.1, 2.1)
par(bg=mittelgrau) # background color

start plotting, we use barplot as basis

b <- barplot(t(d.temp[,c("nieder_mittel","nieder_96")])

col=c(dunkelgrau, hellblau)

beside=TRUE , xlab="Monate", cex.lab=0.8, mgp=c(2.2,0.7,0)

space=rep(c(0.3,-0.5), 12) # bars should overlap 50%

ylim=c(0,500), yaxt="n"

panel.first = {

par(xpd=FALSE) # barplot paints over the whole figure region by default

usr <- par("usr") # set background color lightgrey

rect(xleft=usr[1], ybottom=usr[3], xright=usr[2], ytop=usr[4], col=hellgrau)

-32-

[

grid(nx=NA, ny=10, col="white", 1lty="solid") # horiz grid only
box()
}
)

find the centers of the bars and the gaps

barx <- apply(b, 2, FUN=mean)

run.mean <- filter(barx, filter=c(0.5,0.5))[-length(barx)]

gapx <- c(run.mean[1]-diff(barx)[1], run.mean, run.mean+diff(barx))

draw the vertikal gridlines
abline(v=gapx, col="white")
box ()

design x-axis

axis(side=1, at=apply(b,2,FUN=mean), labels=d.temp$month, cex.axis=0.7
, las=2, tck=-0.025 # no tickmarks for the x-axis
, mgp=c(2.2,0.7,0)) # decrease distance label to axis

left y-axis

axis(side=2, at=seq(0,500,50), las=2, cex.axis=0.7)
rug(seq(@,500,10), side=2, ticksize=-0.01)

rug(seq(@,500,50), side=2, ticksize= 0.01)

plot lines

par(new=TRUE)

matplot(x=barx, y=d.temp[,c("temp_96","temp_mittel")], col=c(dunkelblau,"grey60")
, lwd=2, lty="solid", type="1", xaxt="n", yaxt="n", xlab="", ylab=""
, xlim=par("usr")[1:2] # use the current xlim
, ylim=c(-25, 25), xaxs="i", yaxs="i")

design right axis

axis(side=4, labels=seq(-25,25,5), at=seq(-25,25,5), las=2, cex.axis=0.7)
rug(seq(-25,25,1), side=4, ticksize=-0.01)

rug(seq(-25,25,5), side=4, ticksize=0.01)

write titles

mtext (text=c("Lufttemperatur [°C]","Niederschlag [mm]"), side=3, at=c(25,-3.2), adj=c(1,0)
, las=1, line=1, cex=0.8)

mtext (text="Klimadiagramm Ziirich-SMA\n556 m. 4. M.", cex=1.2, font=2, side=3, line=3)

plot legend
legend(x=30, y=27, xpd=TRUE

, legend=c("Niederschlag 1996", "Niederschlag:\nlangjahriges Mittel", "Temperatur
1996", "Temperatur:\nlangjahriges Mittel")

, cex=0.7, bty="n", col=c(hellblau, dunkelgrau, dunkelblau, "black")

, y.intersp=2.5, pt.cex=1.2, pch=c(15,15,45,45))

mtext("©® Statistisches Amt des Kantons Zirich", side=1, line=3.5, at=-4, cex=0.7, las=1,
adj=0)

mtext("Quelle: Schweizerische Meteorologische Anstalt (SMA)", side=1, line=3.5, at=41,
cex=0.7, las=1, adj=1)

-33-

15.10 PlotDot

The base function dotchart has been improved but still has some potential for extensions.
Especially an add argument is sometimes useful and returning the y-coordinates for the points
would allow to add elements.

PlotDot implements these extensions and allows adding error bars. This is interesting, as the
calculation of the x-limits should be done with respect to the bars and not only to the points.

add some error bars

PlotDot(VADeaths, main="Death Rates in Virginia - 194@", col="red", pch=NA,
args.errbars = list(from=VADeaths-2, to=VADeaths+2, mid=VADeaths,
pch=21, cex=1.4))

add some other values
PlotDot(VADeaths+3, pch=15, col="blue", add=TRUE, labels=NA)

Death Rates in Virginia - 1940

B5-60
T0-74 o

-34-

15.11 PlotBubble

Bubbles can actually easily be produced with the standard plot function. This function here
helps you defining appropriate axis limits.

