
Package ‘DatabaseConnector’
June 28, 2018

Type Package

Title Connecting to Various Database Platforms

Version 2.1.3

Date 2018-06-28

Description An R 'DataBase Interface' ('DBI') compatible interface to various database plat-
forms ('PostgreSQL', 'Oracle', 'Microsoft SQL Server',
'Amazon Redshift', 'Microsoft Parallel Database Warehouse', 'IBM Netezza', 'Apache Im-
pala', and 'Google BigQuery'). Also includes support for
fetching data as 'ffdf' objects. Uses 'Java Database Connectivity' ('JDBC') to connect to databases.

Imports DatabaseConnectorJars,
rJava,
bit,
ff,
ffbase (>= 0.12.1),
SqlRender,
methods,
utils,
DBI (>= 1.0.0),
urltools

Suggests aws.s3,
uuid,
R.utils,
testthat,
DBItest,
knitr,
rmarkdown,

License Apache License

VignetteBuilder knitr

URL https://github.com/OHDSI/DatabaseConnector

BugReports https://github.com/OHDSI/DatabaseConnector/issues

Copyright See file COPYRIGHTS

RoxygenNote 6.0.1.9000

1

https://github.com/OHDSI/DatabaseConnector
https://github.com/OHDSI/DatabaseConnector/issues

2 R topics documented:

R topics documented:

connect . 3
createConnectionDetails . 6
DatabaseConnector . 9
DatabaseConnectorDriver . 9
dbAppendTable,DatabaseConnectorConnection,character,data.frame-method 10
dbClearResult,DatabaseConnectorResult-method . 11
dbColumnInfo,DatabaseConnectorResult-method . 11
dbConnect,DatabaseConnectorDriver-method . 12
dbCreateTable,DatabaseConnectorConnection,character,data.frame-method 13
dbDisconnect,DatabaseConnectorConnection-method 14
dbExecute,DatabaseConnectorConnection,character-method 14
dbExistsTable,DatabaseConnectorConnection,character-method 15
dbFetch,DatabaseConnectorResult-method . 16
dbGetQuery,DatabaseConnectorConnection,character-method 17
dbGetRowCount,DatabaseConnectorResult-method . 18
dbGetRowsAffected,DatabaseConnectorResult-method 18
dbGetStatement,DatabaseConnectorResult-method . 19
dbHasCompleted,DatabaseConnectorResult-method . 20
dbIsValid,DatabaseConnectorConnection-method . 20
dbListFields,DatabaseConnectorConnection,character-method 21
dbListTables,DatabaseConnectorConnection-method 22
dbQuoteIdentifier,DatabaseConnectorConnection,character-method 23
dbQuoteString,DatabaseConnectorConnection,character-method 24
dbReadTable,DatabaseConnectorConnection,character-method 24
dbRemoveTable,DatabaseConnectorConnection,character-method 26
dbSendQuery,DatabaseConnectorConnection,character-method 27
dbSendStatement,DatabaseConnectorConnection,character-method 28
dbUnloadDriver,DatabaseConnectorDriver-method . 29
dbWriteTable,DatabaseConnectorConnection,character,data.frame-method 30
disconnect . 31
executeSql . 31
getTableNames . 32
insertTable . 33
jdbcDrivers . 34
lowLevelExecuteSql . 35
lowLevelQuerySql . 36
lowLevelQuerySql.ffdf . 36
querySql . 37
querySql.ffdf . 38
show,DatabaseConnectorConnection-method . 39
show,DatabaseConnectorDriver-method . 39

Index 41

connect 3

connect connect

Description

connect creates a connection to a database server .There are four ways to call this function:

• connect(dbms, user, password, server, port, schema, extraSettings, oracleDriver, pathToDriver)

• connect(connectionDetails)

• connect(dbms, connectionString, pathToDriver))

• connect(dbms, connectionString, user, password, pathToDriver)

Arguments

connectionDetails

An object of class connectionDetails as created by the createConnectionDetails
function.

dbms The type of DBMS running on the server. Valid values are

• "oracle" for Oracle
• "postgresql" for PostgreSQL
• "redshift" for Amazon Redshift
• "sql server" for Microsoft SQL Server
• "pdw" for Microsoft Parallel Data Warehouse (PDW)
• "netezza" for IBM Netezza
• "bigquery" for Google BigQuery

user The user name used to access the server.

password The password for that user.

server The name of the server.

port (optional) The port on the server to connect to.

schema (optional) The name of the schema to connect to.

extraSettings (optional) Additional configuration settings specific to the database provider to
configure things as security for SSL. These must follow the format for the JDBC
connection for the RDBMS specified in dbms.

oracleDriver Specify which Oracle drive you want to use. Choose between "thin" or "oci".
connectionString

The JDBC connection string. If specified, the server, port, extraSettings,
and oracleDriver fields are ignored. If user and password are not specified,
they are assumed to already be included in the connection string.

pathToDriver Path to the JDBC driver JAR files. Currently only needed for Impala and Netezza.
See jdbcDrivers for details on how to get the drivers.

Details

This function creates a connection to a database.

4 connect

Value

An object that extends DBIConnection in a database-specific manner. This object is used to direct
commands to the database engine.

DBMS parameter details

Depending on the DBMS, the function arguments have slightly different interpretations: Oracle:

• user. The user name used to access the server

• password. The password for that user

• server. This field contains the SID, or host and servicename, SID, or TNSName: ’<sid>’,
’<host>/<sid>’, ’<host>/<service name>’, or ’<tnsname>’

• port. Specifies the port on the server (default = 1521)

• schema. This field contains the schema (i.e. ’user’ in Oracle terms) containing the tables

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as
"(PROTOCOL=tcps)")

• oracleDriver The driver to be used. Choose between "thin" or "oci".

Microsoft SQL Server:

• user. The user used to log in to the server. If the user is not specified, Windows Integrated
Security will be used, which requires the SQL Server JDBC drivers to be installed (see details
below).

• password. The password used to log on to the server

• server. This field contains the host name of the server

• port. Not used for SQL Server

• schema. The database containing the tables. If both database and schema are specified (e.g.
’my_database.dbo’, then only the database part is used, the schema is ignored.

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as "en-
crypt=true; trustServerCertificate=false;")

Microsoft PDW:

• user. The user used to log in to the server. If the user is not specified, Windows Integrated
Security will be used, which requires the SQL Server JDBC drivers to be installed (see details
below).

• password. The password used to log on to the server

• server. This field contains the host name of the server

• port. Not used for SQL Server

• schema. The database containing the tables

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as "en-
crypt=true; trustServerCertificate=false;")

PostgreSQL:

• user. The user used to log in to the server

• password. The password used to log on to the server

• server. This field contains the host name of the server and the database holding the relevant
schemas: <host>/<database>

connect 5

• port. Specifies the port on the server (default = 5432)

• schema. The schema containing the tables.

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true")

Redshift:

• user. The user used to log in to the server

• password. The password used to log on to the server

• server. This field contains the host name of the server and the database holding the relevant
schemas: <host>/<database>

• port. Specifies the port on the server (default = 5439)

• schema. The schema containing the tables.

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true&sslfactory=com.amazon.redshift.ssl.NonValidatingFactory")

Netezza:

• user. The user used to log in to the server

• password. The password used to log on to the server

• server. This field contains the host name of the server and the database holding the relevant
schemas: <host>/<database>

• port. Specifies the port on the server (default = 5480)

• schema. The schema containing the tables.

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true")

• pathToDriver The path to the folder containing the Netezza JDBC driver JAR file (nzjdbc.jar).

Impala:

• user. The user name used to access the server

• password. The password for that user

• server. The host name of the server

• port. Specifies the port on the server (default = 21050)

• schema. The database containing the tables

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as "SS-
LKeyStorePwd=*****")

• pathToDriver The path to the folder containing the Impala JDBC driver JAR files.

