
Using DatabaseConnectorr
Martijn J. Schuemie

2018-06-28

Contents
1 Introduction 1

2 Obtaining drivers for Netezza and Impala 1

3 Creating a connection 1
3.1 Specifying the driver location for Netezza and Impala . 2

4 Querying 3
4.1 Querying using ffdf objects . 3

5 Inserting tables 3

6 DBI interface 3

1 Introduction

DatabaseConnector is an R package for connecting to various database platforms using Java’s JDBC drivers.

Supported database platforms:

• Microsoft SQL Server
• Oracle
• PostgresSql
• Microsoft Parallel Data Warehouse (a.k.a. Analytics Platform System)
• Amazon Redshift
• Apache Impala
• Google BigQuery
• IBM Netezza

2 Obtaining drivers for Netezza and Impala

The package already contins most drivers, but because of licensing reasons the drivers for Netezza and Impala
are not included but must be obtained by the user. Type
?jdbcDrivers

for instructions on how to download these drivers. Once downloaded, you can use the pathToDriver argument
of the connect, dbConnect, and createConnectionDetails functions.

3 Creating a connection

To connect to a database a number of details need to be specified, such as the database platform, the location
of the server, the user name, and password. We can call the connect function and specify these details

1

directly:
conn <- connect(dbms = "postgresql",

server = "localhost/postgres",
user = "joe",
password = "secret",
schema = "cdm")

#> Connecting using PostgreSQL driver

See ?connect for information on which details are required for each platform. Don’t forget to close any
connection afterwards:
disconnect(conn)

Note that, instead of providing the server name, it is also possible to provide the JDBC connection string if
this is more convenient:
conn <- connect(dbms = "postgresql",

connectionString = "jdbc:postgresql://localhost:5432/postgres",
user = "joe",
password = "secret",
schema = "cdm")

#> Connecting using PostgreSQL driver

Sometimes we may want to first specify the connection details, and defer connecting until later. This may
be convenient for example when the connection is established inside a function, and the details need to be
passed as an argument. We can use the createConnectionDetails function for this purpose:
details <- createConnectionDetails(dbms = "postgresql",

server = "localhost/postgres",
user = "joe",
password = "secret",
schema = "cdm")

conn <- connect(details)

#> Connecting using PostgreSQL driver

3.1 Specifying the driver location for Netezza and Impala

For Netezza and Impala the drivers are not included in the DatabaseConnector package and need to be
downloaded separately, as noted earlier. Once downloaded, we can point to the folder containing the jar files
using the pathToDriver argument:
details <- createConnectionDetails(dbms = "netezza",

server = "myserver.com/mainDb",
user = "joe",
password = "secret",
schema = "cdm",
pathToDriver = "c:/temp")

conn <- connect(details)

#> Connecting using Netezza driver

2

4 Querying

The main functions for querying database are the querySql and executeSql functions. The difference
between these functions is that querySql expects data to be returned by the database, and can handle only
one SQL statement at a time. In contrast, executeSql does not expect data to be returned, and accepts
multiple SQL statments in a single SQL string.

Some examples:
querySql(conn, "SELECT TOP 3 * FROM person")

#> PERSON_ID GENDER_CONCEPT_ID YEAR_OF_BIRTH
#> 1 1 8507 1975
#> 2 2 8507 1976
#> 3 3 8507 1977

executeSql(conn, "TRUNCATE TABLE foo; DROP TABLE foo; CREATE TABLE foo (bar INT);")

Both function provide extensive error reporting: When an error is thrown by the server, the error message
and the offending piece of SQL are written to a text file to allow better debugging. The executeSql function
also by default shows a progress bar, indicating the percentage of SQL statements that has been executed. If
those attributes are not desired, the package also offers the lowLevelQuerySql and lowLevelExecuteSql
functions.

4.1 Querying using ffdf objects

Sometimes the data to be fetched from the database is too large to fit into memory. In this case one
can use the ff package to store R data objects on file, and use them as if they are available in memory.
DatabaseConnector can download data directly into ffdf objects:
x <- querySql.ffdf(conn, "SELECT * FROM person")

Where x is now an ffdf object.

5 Inserting tables

Although it is also possible to insert data in the database by sending SQL statements using the executeSql
function, it is often convenient and faster to use the insertTable function:
data(mtcars)
insertTable(conn, "mtcars", mtcars, createTable = TRUE)

In this example, we’re uploading the mtcars data frame to a table called ‘mtcars’ on the server, that will be
automatically created.

6 DBI interface

DatabaseConnector implements the DBI interface for compatability with other R packages. One can use
the DBI functions instead of the ones described before, for example:
conn <- dbConnect(DatabaseConnectorDriver(),

dbms = "postgresql",
server = "localhost/postgres",
user = "joe",

3

password = "secret",
schema = "cdm")

#> Connecting using PostgreSQL driver

dbIsValid(conn)

#> [1] TRUE

res <- dbSendQuery(conn, "SELECT TOP 3 * FROM person")
dbFetch(res)

#> PERSON_ID GENDER_CONCEPT_ID YEAR_OF_BIRTH
#> 1 1 8507 1975
#> 2 2 8507 1976
#> 3 3 8507 1977

dbHasCompleted(res)

#> [1] TRUE

dbClearResult(res)
dbDisconnect(res)

4

	Introduction
	Obtaining drivers for Netezza and Impala
	Creating a connection
	Specifying the driver location for Netezza and Impala

	Querying
	Querying using ffdf objects

	Inserting tables
	DBI interface