PlotBubble(d.world$x, d.world$y, area=d.world$pop/90, col=SetAlpha("deeppink4",0.4),
border="darkblue",

xlab="", ylab="", panel.first=grid(), main="World population")
text(d.world$x, d.world$y, labels=d.world$country, cex=0.7, adj=0.5)

World population

8000

icefand

6000
1
o
¢

4000
|
i
2

2000
I

colgiibia
o
.
o
g Zimi@owe
o
SoutBrica Aufala
5 Ardgibina
o
=
Al T T T T T T T
-15000 -10000 -5000 0 5000 10000 15000

15.12 Venn plots

Now and then one might want to plot a Venn diagram. This function does this for up to 5
datasets using the simple proposed geometric representations.

(For more than 5 datasets the Venn representation loses its simplicity and other plot types
become more adequate.)

example(PlotVenn)

PlotVenn(x=x[1:3], col=SetAlpha(c(PalHelsana()[c(1,3,6)]), ©0.4))
PlotVenn(x=x[1:4], col=SetAlpha(c(PalHelsana()[c(1,3,6,4)]), ©.4))
PlotVenn(x=x[1:5], col=SetAlpha(c(PalHelsana()[c(1,3,6,4,7)]), 0.4))

-35-

15.13 Areaplot

Areaplots have a high “ink factor”}, say they use much ink to display the information and are
therefore rarely the best way of representing data. But again, when your boss wants it this way,
here’s a function to produce it easily.

t.oil <- t(matrix(c(13.3,11.4, 9.7,10.6,12.7,11.90,10.6,13.5,
5.3, 3.6, 5.8, 8.4, 9.1,14.8,10.6, 9.6,
4.9, 3.1, 3.0, 6.0,12.2, 7.1, 7.3,10.0,
2.1, 2.6, 2.7, 3.5, 4.7, 5.0, 4.4, 4.3), nrow=4, byrow=TRUE,
dimnames = list(c("ExxonMobil","BP","Shell","Eni"),

c("1998","1999","2000","2001","2002","2003","2004","2005"))))
t(t.oil)

par(mfrow=c(1,2), mar=c(5,4,5,5))
col <- SetAlpha(PalHelsana(), ©0.7)
PlotArea(t.oil, col = col, las = 1, frame.plot=FALSE)
mtext(side=4, text=colnames(t.oil), las=1,
at=Midx(tail(t.oil, 1)[,], incl.zero=TRUE, cumulate=TRUE))

PlotArea(prop.table(t.oil, 1), col = col, las = 1, frame.plot=FALSE)

tab (absolute values)

> t(t.oil)

1998 1999 2000 2001 2002 2003 2004 2005
ExxonMobil 13.3 11.4 9.7 10.6 12.7 11.0 10.6 13.5
BP 5.3 3.6 5.8 8.4 9.1 14.8 10.6 9.6
Shell 4.9 3.1 3.0 6.0 12.2 7.1 7.3 10.0
Eni 2.1 2.6 2.7 3.5 4.7 5.0 4.4 4.3

ptab (relative values)
1998 1999 2000 2001 2002 2003 2004 2005
ExxonMobil ©.520 0.551 0.458 ©.372 0.328 0.290 0.322 0.361

BP 0.207 0.174 ©.274 ©.295 ©.235 0.391 0.322 0.257
Shell 0.191 0.150 ©.142 0.211 ©.315 0.187 0.222 0.267
Eni 0.082 0.126 ©.127 0.123 ©.121 0.132 0.134 ©.115
40 10 —
En
30 Shel
06
20 7 BP
04 |
10
ExxonMobil 02~
0 - 00
[| | | | | | [| | | | | |
1998 2000 2002 2004 1998 2000 2002 2004

! Tufte, Edward R (2001) [1983], The Visual Display of Quantitative Information (2nd ed.), Cheshire, CT: Graphics Press,
ISBN 0-9613921-4-2.

-36 -

15.14 PlotTernary

This produces a ternary or triangular plot.

data(Skye, package="MASS")
PlotTernary(Skye[c(1,3,2)], pch=15, col=hred, main="Skye",
lbl=c("A Sodium", "F Iron", "M Magnesium"))

Skye
A Sodium

|

|
.l

n

"

M Magnesium F lron

15.15 PlotMarDens

This plot shows a scatterplot of two numerical variables temperature and delivery_time, by area.
On the margins the density curves of the specific variable are plotted, also stratified by area.