To be able to use Windows authentication for SQL Server (and PDW), you have to install the JDBC
driver. Download the .exe from Microsoft and run it, thereby extracting its contents to a folder.
In the extracted folder you will find the file sqljdbc_4.0/enu/auth/x64/sqljdbc_auth.dll (64-bits) or
sqljdbc_4.0/enu/auth/x86/sqljdbc_auth.dll (32-bits), which needs to be moved to location on the
system path, for example to c:/windows/system32.

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774

6 createConnectionDetails

Examples

Not run:
conn <- connect(dbms = "postgresql",

server = "localhost/postgres",
user = "root",
password = "xxx",
schema = "cdm_v4")

dbGetQuery(conn, "SELECT COUNT(*) FROM person")
disconnect(conn)

conn <- connect(dbms = "sql server", server = "RNDUSRDHIT06.jnj.com", schema = "Vocabulary")
dbGetQuery(conn, "SELECT COUNT(*) FROM concept")
disconnect(conn)

conn <- connect(dbms = "oracle",
server = "127.0.0.1/xe",
user = "system",
password = "xxx",
schema = "test",
pathToDriver = "c:/temp")

dbGetQuery(conn, "SELECT COUNT(*) FROM test_table")
disconnect(conn)

conn <- connect(dbms = "postgresql",
connectionString = "jdbc:postgresql://127.0.0.1:5432/cmd_database")

dbGetQuery(conn, "SELECT COUNT(*) FROM person")
disconnect(conn)

End(Not run)

createConnectionDetails

createConnectionDetails

Description

createConnectionDetails creates a list containing all details needed to connect to a database.
There are three ways to call this function:

• createConnectionDetails(dbms, user, password, server, port, schema, extraSettings, oracleDriver, pathToDriver)

• createConnectionDetails(dbms, connectionString, pathToDriver)

• createConnectionDetails(dbms, connectionString, user, password, pathToDriver)

Arguments

dbms The type of DBMS running on the server. Valid values are

• "oracle" for Oracle
• "postgresql" for PostgreSQL
• "redshift" for Amazon Redshift
• "sql server" for Microsoft SQL Server
• "pdw" for Microsoft Parallel Data Warehouse (PDW)

createConnectionDetails 7

• "netezza" for IBM Netezza
• "bigquery" for Google BigQuery

user The user name used to access the server.

password The password for that user.

server The name of the server.

port (optional) The port on the server to connect to.

schema (optional) The name of the schema to connect to.

extraSettings (optional) Additional configuration settings specific to the database provider to
configure things as security for SSL. These must follow the format for the JDBC
connection for the RDBMS specified in dbms.

oracleDriver Specify which Oracle drive you want to use. Choose between "thin" or "oci".
connectionString

The JDBC connection string. If specified, the server, port, extraSettings,
and oracleDriver fields are ignored. If user and password are not specified,
they are assumed to already be included in the connection string.

pathToDriver Path to the JDBC driver JAR files. Currently only needed for Impala and Netezza.
See jdbcDrivers for details on how to get the drivers.

Details

This function creates a list containing all details needed to connect to a database. The list can then
be used in the connect function.

Value

A list with all the details needed to connect to a database.

DBMS parameter details

Depending on the DBMS, the function arguments have slightly different interpretations: Oracle:

• user. The user name used to access the server

• password. The password for that user

• server. This field contains the SID, or host and servicename, SID, or TNSName: ’<sid>’,
’<host>/<sid>’, ’<host>/<service name>’, or ’<tnsname>’

• port. Specifies the port on the server (default = 1521)

• schema. This field contains the schema (i.e. ’user’ in Oracle terms) containing the tables

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as
"(PROTOCOL=tcps)")

• oracleDriver The driver to be used. Choose between "thin" or "oci".

Microsoft SQL Server:

• user. The user used to log in to the server. If the user is not specified, Windows Integrated
Security will be used, which requires the SQL Server JDBC drivers to be installed (see details
below).

• password. The password used to log on to the server

• server. This field contains the host name of the server

• port. Not used for SQL Server

8 createConnectionDetails

• schema. The database containing the tables. If both database and schema are specified (e.g.
’my_database.dbo’, then only the database part is used, the schema is ignored.

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as "en-
crypt=true; trustServerCertificate=false;")

Microsoft PDW:

• user. The user used to log in to the server. If the user is not specified, Windows Integrated
Security will be used, which requires the SQL Server JDBC drivers to be installed (see details
below).

• password. The password used to log on to the server

• server. This field contains the host name of the server

• port. Not used for SQL Server

• schema. The database containing the tables

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as "en-
crypt=true; trustServerCertificate=false;")

PostgreSQL:

• user. The user used to log in to the server

• password. The password used to log on to the server

• server. This field contains the host name of the server and the database holding the relevant
schemas: <host>/<database>

• port. Specifies the port on the server (default = 5432)

• schema. The schema containing the tables.

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true")

Redshift:

• user. The user used to log in to the server

• password. The password used to log on to the server

• server. This field contains the host name of the server and the database holding the relevant
schemas: <host>/<database>

• port. Specifies the port on the server (default = 5439)

• schema. The schema containing the tables.

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true&sslfactory=com.amazon.redshift.ssl.NonValidatingFactory")

Netezza:

• user. The user used to log in to the server

• password. The password used to log on to the server

• server. This field contains the host name of the server and the database holding the relevant
schemas: <host>/<database>

• port. Specifies the port on the server (default = 5480)

• schema. The schema containing the tables.

• extraSettings The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true")

DatabaseConnector 9

• pathToDriver The path to the folder containing the Netezza JDBC driver JAR file (nzjdbc.jar).

Impala:

• user. The user name used to access the server
• password. The password for that user
• server. The host name of the server
• port. Specifies the port on the server (default = 21050)
• schema. The database containing the tables
• extraSettings The configuration settings for the connection (i.e. SSL Settings such as "SS-

LKeyStorePwd=*****")
• pathToDriver The path to the folder containing the Impala JDBC driver JAR files.

To be able to use Windows authentication for SQL Server (and PDW), you have to install the JDBC
driver. Download the .exe from Microsoft and run it, thereby extracting its contents to a folder.
In the extracted folder you will find the file sqljdbc_4.0/enu/auth/x64/sqljdbc_auth.dll (64-bits) or
sqljdbc_4.0/enu/auth/x86/sqljdbc_auth.dll (32-bits), which needs to be moved to location on the
system path, for example to c:/windows/system32.

Examples

Not run:
connectionDetails <- createConnectionDetails(dbms = "postgresql",

server = "localhost/postgres",
user = "root",
password = "blah",
schema = "cdm_v4")

conn <- connect(connectionDetails)
dbGetQuery(conn, "SELECT COUNT(*) FROM person")
disconnect(conn)

End(Not run)

DatabaseConnector DatabaseConnector

Description

DatabaseConnector

DatabaseConnectorDriver

Create a DatabaseConnectorDriver object

Description

Create a DatabaseConnectorDriver object

Usage

DatabaseConnectorDriver()

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774

10 dbAppendTable,DatabaseConnectorConnection,character,data.frame-method

dbAppendTable,DatabaseConnectorConnection,character,data.frame-method

Insert rows into a table

Description

The dbAppendTable() method assumes that the table has been created beforehand, e.g. with
dbCreateTable(). The default implementation calls sqlAppendTableTemplate() and then dbExecute()
with the param argument. Backends compliant to ANSI SQL 99 which use ? as a placeholder for
prepard queries don’t need to override it. Backends with a different SQL syntax which use ? as a
placeholder for prepared queries can override sqlAppendTable(). Other backends (with different
placeholders or with entirely different ways to create tables) need to override the dbAppendTable()
method.