PlotMarDens(y=d.pizza$temperature, x=d.pizza$delivery_min, grp=d.pizza$area,
xlab="delivery_min", ylab="temperature",

col=c("brown","orange","lightsteelblue"), panel.first=grid(),
main="temperature ~ delivery min | area")

temperature ~ delivery_min | area

o Brent
Camden
Westminster

temperature

10 20 30 40 50 60

delivery_min

-37 -

15.16 Polar plots

testlen <- c(sin(seq(@, 1.98*pi, length=100)) + 2 + rnorm(100)/10)

testpos <- seq(@, 1.98*pi, length=100)

start at 12 o'clock and plot clockwise

PlotPolar(testlen, -(testpos - pi/2), type="p", main="Test Polygon", col="green", pch=16)

PolarGrid(ntheta = rev(seq(@, 2*pi, by=2*pi/9) + pi/2),
alabels=Format(seq(@, 2*pi, by=2*pi/9),2)[-10], col="grey",
lty="solid", 1lblradians=TRUE)

just because of its beauty
t <- seq(@,2*pi,0.01)

PlotPolar(r=sin(2*t)*cos(2*t), theta=t, type="1", lty="dashed", col="red")
PolarGrid()

120 60

150

1) 3 180

4.19 2.09 210

240 300
270

15.17 Plot Functions

Functions can be plotted a bit more comfortable by means of the function PlotFun. The idea
behind it is to make use of the formula interface, for example x*2 ~ x, and let the function
choose appropriate defaults for the rest. (This would be the best case scenario...;-).

There can as well be further parameters defined for plotting more than one function at once.
Arguments as type=""n"" or add=TRUE are supported.

The function returns the calculated xy-coordinates as list. This can be used to modify the
coordinates afterwards, e.g. rotate or translate them.

get some data
par(mfrow=c(2,2))
PlotFun(sin(2*t) ~ sin(t), from=0, to=2*pi, by=0.01, col="blue", lwd=2)

PlotFun(1+ 1/10 * sin(1@*x) ~ x, polar=TRUE, from=0, to=2*pi, by=0.001, col=hred)
add a second curve with add=TRUE
PlotFun(sin(x) ~ cos(x), polar=FALSE, from=0, to=2*pi, by=0.01, add=TRUE, col="blue")

lemniscate of Bernoulli

PlotFun((2*a”2*cos(2*t))”2 ~ t, args=list(a=1), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,
col="darkblue", lwd=2)

add the second curve in red

PlotFun((2*a”2*cos(2*t))"2 ~ t, args=1list(a=0.9), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,

-38-

30

330

col="red", lwd=2, add=TRUE)
calculate points for a third curve, but do not yet plot it
z <- PlotFun((2*a”2*cos(2*t))”2 ~ t, args=1ist(a=0.9), polar=TRUE, from=0, to=2*pi+0.1,
by=0.01, add=TRUE, type="n")
rotate the structure by pi/4
zz <- Rotate(zx, zy, theta=pi/4)
add a polygon for being able to fill it
polygon(x = zz$x, y=zz$y, col=SetAlpha("yellow", 0.4))

evolving circle
PlotFun(a*(sin(t) - t*cos(t)) ~ a*(cos(t) + t*sin(t)), args=1list(a=0.2), from=0, to=50,
by=0.01, col="brown")

15.18 Legends and colour strips

The details of a legend can be challenging to define, respectively to find how to control.
Think as well of the locator(), when a position should be placed by pointing and clicking.

Here are some examples of maybe nontrivial legends.

par(mar=c(5.1,4.1,4.1,11.1))
plot(x=1:5, y=1:5, type="n", xlab="x", ylab="y")

A) Combine lines and point characters *¥¥¥****xx

legend(x="bottomleft", inset=0.02, legend=c("A","B","C","D")
, lty=c("dashed","dotted",NA,"solid"), lwd=2, cex=0.8
, pch=c(NA,NA,21,15)
, col=c("red","blue","black","grey"), bg="white")

B) Combine colours and lines **¥¥¥okkx

-39-

legend(x=2, y=2, xjust=0.5, yjust=0

, title=" My title:", title.col="grey40", title.adj=0
legend=c("A","B","C","D","E")
pch=c(22,22,22,45,45), pt.cex=c(1.2,1.2,1.2,2,2)
col=c(rep("black",3),"orange","red")
pt.bg=c("blue","green","yellow")
bg="grey95", cex=0.8
box.col="darkgrey", box.lwd=3, box.lty="dotted")