Usage

S4 method for signature 'DatabaseConnectorConnection,character,data.frame'
dbAppendTable(conn,
name, value, temporary = FALSE, oracleTempSchema = NULL, ...,
row.names = NULL)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name Name of the table, escaped with dbQuoteIdentifier().

value A data frame of values. The column names must be consistent with those in the
target table in the database.

temporary Should the table created as a temp table?
oracleTempSchema

Specifically for Oracle, a schema with write priviliges where temp tables can be
created.

... Other arguments used by individual methods.

row.names Must be NULL.

Details

The row.names argument is not supported by this method. Process the values with sqlRownamesToColumn()
before calling this method.

See Also

Other DBIConnection generics: DBIConnection-class, dbCreateTable, dbDataType, dbDisconnect,
dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly, dbIsValid,
dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbSendStatement, dbWriteTable

dbClearResult,DatabaseConnectorResult-method 11

dbClearResult,DatabaseConnectorResult-method

Clear a result set

Description

Frees all resources (local and remote) associated with a result set. In some cases (e.g., very large
result sets) this can be a critical step to avoid exhausting resources (memory, file descriptors, etc.)

Usage

S4 method for signature 'DatabaseConnectorResult'
dbClearResult(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbClearResult() returns TRUE, invisibly, for result sets obtained from both dbSendQuery() and
dbSendStatement(). An attempt to close an already closed result set issues a warning in both
cases.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbColumnInfo, dbFetch, dbGetInfo, dbGetRowCount,
dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsReadOnly, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

dbColumnInfo,DatabaseConnectorResult-method

Information about result types

Description

Produces a data.frame that describes the output of a query. The data.frame should have as many
rows as there are output fields in the result set, and each column in the data.frame describes an
aspect of the result set field (field name, type, etc.)

Usage

S4 method for signature 'DatabaseConnectorResult'
dbColumnInfo(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

12 dbConnect,DatabaseConnectorDriver-method

Value

dbColumnInfo() returns a data frame with at least two columns "name" and "type" (in that order)
(and optional columns that start with a dot). The "name" and "type" columns contain the names
and types of the R columns of the data frame that is returned from dbFetch(). The "type" column
is of type character and only for information. Do not compute on the "type" column, instead use
dbFetch(res, n = 0) to create a zero-row data frame initialized with the correct data types.

An attempt to query columns for a closed result set raises an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbFetch, dbGetInfo,
dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsReadOnly, dbIsValid,
dbQuoteIdentifier, dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

dbConnect,DatabaseConnectorDriver-method

Create a connection to a DBMS

Description

Connect to a database. This function is synonymous with the connect function. except a dummy
driver needs to be specified

Usage

S4 method for signature 'DatabaseConnectorDriver'
dbConnect(drv, ...)

Arguments

drv The result of the link{DatabaseConnectorDriver} function

... Other parameters. These are the same as expected by the connect function.

Value

Returns a DatabaseConnectorConnection object that can be used with most of the other functions
in this package.

Examples

Not run:
conn <- dbConnect(DatabaseConnectorDriver(),

dbms = "postgresql",
server = "localhost/ohdsi",
user = "joe",
password = "secret")

querySql(conn, "SELECT * FROM cdm_synpuf.person")
dbDisconnet(conn)

End(Not run)

dbCreateTable,DatabaseConnectorConnection,character,data.frame-method 13

dbCreateTable,DatabaseConnectorConnection,character,data.frame-method

Create a table in the database

Description

The default dbCreateTable() method calls sqlCreateTable() and dbExecute(). Backends
compliant to ANSI SQL 99 don’t need to override it. Backends with a different SQL syntax can
override sqlCreateTable(), backends with entirely different ways to create tables need to override
this method.

Usage

S4 method for signature 'DatabaseConnectorConnection,character,data.frame'
dbCreateTable(conn,
name, fields, oracleTempSchema = NULL, ..., row.names = NULL,
temporary = FALSE)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name Name of the table, escaped with dbQuoteIdentifier().

fields Either a character vector or a data frame.
A named character vector: Names are column names, values are types. Names
are escaped with dbQuoteIdentifier(). Field types are unescaped.
A data frame: field types are generated using dbDataType().

oracleTempSchema

Specifically for Oracle, a schema with write priviliges where temp tables can be
created.

... Other arguments used by individual methods.

row.names Must be NULL.

temporary Should the table created as a temp table?

Details

The row.names argument is not supported by this method. Process the values with sqlRownamesToColumn()
before calling this method.

The argument order is different from the sqlCreateTable() method, the latter will be adapted in
a later release of DBI.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbDataType, dbDisconnect,
dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly, dbIsValid,
dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbSendStatement, dbWriteTable

14 dbExecute,DatabaseConnectorConnection,character-method

dbDisconnect,DatabaseConnectorConnection-method

Disconnect (close) a connection

Description

This closes the connection, discards all pending work, and frees resources (e.g., memory, sockets).

Usage

S4 method for signature 'DatabaseConnectorConnection'
dbDisconnect(conn)

Arguments

conn A DBIConnection object, as returned by dbConnect().

Value

dbDisconnect() returns TRUE, invisibly.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly, dbIsValid,
dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbSendStatement, dbWriteTable

dbExecute,DatabaseConnectorConnection,character-method

Execute an update statement, query number of rows affected, and then
close result set

Description

Executes a statement and returns the number of rows affected. dbExecute() comes with a de-
fault implementation (which should work with most backends) that calls dbSendStatement(), then
dbGetRowsAffected(), ensuring that the result is always free-d by dbClearResult().

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbExecute(conn, statement,
...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

dbExistsTable,DatabaseConnectorConnection,character-method 15

Details

You can also use dbExecute() to call a stored procedure that performs data manipulation or other
actions that do not return a result set. To execute a stored procedure that returns a result set use
dbGetQuery() instead.

Value

dbExecute() always returns a scalar numeric that specifies the number of rows affected by the
statement. An error is raised when issuing a statement over a closed or invalid connection, if the
syntax of the statement is invalid, or if the statement is not a non-NA string.

See Also

For queries: dbSendQuery() and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly, dbIsValid,
dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbSendStatement, dbWriteTable

dbExistsTable,DatabaseConnectorConnection,character-method

Does a table exist?

Description

Returns if a table given by name exists in the database.

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbExistsTable(conn, name,
database = NULL, schema = NULL, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name A character string specifying a DBMS table name.

database Name of the database.

schema Name of the schema.

... Other parameters passed on to methods.

Value

dbExistsTable() returns a logical scalar, TRUE if the table or view specified by the name argument
exists, FALSE otherwise. This includes temporary tables if supported by the database.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.

16 dbFetch,DatabaseConnectorResult-method

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly, dbIsValid,
dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbSendStatement, dbWriteTable

dbFetch,DatabaseConnectorResult-method

Fetch records from a previously executed query

Description

Fetch the next n elements (rows) from the result set and return them as a data.frame.

Usage

S4 method for signature 'DatabaseConnectorResult'
dbFetch(res, datesAsString = FALSE, ...)

Arguments

res An object inheriting from DBIResult, created by dbSendQuery().

datesAsString Should dates be represented as strings? (instead of Date objects)

... Other arguments passed on to methods.

Details

fetch() is provided for compatibility with older DBI clients - for all new code you are strongly
encouraged to use dbFetch(). The default implementation for dbFetch() calls fetch() so that it
is compatible with existing code. Modern backends should implement for dbFetch() only.

Value

dbFetch() always returns a data.frame with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows. An
attempt to fetch from a closed result set raises an error. If the n argument is not an atomic whole
number greater or equal to -1 or Inf, an error is raised, but a subsequent call to dbFetch() with
proper n argument succeeds. Calling dbFetch() on a result set from a data manipulation query
created by dbSendStatement() can be fetched and return an empty data frame, with a warning.