Lo

C) 2 COlUmnS 3k 3k >k >k %k 3k >k k ok ok

legend("topright", inset=0.05, cex=0.8, bg="white"
, legend=c("A-1","A-2","B-1", "B-2")
, col=c("lightblue","blue","salmon","red"), pch=15, pt.cex=1.5
, y.intersp=1.5, x.intersp=1.5 , ncol=2)

D) fOPmula 3k >k 5k 3k 3k >k %k %k %k k
legend(x="bottomright", inset=c(0.02, .04)
, legend=c(expression(plain(“gamma: ") * Gamma * " " * bgroup("(", k * " =" *
over(bar(x)”2, s~2) * " , " * theta * plain(" = ") * over(s”2, bar(x)), ")")),
"kernel density")
, fill=c(hecru, getOption("coll", hred)), text.width = 1.5)

E) outside the plot area *******¥xx
legend(x=2, y=6, legend=c("A","B","C")
, fill=c("red","blue","green")
, density=30, bty="n", horiz=TRUE
» Xpd=TRUE)

F) change fonts *¥¥*¥iiokkx
windowsFonts("sans2"="Arial Black")
usr <- par(font=4, family="sans2")
legend(x=5.5, y=3, legend=c("Label A","Label B","Label C")
, fill=c("red","orange","yellow")
, border="brown"
, y.intersp=2, text.width=strwidth("Make larger")
, text.col=c("red","orange","yellow")

, Xpd=TRUE)
par(usr)
E ABB OC
o 4
(: A1H B
W A2E B2
< -
o e wytite:, B

HA
OB B Label A
oc
22 D , m

o [% SZ\-

O gamma: l“nk:—z,e:r- |
L s x|
- A .
“TAlA |
e B kernel density
— D
T T T \
1 2 3 4 5

-40 -

The function ColorLegend produces colour strips, which often are needed for colour coded
maps.

plot(1:15,, xlim=c(@,10), type="n", xlab="", ylab="", main="Colorstrips")

A
ColorLegend(x="right", inset=0.1, labels=c(1:10))

B: Center the labels
ColorLegend(x=1, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),
space = "rgb")(5), labels=1:5, cntrlbl = TRUE)

C: Outer frame
ColorLegend(x=3, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),
space = "rgb")(5), labels=1:4, frame="grey")

D
ColorLegend(x=5, y=9, height=6, col=colorRampPalette(c("blue", "white", "red"),
space = "rgb")(10), labels=sprintf("%.1f",seq(9,1,0.1)), cex=0.8)

E: horizontal shape
ColorLegend(x=1, y=2, width=6, height=0.2, col=rainbow(500), labels=1:5,horiz=TRUE)

F
ColorLegend(x=1, y=14, width=6, height=0.5, col=colorRampPalette(
c("red","yellow","green","blue", "black"), space = "rgb")(100), horiz=TRUE)

#G
ColorLegend(x=1, y=12, width=6, height=1, col=colorRampPalette(c("red","yellow",
"green","blue","black"), space = "rgb")(10), horiz=TRUE, border="black")

Colorstrips
10
= A
9
=7 8
o _| 7
6
&
5
©
4
< 3
2
gl
’
I I I I I I
0 2 4 6 8 10

-41 -

16 Format, Strings and Date functions

16.1 Formatting numbers and dates

Number formatting can sometimes be a nightmare in base R. The function Format tries to
concentrate as much as possible form the functionality of formatC, format, symbol, pval etc. into
one simple interface.

The following example will use a space as big mark, align the numbers on the position of the “e”,
flip to scientific notation for numbers < 10-2 and for such > 104 and use 3 fixed digits for all
numbers.

X <- pi * 107(-5:7)
cbind(Format(x, big.mark=" ", align="e", sci=c(5,2), digits=3))

it [,1]

#[1,] " 3.142e-05"
#o[2,] " 3.142e-04"
[3,] " 3.142e-03"
o [4,] " 0.031 "
[5,] " 0.314 "
[6,] " 3.142 "
[7,] " 31.416 "
[8,] " 314.159 "

[9,] " 3 141.593 "
[10,] "31 415.927 "

[11,] " 3.142e+05"
[12,] " 3.142e+06"
[13,] " 3.142e+07"

Engineering format, set with fmt = “eng”, will snap to powers of multiples of 3 when using
scientific notation.