See Also

Close the result set with dbClearResult() as soon as you finish retrieving the records you want.

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbGetInfo,
dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsReadOnly, dbIsValid,
dbQuoteIdentifier, dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

dbGetQuery,DatabaseConnectorConnection,character-method 17

dbGetQuery,DatabaseConnectorConnection,character-method

Send query, retrieve results and then clear result set

Description

Returns the result of a query as a data frame. dbGetQuery() comes with a default implementation
(which should work with most backends) that calls dbSendQuery(), then dbFetch(), ensuring that
the result is always free-d by dbClearResult().

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbGetQuery(conn, statement,
...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

This method is for SELECT queries only (incl. other SQL statements that return a SELECT-alike
result, e. g. execution of a stored procedure).

To execute a stored procedure that does not return a result set, use dbExecute().

Some backends may support data manipulation statements through this method for compatibility
reasons. However, callers are strongly advised to use dbExecute() for data manipulation state-
ments.

Value

dbGetQuery() always returns a data.frame with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows. An
error is raised when issuing a query over a closed or invalid connection, if the syntax of the query
is invalid, or if the query is not a non-NA string. If the n argument is not an atomic whole number
greater or equal to -1 or Inf, an error is raised, but a subsequent call to dbGetQuery() with proper
n argument succeeds.

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbIsReadOnly, dbIsValid,
dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbSendStatement, dbWriteTable

18 dbGetRowsAffected,DatabaseConnectorResult-method

dbGetRowCount,DatabaseConnectorResult-method

The number of rows fetched so far

Description

Returns the total number of rows actually fetched with calls to dbFetch() for this result set.

Usage

S4 method for signature 'DatabaseConnectorResult'
dbGetRowCount(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbGetRowCount() returns a scalar number (integer or numeric), the number of rows fetched so far.
After calling dbSendQuery(), the row count is initially zero. After a call to dbFetch() without
limit, the row count matches the total number of rows returned. Fetching a limited number of rows
increases the number of rows by the number of rows returned, even if fetching past the end of
the result set. For queries with an empty result set, zero is returned even after fetching. For data
manipulation statements issued with dbSendStatement(), zero is returned before and after calling
dbFetch(). Attempting to get the row count for a result set cleared with dbClearResult() gives
an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsReadOnly, dbIsValid,
dbQuoteIdentifier, dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

dbGetRowsAffected,DatabaseConnectorResult-method

The number of rows affected

Description

This method returns the number of rows that were added, deleted, or updated by a data manipulation
statement.

Usage

S4 method for signature 'DatabaseConnectorResult'
dbGetRowsAffected(res, ...)

dbGetStatement,DatabaseConnectorResult-method 19

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbGetRowsAffected() returns a scalar number (integer or numeric), the number of rows affected
by a data manipulation statement issued with dbSendStatement(). The value is available directly
after the call and does not change after calling dbFetch(). For queries issued with dbSendQuery(),
zero is returned before and after the call to dbFetch(). Attempting to get the rows affected for a
result set cleared with dbClearResult() gives an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetStatement, dbHasCompleted, dbIsReadOnly, dbIsValid, dbQuoteIdentifier,
dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

dbGetStatement,DatabaseConnectorResult-method

Get the statement associated with a result set

Description

Returns the statement that was passed to dbSendQuery() or dbSendStatement().

Usage

S4 method for signature 'DatabaseConnectorResult'
dbGetStatement(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbGetStatement() returns a string, the query used in either dbSendQuery() or dbSendStatement().
Attempting to query the statement for a result set cleared with dbClearResult() gives an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbHasCompleted, dbIsReadOnly, dbIsValid,
dbQuoteIdentifier, dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

20 dbIsValid,DatabaseConnectorConnection-method

dbHasCompleted,DatabaseConnectorResult-method

Completion status

Description

This method returns if the operation has completed. A SELECT query is completed if all rows have
been fetched. A data manipulation statement is always completed.

Usage

S4 method for signature 'DatabaseConnectorResult'
dbHasCompleted(res, ...)

Arguments

res An object inheriting from DBIResult.
... Other arguments passed on to methods.

Value

dbHasCompleted() returns a logical scalar. For a query initiated by dbSendQuery() with non-
empty result set, dbHasCompleted() returns FALSE initially and TRUE after calling dbFetch()
without limit. For a query initiated by dbSendStatement(), dbHasCompleted() always returns
TRUE. Attempting to query completion status for a result set cleared with dbClearResult() gives
an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbIsReadOnly, dbIsValid,
dbQuoteIdentifier, dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

dbIsValid,DatabaseConnectorConnection-method

Is this DBMS object still valid?

Description

This generic tests whether a database object is still valid (i.e. it hasn’t been disconnected or cleared).

Usage

S4 method for signature 'DatabaseConnectorConnection'
dbIsValid(dbObj, ...)

Arguments

dbObj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult

... Other arguments to methods.

dbListFields,DatabaseConnectorConnection,character-method 21

Value

dbIsValid() returns a logical scalar, TRUE if the object specified by dbObj is valid, FALSE oth-
erwise. A DBIConnection object is initially valid, and becomes invalid after disconnecting with
dbDisconnect(). For an invalid connection object (e.g., for some drivers if the object is saved
to a file and then restored), the method also returns FALSE. A DBIResult object is valid after a
call to dbSendQuery(), and stays valid even after all rows have been fetched; only clearing it with
dbClearResult() invalidates it. A DBIResult object is also valid after a call to dbSendStatement(),
and stays valid after querying the number of rows affected; only clearing it with dbClearResult()
invalidates it. If the connection to the database system is dropped (e.g., due to connectivity prob-
lems, server failure, etc.), dbIsValid() should return FALSE. This is not tested automatically.

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect, dbConnect, dbDataType, dbDriver,
dbGetInfo, dbIsReadOnly, dbListConnections

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly,
dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbSendStatement, dbWriteTable

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsReadOnly,
dbQuoteIdentifier, dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

dbListFields,DatabaseConnectorConnection,character-method

List field names of a remote table

Description

List field names of a remote table

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbListFields(conn, name,
database = NULL, schema = NULL, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name a character string with the name of the remote table.

database Name of the database.

schema Name of the schema.

... Other parameters passed on to methods.

22 dbListTables,DatabaseConnectorConnection-method

Value

dbListFields() returns a character vector that enumerates all fields in the table in the correct
order. This also works for temporary tables if supported by the database. The returned names are
suitable for quoting with dbQuoteIdentifier(). If the table does not exist, an error is raised.
Invalid types for the name argument (e.g., character of length not equal to one, or numeric) lead
to an error. An error is also raised when calling this method for a closed or invalid connection.

See Also

dbColumnInfo() to get the type of the fields.

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly,
dbIsValid, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable, dbSendQuery,
dbSendStatement, dbWriteTable

dbListTables,DatabaseConnectorConnection-method

List remote tables

Description

Returns the unquoted names of remote tables accessible through this connection. This should in-
clude views and temporary objects, but not all database backends (in particular RMariaDB and
RMySQL) support this.

Usage

S4 method for signature 'DatabaseConnectorConnection'
dbListTables(conn, database = NULL,
schema = NULL, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

database Name of the database.

schema Name of the schema.

... Other parameters passed on to methods.

Value

dbListTables() returns a character vector that enumerates all tables and views in the database.
Tables added with dbWriteTable() are part of the list, including temporary tables if supported by
the database. As soon a table is removed from the database, it is also removed from the list of
database tables.