Format(x, fmt="eng", leading="00", digits=2)

[1] "31.42e-06" "314.16e-06" "03.14e-03" "31.42e-03" "314.16e-03" "03.14e+00"

[7] "31.42e+00" "314.16e+00" "03.14e+03" "31.42e+03" "314.16e+03" "03.14e+06"
[13] "31.42e+06"

Formatting dates use format codes “d” for days, “m” for months etc.

Format(as.Date(c("2014-11-28", "2014-1-2")), fmt="ddd, d mmmm yyyy")
[1] "Fri, 28 November 2014" "Thu, 2 January 2014"

Format(Today(), fmt="dddd, dd.mm.yyyy")
[1] "Thursday, 26.05.2016"

Format(Today(), fmt="dddd, yy/mm/dd")
[1] "Thursday, 16/05/26"

Format(Today(), fmt="dddd, yy/mm/dd", lang="loc") # with local language
[1] "Donnerstag, 16/05/26"

“«,_n

The format code “p” will produce formatted p-values and is a simple wrapper for format.pval.

Format(c(0.442, 0.02125, 4e-21), fmt="p")
[1] "0.44200" "0.02125" "< 2.2e-16"

Significance stars mimics the function symnum.

Format(c(@.4, 0.02, 0.0004), fmt="*")
##[1] " " omE o ke

-47 -

When formatting percentages the function Format will multiply the numbers with 100, round
them to the given number of fixed digits and append a “%”sign.
A sometimes suitable alternative format could be to drop the leading zeros.

Format(c(@.24534, 0.4512345, 1.347), fmt="%", digits=2)
[1] "24.53%" "45.12%" "134.70%"

Format(c(@.24534, 0.4512345, 1.347), leading="drop", digits=2)
[1] ".25" ".45" "1.35"

NAs and zeros must sometimes be formatted specially. Think eg. of sparse matrices, where one

«n

would like the Os being displayed as “.” or maybe even not at all “”.

Format(c(3.45, 451.2345, @, NA), digits=2, na.form="<NULL>", zero.form="-")
[1] "3.45" "451.23" "-" "<NULL>"

Alignment can be done directly within the function. There are 3 special codes supported, left
alignment with “\\1”, centered with “\\c” and right with “\\r”.

cbind(Format(cumsum(107(0:6)), align="\\c", digits=e))

[,1]
(1,1 " 1
[2,] " 11
[3,] " 111
[4,] " 1111
[5,] " 11111 "

[6,] "111111 "
[7,] "1111111"

16.2 Date functions

Many date functions are presumably thought to be reached via format and some subsequent
cast in base R. However in the analyst’s daily life it’s often convenient to be able to directly
extract parts of a date. So DescTools contains the following ones:

day.name, day.abb Defined names of the days

AddMonths, AddMonthsYM Add a number of months to a given date

IsDate Check whether x is a date object

IsWeekend Check whether x falls on a weekend

IsLeapYear Check whether x is a leap year

LastDayOfMonth Return the last day of the month of the date x

DiffDays360 Calculate the difference of two dates using the 360-days system
Date Create a date from numeric representation of year, month, day
Day, Month, Year Extract part of a date

Hour, Minute, Second Extract part of time

Week, Weekday Returns ISO week and weekday of a date

Quarter Quarter of a date

YearDay, YearMonth The day in the year of a date

Now, Today Get current date or date-time

HmsToSec, SecToHms Convert h:m:s times to seconds and vice versa

Zodiac The zodiac sign of a date :-)

-43 -

16.3 Strings

String functions are scattered in base R and the solution for some daily tasks are sometimes
hard to find. Experts will solve most of their daily life string manipulation with regular
expressions. But beginners and a big part of advanced users are supposed to profit by a set of

basic string fu

nchar
tolower
toupper
StrCap
StrAbbr
abbreviate
StrTrunc

StrTrim
StrPad
StrRev
paste
strrep
strwrap
chartr
substr

(substring)
StrChop
strsplit
StrCountW
StrVal

StrPos
StrIsNumeric
FixToTab

StrDist
grep

grepl
regexpr
gregexpr
(regexec)
sub

gsub
strwidth
strheight
noquote

nctions.