The returned names are suitable for quoting with dbQuoteIdentifier(). An error is raised when
calling this method for a closed or invalid connection.

dbQuoteIdentifier,DatabaseConnectorConnection,character-method 23

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly,
dbIsValid, dbListFields, dbListObjects, dbListResults, dbReadTable, dbRemoveTable, dbSendQuery,
dbSendStatement, dbWriteTable

dbQuoteIdentifier,DatabaseConnectorConnection,character-method

Quote identifiers

Description

Call this method to generate a string that is suitable for use in a query as a column or table name,
to make sure that you generate valid SQL and protect against SQL injection attacks. The inverse
operation is dbUnquoteIdentifier().

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbQuoteIdentifier(conn, x,
...)

Arguments

conn A subclass of DBIConnection, representing an active connection to an DBMS.

x A character vector, SQL or Id object to quote as identifier.

... Other arguments passed on to methods.

Value

dbQuoteIdentifier() returns an object that can be coerced to character, of the same length as
the input. For an empty character vector this function returns a length-0 object. The names
of the input argument are preserved in the output. When passing the returned object again to
dbQuoteIdentifier() as x argument, it is returned unchanged. Passing objects of class SQL
should also return them unchanged. (For backends it may be most convenient to return SQL objects
to achieve this behavior, but this is not required.)

An error is raised if the input contains NA, but not for an empty string.

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsReadOnly,
dbIsValid, dbQuoteLiteral, dbQuoteString, dbUnquoteIdentifier

24 dbReadTable,DatabaseConnectorConnection,character-method

dbQuoteString,DatabaseConnectorConnection,character-method

Quote literal strings

Description

Call this method to generate a string that is suitable for use in a query as a string literal, to make
sure that you generate valid SQL and protect against SQL injection attacks.

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbQuoteString(conn, x, ...)

Arguments

conn A subclass of DBIConnection, representing an active connection to an DBMS.

x A character vector to quote as string.

... Other arguments passed on to methods.

Value

dbQuoteString() returns an object that can be coerced to character, of the same length as the input.
For an empty character vector this function returns a length-0 object.

When passing the returned object again to dbQuoteString() as x argument, it is returned un-
changed. Passing objects of class SQL should also return them unchanged. (For backends it may
be most convenient to return SQL objects to achieve this behavior, but this is not required.)

See Also

Other DBIResult generics: DBIResult-class, dbBind, dbClearResult, dbColumnInfo, dbFetch,
dbGetInfo, dbGetRowCount, dbGetRowsAffected, dbGetStatement, dbHasCompleted, dbIsReadOnly,
dbIsValid, dbQuoteIdentifier, dbQuoteLiteral, dbUnquoteIdentifier

dbReadTable,DatabaseConnectorConnection,character-method

Copy data frames from database tables

Description

Reads a database table to a data frame, optionally converting a column to row names and converting
the column names to valid R identifiers.

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbReadTable(conn, name,
database = NULL, schema = NULL, oracleTempSchema = NULL, ...)

dbReadTable,DatabaseConnectorConnection,character-method 25

Arguments

conn A DBIConnection object, as returned by dbConnect().

name A character string specifying the unquoted DBMS table name, or the result of a
call to dbQuoteIdentifier().

database Name of the database.

schema Name of the schema.
oracleTempSchema

Specifically for Oracle, a schema with write priviliges where temp tables can be
created.

... Other parameters passed on to methods.

Value

dbReadTable() returns a data frame that contains the complete data from the remote table, effec-
tively the result of calling dbGetQuery() with SELECT * FROM <name>. An error is raised if the
table does not exist. An empty table is returned as a data frame with zero rows.

The presence of rownames depends on the row.names argument, see sqlColumnToRownames() for
details:

• If FALSE or NULL, the returned data frame doesn’t have row names.

• If TRUE, a column named "row_names" is converted to row names, an error is raised if no such
column exists.

• If NA, a column named "row_names" is converted to row names if it exists, otherwise no
translation occurs.

• If a string, this specifies the name of the column in the remote table that contains the row
names, an error is raised if no such column exists.

The default is row.names = FALSE.

If the database supports identifiers with special characters, the columns in the returned data frame
are converted to valid R identifiers if the check.names argument is TRUE, otherwise non-syntactic
column names can be returned unquoted.

An error is raised when calling this method for a closed or invalid connection. An error is raised
if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar. Un-
supported values for row.names and check.names (non-scalars, unsupported data types, NA for
check.names) also raise an error.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly,
dbIsValid, dbListFields, dbListObjects, dbListResults, dbListTables, dbRemoveTable,
dbSendQuery, dbSendStatement, dbWriteTable

26 dbRemoveTable,DatabaseConnectorConnection,character-method

dbRemoveTable,DatabaseConnectorConnection,character-method

Remove a table from the database

Description

Remove a remote table (e.g., created by dbWriteTable()) from the database.

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbRemoveTable(conn, name,
database = NULL, schema = NULL, oracleTempSchema = NULL, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name A character string specifying a DBMS table name.

database Name of the database.

schema Name of the schema.

oracleTempSchema

Specifically for Oracle, a schema with write priviliges where temp tables can be
created.

... Other parameters passed on to methods.

Value

dbRemoveTable() returns TRUE, invisibly. If the table does not exist, an error is raised. An attempt
to remove a view with this function may result in an error.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly,
dbIsValid, dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbSendQuery,
dbSendStatement, dbWriteTable

dbSendQuery,DatabaseConnectorConnection,character-method 27

dbSendQuery,DatabaseConnectorConnection,character-method

Execute a query on a given database connection

Description

The dbSendQuery() method only submits and synchronously executes the SQL query to the database
engine. It does not extract any records — for that you need to use the dbFetch() method, and then
you must call dbClearResult() when you finish fetching the records you need. For interactive
use, you should almost always prefer dbGetQuery().

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbSendQuery(conn, statement,
...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

This method is for SELECT queries only. Some backends may support data manipulation queries
through this method for compatibility reasons. However, callers are strongly encouraged to use
dbSendStatement() for data manipulation statements.

The query is submitted to the database server and the DBMS executes it, possibly generating vast
amounts of data. Where these data live is driver-specific: some drivers may choose to leave the
output on the server and transfer them piecemeal to R, others may transfer all the data to the client
– but not necessarily to the memory that R manages. See individual drivers’ dbSendQuery() docu-
mentation for details.

Value

dbSendQuery() returns an S4 object that inherits from DBIResult. The result set can be used with
dbFetch() to extract records. Once you have finished using a result, make sure to clear it with
dbClearResult(). An error is raised when issuing a query over a closed or invalid connection, if
the syntax of the query is invalid, or if the query is not a non-NA string.

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly,
dbIsValid, dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendStatement, dbWriteTable

28 dbSendStatement,DatabaseConnectorConnection,character-method

dbSendStatement,DatabaseConnectorConnection,character-method

Execute a data manipulation statement on a given database connec-
tion

Description

The dbSendStatement() method only submits and synchronously executes the SQL data manipu-
lation statement (e.g., UPDATE, DELETE, INSERT INTO, DROP TABLE, ...) to the database engine. To
query the number of affected rows, call dbGetRowsAffected() on the returned result object. You
must also call dbClearResult() after that. For interactive use, you should almost always prefer
dbExecute().

Usage

S4 method for signature 'DatabaseConnectorConnection,character'
dbSendStatement(conn,
statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

dbSendStatement() comes with a default implementation that simply forwards to dbSendQuery(),
to support backends that only implement the latter.

Value

dbSendStatement() returns an S4 object that inherits from DBIResult. The result set can be used
with dbGetRowsAffected() to determine the number of rows affected by the query. Once you
have finished using a result, make sure to clear it with dbClearResult(). An error is raised when
issuing a statement over a closed or invalid connection, if the syntax of the statement is invalid, or
if the statement is not a non-NA string.

See Also

For queries: dbSendQuery() and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly,
dbIsValid, dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbWriteTable

dbUnloadDriver,DatabaseConnectorDriver-method 29

dbUnloadDriver,DatabaseConnectorDriver-method

Load and unload database drivers

Description

These methods are deprecated, please consult the documentation of the individual backends for the
construction of driver instances.

dbDriver() is a helper method used to create an new driver object given the name of a database
or the corresponding R package. It works through convention: all DBI-extending packages should
provide an exported object with the same name as the package. dbDriver() just looks for this
object in the right places: if you know what database you are connecting to, you should call the
function directly.

dbUnloadDriver() is not implemented for modern backends.

Usage

S4 method for signature 'DatabaseConnectorDriver'
dbUnloadDriver(drv, ...)

Arguments

drv an object that inherits from DBIDriver as created by dbDriver.

... any other arguments are passed to the driver drvName.

Details

The client part of the database communication is initialized (typically dynamically loading C code,
etc.) but note that connecting to the database engine itself needs to be done through calls to
dbConnect.

Value

In the case of dbDriver, an driver object whose class extends DBIDriver. This object may be used
to create connections to the actual DBMS engine.

In the case of dbUnloadDriver, a logical indicating whether the operation succeeded or not.

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect, dbConnect, dbDataType, dbGetInfo,
dbIsReadOnly, dbIsValid, dbListConnections

Other DBIDriver generics: DBIDriver-class, dbCanConnect, dbConnect, dbDataType, dbGetInfo,
dbIsReadOnly, dbIsValid, dbListConnections

30 dbWriteTable,DatabaseConnectorConnection,character,data.frame-method

dbWriteTable,DatabaseConnectorConnection,character,data.frame-method

Copy data frames to database tables

Description

Writes, overwrites or appends a data frame to a database table, optionally converting row names to
a column and specifying SQL data types for fields.

Usage

S4 method for signature 'DatabaseConnectorConnection,character,data.frame'
dbWriteTable(conn,
name, value, overwrite = FALSE, append = FALSE, temporary = FALSE,
oracleTempSchema = NULL, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name A character string specifying the unquoted DBMS table name, or the result of a
call to dbQuoteIdentifier().

value a data.frame (or coercible to data.frame).

overwrite Overwrite an existing table (if exists)?

append Append to existing table?

temporary Should the table created as a temp table?
oracleTempSchema

Specifically for Oracle, a schema with write priviliges where temp tables can be
created.

... Other parameters passed on to methods.

Value

dbWriteTable() returns TRUE, invisibly. If the table exists, and both append and overwrite ar-
guments are unset, or append = TRUE and the data frame with the new data has different column
names, an error is raised; the remote table remains unchanged.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.
Invalid values for the additional arguments row.names, overwrite, append, field.types, and
temporary (non-scalars, unsupported data types, NA, incompatible values, duplicate or missing
names, incompatible columns) also raise an error.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable, dbCreateTable, dbDataType,
dbDisconnect, dbExecute, dbExistsTable, dbGetException, dbGetInfo, dbGetQuery, dbIsReadOnly,
dbIsValid, dbListFields, dbListObjects, dbListResults, dbListTables, dbReadTable, dbRemoveTable,
dbSendQuery, dbSendStatement

disconnect 31

disconnect Disconnect from the server

Description

This function sends SQL to the server, and returns the results in an ffdf object.

Usage

disconnect(connection)

Arguments

connection The connection to the database server.

Examples

Not run:
library(ffbase)
connectionDetails <- createConnectionDetails(dbms = "postgresql",

server = "localhost",
user = "root",
password = "blah",
schema = "cdm_v4")

conn <- connect(connectionDetails)
count <- querySql.ffdf(conn, "SELECT COUNT(*) FROM person")
disconnect(conn)

End(Not run)

executeSql Execute SQL code

Description

This function executes SQL consisting of one or more statements.

Usage

executeSql(connection, sql, profile = FALSE, progressBar = TRUE,
reportOverallTime = TRUE, errorReportFile = file.path(getwd(),
"errorReport.txt"))

Arguments

connection The connection to the database server.

sql The SQL to be executed

profile When true, each separate statement is written to file prior to sending to the
server, and the time taken to execute a statement is displayed.

progressBar When true, a progress bar is shown based on the statements in the SQL code.

32 getTableNames

reportOverallTime

When true, the function will display the overall time taken to execute all state-
ments.

errorReportFile

The file where an error report will be written if an error occurs. Defaults to
’errorReport.txt’ in the current working directory.

Details

This function splits the SQL in separate statements and sends it to the server for execution. If an
error occurs during SQL execution, this error is written to a file to facilitate debugging. Optionally,
a progress bar is shown and the total time taken to execute the SQL is displayed. Optionally, each
separate SQL statement is written to file, and the execution time per statement is shown to aid in
detecting performance issues.

Examples

Not run:
connectionDetails <- createConnectionDetails(dbms = "mysql",

server = "localhost",
user = "root",
password = "blah",
schema = "cdm_v4")

conn <- connect(connectionDetails)
executeSql(conn, "CREATE TABLE x (k INT); CREATE TABLE y (k INT);")
disconnect(conn)

End(Not run)

getTableNames List all tables in a database schema.

Description

This function returns a list of all tables in a database schema.

Usage

getTableNames(connection, databaseSchema)

Arguments

connection The connection to the database server.

databaseSchema The name of the database schema. See details for platform-specific details.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. ’my_database.dbo’. PostgreSQL and Redshift: The databaseSchema should specify the schema.
Oracle: The databaseSchema should specify the Oracle ’user’. MySql and Impala: The databas-
eSchema should specify the database.

insertTable 33

Value

A character vector of table names. To ensure consistency across platforms, these table names are in
upper case.

insertTable Insert a table on the server

Description

This function sends the data in a data frame or ffdf to a table on the server. Either a new table is
created, or the data is appended to an existing table.

Usage

insertTable(connection, tableName, data, dropTableIfExists = TRUE,
createTable = TRUE, tempTable = FALSE, oracleTempSchema = NULL,
useMppBulkLoad = FALSE)

Arguments

connection The connection to the database server.

tableName The name of the table where the data should be inserted.

data The data frame or ffdf containing the data to be inserted.
dropTableIfExists

Drop the table if the table already exists before writing?

createTable Create a new table? If false, will append to existing table.

tempTable Should the table created as a temp table?
oracleTempSchema

Specifically for Oracle, a schema with write priviliges where temp tables can be
created.

useMppBulkLoad If using Redshift or PDW, use more performant bulk loading techniques. Set-
ting the system environment variable "USE_MPP_BULK_LOAD" to TRUE is
another way to enable this mode. Please note, Redshift requires valid S3 cre-
dentials; PDW requires valid DWLoader installation. This can only be used for
permanent tables, and cannot be used to append to an existing table.

Details

This function sends the data in a data frame to a table on the server. Either a new table is created, or
the data is appended to an existing table. If using Redshift or PDW, bulk uploading techniques may
be more performant than relying upon a batch of insert statements, depending upon data size and
network throughput. Redshift: The MPP bulk loading relies upon the CloudyR S3 library to test
a connection to an S3 bucket using AWS S3 credentials. Credentials are configured either directly
into the System Environment using the following keys: Sys.setenv("AWS_ACCESS_KEY_ID" =
"some_access_key_id", "AWS_SECRET_ACCESS_KEY" = "some_secret_access_key", "AWS_DEFAULT_REGION"
= "some_aws_region", "AWS_BUCKET_NAME" = "some_bucket_name", "AWS_OBJECT_KEY"
= "some_object_key", "AWS_SSE_TYPE" = "server_side_encryption_type") PDW: The MPP bulk
loading relies upon the client having a Windows OS and the DWLoader exe installed, and the fol-
lowing permissions granted: –Grant BULK Load permissions - needed at a server level USE mas-
ter; GRANT ADMINISTER BULK OPERATIONS TO user; –Grant Staging database permissions

34 jdbcDrivers

- we will use the user db. USE scratch; EXEC sp_addrolemember ’db_ddladmin’, user; Set the R
environment variable DWLOADER_PATH to the location of the binary.