the length of a string, say the number of characters
convert to lower case

convert to upper case

capitalize the first letter of a string

abbreviates a string

abbreviation

truncate string on a given length and add ellipses if it really was
truncated

delete white spaces from a string

fill a string with defined characters to fit a given length
reverse a string

concatenate strings

repeat the elements of a character vector

wrap character strings to format paragraphs
character translation

extract or replace substrings in a character vector, but only with
position indices, not with regexp patterns

(substring is compatible with S Plus)

split a string by a fixed number of characters.

splitting regex matches split vector according to matches
count the words in a string

extract numeric values from a string

find position of first occurrence of a string in another one
check whether a string does only contain numeric data

create table out of a running text, by using columns of spaces as
delimiter

compute Levenshtein or Hamming distance between strings

regex matches which elements are matched and returns the index or

value (argument value=TRUE)
same, but returns logical vector (TRUE & FALSE)
regex matches positions of the first match
same for all matches
(regex matches hybrid of regexpr and gregexpr)
replacing regex matches only first match is replaced
same, but all matches are replaced

compute the width of the given string on the current plotting device

same with height

-44 -

Base
base
base
DescTools
DescTools
base
DescTools

DescTools
DescTools
DescTools
base
base
base
base
base

DescTools
base

DescTools
DescTools
DescTools
DescTools
DescTools

DescTools
base

base
base
base
base
base
base
graphics
Graphics

cat, print

non

“replace” x <- ¢("may", "the", "force", "be", "with", "you")

substr(x, 2, 2) <- "#"
StrExtract extracts found matches

HowTo

Question

Answer

Does y contain x?

»n

Extract “ab..” from c(“uiabex”,”ummjeabxy”)

17 Import — Export

17.1 Import data via Excel

grepl(x, y)

StrExtract(x=c("uiabexz", "umeabxymj"),

pattern="ab..")
"abex", "abxy"

The function XLGetRange allows a quick import of data from an Excel-Sheet. The user can either
specify a number of cell-references (including a path- and filename) or just select the regions

which are to be imported.

The following command will return a list with the contents of the selected cell ranges.

| Stai| Einf | Seit | For| Dat | Ube | Ans | Ac| & 0 (=

) RStudio lb

= = =

XLView(d.frm) can be used to view a data.frame d.frm in Excel.

| & & A = o, A B l-ler-l B =
Eir an o Schriftart Ausrichtung, Zahl Formatvorlagen Zellen L Console
| T N " ’ N >
Iwischena.. & =
B12 - fe| 1478 ~ :
A e | b ECLN >
1 year i : i <-¥LGetRange()
2 | 2013 166.6 B §$ al:B1"
3 2013 176 X1 x2
P 2013 170.0 1 year weight
] 2013 165.3 $7A6:A107
| 6 | 2013 177.5 X
i 2013 159.7 % ggig
i 2013 165.9 3 2012
9 2013 163.7 4 2013
10 2013 162.4 2203
11 2013 168.1 $°B13:B16°
112 | 2013 169.7 x1
|13 2013 147.5 % 1‘;;:?
14 2013 168.7 3 164.7
|15 2013 164.7 4 164.6
1 16 | 2013 164.6 =
17 2013 150.2
1a | 3 158 A | bl
4 v W] Tabellel ~Tabele2 Tabell[4[| »[] mE
Mittelwert: 1190.088389 Anzahk 11 Summe: 107108 |[EEED .

|3 Project: [None] -

=

-45 -

17.2 Import SAS datalines
The function ParseSASDatalines can be used to import the SAS data like the following:

sas <-
data FatComp;
input Exposure Response Count;
label Response='Heart Disease';
datalines;
00 6

(SN
PO R
P AN

o
El

(FatComp <- ParseSASDatalines(sas))

Exposure Response Count

1 (] 0 6
2 0 1 2
3 1 0 4
4 1 1 11

18 DescToolsOptions

There are a few options for the graphical or textual output that can be set. DescToolsOptions()
displays the currently defined options.

$col
hblue hred hgreen
"#8296C4" "#9A0941" "#B3BA12"

$digits
[1] 3

$fixedfont
$name
[1] "Consolas"

$size

[1] 7

attr(,"class")

[1] "font"

$fmt

fmtabs

Format name: abs

Description: Number format for counts
Definition: digits=0, big.mark="""
Example: 314'159

fmtnum

Format name: num

Description: Number format for floats
Definition: digits=3, big.mark="""
Example: 314'159.265

$footnote

[1] "ar nar vae

$lang
[1] "engl™

$plotit
[1] TRUE

-46 -

$stamp
expression(gettextf("%s/%s", Sys.getenv("USERNAME"), Format(Today(),

fmt = "yyyy-mm-dd")))

$lastWrd
NULL

$lastXL
NULL

$lastPP
NULL

Invoking DescToolsOptions() with no arguments returns a list with the current values of the
options. Note that not all options listed below are set initially. To access the value of a single
option, one can simply use DescToolsOptions("plotit").