Examples

Not run:
connectionDetails <- createConnectionDetails(dbms = "mysql",

server = "localhost",
user = "root",
password = "blah",
schema = "cdm_v5")

conn <- connect(connectionDetails)
data <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
insertTable(conn, "my_table", data)
disconnect(conn)

bulk data insert with Redshift or PDW
connectionDetails <- createConnectionDetails(dbms = "redshift",

server = "localhost",
user = "root",
password = "blah",
schema = "cdm_v5")

conn <- connect(connectionDetails)
data <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
insertTable(connection = connection,

tableName = "scratch.somedata",
data = data,
dropTableIfExists = TRUE,
createTable = TRUE,
tempTable = FALSE,
useMppBulkLoad = TRUE) # or, Sys.setenv('USE_MPP_BULK_LOAD' = TRUE)

End(Not run)

jdbcDrivers How to download JDBC drivers for the various data platforms.

Description

How to download JDBC drivers for the various data platforms.

PostgresSql

Go to the PostgresSQL JDBC site and download the current version. The file is called something
like ’postgresql-42.2.2.jar’.

Oracle

Go to the Oracle JDBC site. Select ’Accept License Agreement’ and download the jar file. The file
is called something like ’ojdbc7.jar’.

https://jdbc.postgresql.org/download.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html

lowLevelExecuteSql 35

SQL Server and PDW

Go to the Microsoft SQL Server JDBC site, click ’Download’ and select the tar.gz file. Click ’Next’
to start the download. Decompress the file and find a file called seomthing like ’sqljdbc41.jar’ in
the a folder named something like ’sqljdbc_6.0/enu/jre7’.

RedShift

Go to the Amazon RedShfit JDBC driver page and download the latest JDBC driver. The file is
called something like ’RedshiftJDBC42-1.2.12.1017.jar’.

Netezza

Read the instructions here on how to obtain the Netezza JDBC driver.

BigQuery

Go to Google’s site and download the latest JDBC driver. Unzip the file, and locate the appropriate
jar files.

Impala

Go to Cloudera’s site, pick your OS version, and click "GET IT NOW!’. Register, and you should
be able to download the driver.

lowLevelExecuteSql Execute SQL code

Description

This function executes a single SQL statement.

Usage

lowLevelExecuteSql(connection, sql)

Arguments

connection The connection to the database server.

sql The SQL to be executed

https://www.microsoft.com/en-us/download/details.aspx?id=11774
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html#download-jdbc-driver
https://www.ibm.com/support/knowledgecenter/en/SSULQD_7.2.1/com.ibm.nz.datacon.doc/t_datacon_setup_JDBC.html
https://cloud.google.com/bigquery/partners/simba-drivers/
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-5-5.html

36 lowLevelQuerySql.ffdf

lowLevelQuerySql Low level function for retrieving data to a data frame

Description

This is the equivalent of the querySql function, except no error report is written when an error
occurs.

Usage

lowLevelQuerySql(connection, query = "", datesAsString = FALSE)

Arguments

connection The connection to the database server.

query The SQL statement to retrieve the data

datesAsString Should dates be imported as character vectors, our should they be converted to
R’s date format?

Details

Retrieves data from the database server and stores it in a data frame.

Value

A data frame containing the data retrieved from the server

lowLevelQuerySql.ffdf Low level function for retrieving data to an ffdf object

Description

This is the equivalent of the querySql.ffdf function, except no error report is written when an
error occurs.

Usage

lowLevelQuerySql.ffdf(connection, query = "", datesAsString = FALSE)

Arguments

connection The connection to the database server.

query The SQL statement to retrieve the data

datesAsString Should dates be imported as character vectors, our should they be converted to
R’s date format?

Details

Retrieves data from the database server and stores it in an ffdf object. This allows very large data
sets to be retrieved without running out of memory.

querySql 37

Value

A ffdf object containing the data. If there are 0 rows, a regular data frame is returned instead (ffdf
cannot have 0 rows)

querySql Retrieve data to a data.frame

Description

This function sends SQL to the server, and returns the results.

Usage

querySql(connection, sql, errorReportFile = file.path(getwd(),
"errorReport.txt"))

Arguments

connection The connection to the database server.

sql The SQL to be send.
errorReportFile

The file where an error report will be written if an error occurs. Defaults to
’errorReport.txt’ in the current working directory.

Details

This function sends the SQL to the server and retrieves the results. If an error occurs during SQL
execution, this error is written to a file to facilitate debugging.

Value

A data frame.

Examples

Not run:
connectionDetails <- createConnectionDetails(dbms = "mysql",

server = "localhost",
user = "root",
password = "blah",
schema = "cdm_v4")

conn <- connect(connectionDetails)
count <- querySql(conn, "SELECT COUNT(*) FROM person")
disconnect(conn)

End(Not run)

38 querySql.ffdf

querySql.ffdf Retrieves data to an ffdf object

Description

This function sends SQL to the server, and returns the results in an ffdf object.

Usage

querySql.ffdf(connection, sql, errorReportFile = file.path(getwd(),
"errorReport.txt"))

Arguments

connection The connection to the database server.

sql The SQL to be send.

errorReportFile

The file where an error report will be written if an error occurs. Defaults to
’errorReport.txt’ in the current working directory.

Details

Retrieves data from the database server and stores it in an ffdf object. This allows very large data
sets to be retrieved without running out of memory. If an error occurs during SQL execution, this
error is written to a file to facilitate debugging.

Value

A ffdf object containing the data. If there are 0 rows, a regular data frame is returned instead (ffdf
cannot have 0 rows)

Examples

Not run:
library(ffbase)
connectionDetails <- createConnectionDetails(dbms = "mysql",

server = "localhost",
user = "root",
password = "blah",
schema = "cdm_v4")

conn <- connect(connectionDetails)
count <- querySql.ffdf(conn, "SELECT COUNT(*) FROM person")
disconnect(conn)

End(Not run)

show,DatabaseConnectorConnection-method 39

show,DatabaseConnectorConnection-method

Show an Object

Description

Display the object, by printing, plotting or whatever suits its class. This function exists to be
specialized by methods. The default method calls showDefault.

Formal methods for show will usually be invoked for automatic printing (see the details).

Usage

S4 method for signature 'DatabaseConnectorConnection'
show(object)

Arguments

object Any R object

Details

Objects from an S4 class (a class defined by a call to setClass) will be displayed automatically
is if by a call to show. S4 objects that occur as attributes of S3 objects will also be displayed in
this form; conversely, S3 objects encountered as slots in S4 objects will be printed using the S3
convention, as if by a call to print.

Methods defined for show will only be inherited by simple inheritance, since otherwise the method
would not receive the complete, original object, with misleading results. See the simpleInheritanceOnly
argument to setGeneric and the discussion in setIs for the general concept.

Value

show returns an invisible NULL.

See Also

showMethods prints all the methods for one or more functions.

show,DatabaseConnectorDriver-method

Show an Object

Description

Display the object, by printing, plotting or whatever suits its class. This function exists to be
specialized by methods. The default method calls showDefault.

Formal methods for show will usually be invoked for automatic printing (see the details).