To set a new value use the same rationale as with the R options:
DescToolsOptions(plotit=FALSE)

col:
a vector of colours, defined as names or as RGB-longs ("#RRGGBB"). By now three
colors are used in several plots as defaults. By default they're set to hred, hblue and
horange. Change the values by defining DescToolsOptions(col=c("pink", "blue",
"yellow")). Any color definition can be used here.
digits:
the number of FIXED digits, used throughout the print functions.
fixedfont:
this font will be used by default, when Desc writes to a Word document. Must be defined
as a font object, say enumerating name, face and size of the font and setting the class
font, e.g. structure(list(name="Courier New", size=7), class="font").
fmt:
Three number format definitions are currently used in the Desc routines. The format
used for integer values is named "abs", for percentages "perc" and for floating point
numeric values "num". The format definitions must be of class "fmt" and may contain
any argument used in the function Format.
Use Fmt to access and update formats (as they are organised in a nested list). See the
current definitions with:
Format(pi*1000, fmt=Fmt(''abs'™))
[1] "3"142"
Format(pi*.1, fmt=Fmt(“‘per'))
[1] "31.4%"
Format(pi*1000, fmt=Fmt(''num'™))
[1] "3"141.593"
footnote:
a character vector, containing characters to be used as footnote signs. Any character can
be defined here. This is currently used by TOne.
The author’s favorites: DescToolsOptions("footnote"=c("2","2","3"))
lang:
either "engl" or "local", defining the language to be used for the names of weekdays
and months when using Format.
plotit:

-47 -

logical, defining whether the Desc-procedures should produce plots by default. This is
usually a good thing, but it may clutter up your desktop, if you're not using RStudio.

Therefore it can be turned off.

stamp:

text or expression to be placed in the right bottom corner of the DescTools plots. This
can be useful, if some author or date information should be inserted by default. The
default would use an expression as <username>/<date>. See defaults below.

Calling DescToolsOptions(reset=TRUE) will reset the options to these defaults:

options(DescTools = list(

col = c(hblue="#8296C4", hred="#9A0941", hgreen="#B3BA12"),
digits = 3,
fixedfont = structure(list(name = "Consolas", size = 7), class = "font"),
fmt = list(abs = structure(list(digits = @, big.mark = "'"),
name = "abs", label = "Number format for counts", default

class = "fmt"),
per = structure(list(digits = 1, big.mark = "%"),

name = "per", label = "Percentage number format", default
class = "fmt"),

num = structure(list(digits = 3, big.mark = "'"),
name = "num", label = "Number format for floats", default

class = "fmt")

)
footnote = c("'", "\"", "\"\""),

lang = "engl",
plotit = TRUE,
stamp = expression(gettextf("%s/%s", Sys.getenv("USERNAME"),
Format(Today(), fmt = "yyyy-mm-dd")))
))

TRUE,

TRUE,

TRUE,

This code can as well be copied and pasted to the users' RProfile file, in order to have the

options permanently available.

-48 -

19 References

http://cran.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf
http://www.stattutorials.com/SAS/TUTORIAL-PROC-FREQ-1.htm

Vittinghoff, E., Glidden, D. V., Shiboski, S. C., and Mcculloch, C. E. (2005) Regression Methods in
Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. Springer, New York

http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
http://www.stat.ufl.edu/~presnell/Courses/sta4504-2011sp/Notes/icda-notes-3x2.pdf
Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons.

Dalgaard, P. (2008) Introductory Statistics with R (2. Aufl.), London, UK: Springer.

Rajul Parikh et. al. Understanding and using sensitivity, specificity and predictive values, 2008
Indian] Ophthalmol. Jan-Feb; 56(1): 45-50.

Wollschlager, D. (2010, 2012) Grundlagen der Datenanalyse mit R, Springer, Berlin.

Tufte, Edward R (2001) [1983], The Visual Display of Quantitative Information (2nd ed.),
Cheshire, CT: Graphics Press

-49 -