40 show,DatabaseConnectorDriver-method

Usage

S4 method for signature 'DatabaseConnectorDriver'
show(object)

Arguments

object Any R object

Details

Objects from an S4 class (a class defined by a call to setClass) will be displayed automatically
is if by a call to show. S4 objects that occur as attributes of S3 objects will also be displayed in
this form; conversely, S3 objects encountered as slots in S4 objects will be printed using the S3
convention, as if by a call to print.

Methods defined for show will only be inherited by simple inheritance, since otherwise the method
would not receive the complete, original object, with misleading results. See the simpleInheritanceOnly
argument to setGeneric and the discussion in setIs for the general concept.

Value

show returns an invisible NULL.

See Also

showMethods prints all the methods for one or more functions.

Index

character, 23, 24
connect, 3, 7, 12
createConnectionDetails, 3, 6

data.frame, 16, 17, 30
DatabaseConnector, 9
DatabaseConnector-package

(DatabaseConnector), 9
DatabaseConnectorDriver, 9
dbAppendTable, 13–17, 21–23, 25–28, 30
dbAppendTable,DatabaseConnectorConnection,character,data.frame-method,

10
dbBind, 11, 12, 16, 18–21, 23, 24
dbCanConnect, 21, 29
dbClearResult, 12, 16, 18–21, 23, 24
dbClearResult(), 14, 16–21, 27, 28
dbClearResult,DatabaseConnectorResult-method,

11
dbColumnInfo, 11, 16, 18–21, 23, 24
dbColumnInfo(), 22
dbColumnInfo,DatabaseConnectorResult-method,

11
dbConnect, 21, 29
dbConnect(), 10, 13–15, 17, 21, 22, 25–28, 30
dbConnect,DatabaseConnectorDriver-method,

12
dbCreateTable, 10, 14–17, 21–23, 25–28, 30
dbCreateTable(), 10
dbCreateTable,DatabaseConnectorConnection,character,data.frame-method,

13
dbDataType, 10, 13–17, 21–23, 25–30
dbDataType(), 13
dbDisconnect, 10, 13, 15–17, 21–23, 25–28,

30
dbDisconnect(), 21
dbDisconnect,DatabaseConnectorConnection-method,

14
dbDriver, 21
dbExecute, 10, 13, 14, 16, 17, 21–23, 25–28,

30
dbExecute(), 10, 13, 17, 27, 28
dbExecute,DatabaseConnectorConnection,character-method,

14

dbExistsTable, 10, 13–15, 17, 21–23, 25–28,
30

dbExistsTable,DatabaseConnectorConnection,character-method,
15

dbFetch, 11, 12, 18–21, 23, 24
dbFetch(), 12, 17–20, 27
dbFetch,DatabaseConnectorResult-method,

16
dbGetException, 10, 13–17, 21–23, 25–28,

30
dbGetInfo, 10–30
dbGetQuery, 10, 13–16, 21–23, 25–28, 30
dbGetQuery(), 15, 25, 27, 28
dbGetQuery,DatabaseConnectorConnection,character-method,

17
dbGetRowCount, 11, 12, 16, 19–21, 23, 24
dbGetRowCount,DatabaseConnectorResult-method,

18
dbGetRowsAffected, 11, 12, 16, 18–21, 23, 24
dbGetRowsAffected(), 14, 28
dbGetRowsAffected,DatabaseConnectorResult-method,

18
dbGetStatement, 11, 12, 16, 18–21, 23, 24
dbGetStatement,DatabaseConnectorResult-method,

19
dbHasCompleted, 11, 12, 16, 18, 19, 21, 23, 24
dbHasCompleted,DatabaseConnectorResult-method,

20
DBIConnection, 10, 13–15, 17, 20–28, 30
DBIDriver, 20
DBIObject, 20
DBIResult, 11, 16, 18–21, 27, 28
dbIsReadOnly, 10–30
dbIsValid, 10–20, 22–30
dbIsValid,DatabaseConnectorConnection-method,

20
dbListConnections, 21, 29
dbListFields, 10, 13–17, 21, 23, 25–28, 30
dbListFields,DatabaseConnectorConnection,character-method,

21
dbListObjects, 10, 13–17, 21–23, 25–28, 30
dbListResults, 10, 13–17, 21–23, 25–28, 30
dbListTables, 10, 13–17, 21, 22, 25–28, 30

41

42 INDEX

dbListTables,DatabaseConnectorConnection-method,
22

dbQuoteIdentifier, 11, 12, 16, 18–21, 24
dbQuoteIdentifier(), 10, 13, 15, 25, 26, 30
dbQuoteIdentifier,DatabaseConnectorConnection,character-method,

23
dbQuoteLiteral, 11, 12, 16, 18–21, 23, 24
dbQuoteString, 11, 12, 16, 18–21, 23
dbQuoteString,DatabaseConnectorConnection,character-method,

24
dbReadTable, 10, 13–17, 21–23, 26–28, 30
dbReadTable,DatabaseConnectorConnection,character-method,

24
dbRemoveTable, 10, 13–17, 21–23, 25, 27, 28,

30
dbRemoveTable,DatabaseConnectorConnection,character-method,

26
dbSendQuery, 10, 13–17, 21–23, 25, 26, 28, 30
dbSendQuery(), 15–21, 28
dbSendQuery,DatabaseConnectorConnection,character-method,

27
dbSendStatement, 10, 13–17, 21–23, 25–27,

30
dbSendStatement(), 14, 16–21, 27, 28
dbSendStatement,DatabaseConnectorConnection,character-method,

28
dbUnloadDriver,DatabaseConnectorDriver-method,

29
dbUnquoteIdentifier, 11, 12, 16, 18–21, 23,

24
dbUnquoteIdentifier(), 23
dbWriteTable, 10, 13–17, 21–23, 25–28
dbWriteTable(), 22, 26
dbWriteTable,DatabaseConnectorConnection,character,data.frame-method,

30
disconnect, 31

executeSql, 31

getTableNames, 32

Id, 23
insertTable, 33

jdbcDrivers, 3, 7, 34

lowLevelExecuteSql, 35
lowLevelQuerySql, 36
lowLevelQuerySql.ffdf, 36

print, 39, 40

querySql, 36, 37
querySql.ffdf, 36, 38

rownames, 25

setClass, 39, 40
setGeneric, 39, 40
setIs, 39, 40
show,DatabaseConnectorConnection-method,

39
show,DatabaseConnectorDriver-method,

39
showDefault, 39
showMethods, 39, 40
SQL, 23, 24
sqlAppendTable(), 10
sqlAppendTableTemplate(), 10
sqlColumnToRownames(), 25
sqlCreateTable(), 13
sqlRownamesToColumn(), 10, 13

	connect
	createConnectionDetails
	DatabaseConnector
	DatabaseConnectorDriver
	dbAppendTable,DatabaseConnectorConnection,character,data.frame-method
	dbClearResult,DatabaseConnectorResult-method
	dbColumnInfo,DatabaseConnectorResult-method
	dbConnect,DatabaseConnectorDriver-method
	dbCreateTable,DatabaseConnectorConnection,character,data.frame-method
	dbDisconnect,DatabaseConnectorConnection-method
	dbExecute,DatabaseConnectorConnection,character-method
	dbExistsTable,DatabaseConnectorConnection,character-method
	dbFetch,DatabaseConnectorResult-method
	dbGetQuery,DatabaseConnectorConnection,character-method
	dbGetRowCount,DatabaseConnectorResult-method
	dbGetRowsAffected,DatabaseConnectorResult-method
	dbGetStatement,DatabaseConnectorResult-method
	dbHasCompleted,DatabaseConnectorResult-method
	dbIsValid,DatabaseConnectorConnection-method
	dbListFields,DatabaseConnectorConnection,character-method
	dbListTables,DatabaseConnectorConnection-method
	dbQuoteIdentifier,DatabaseConnectorConnection,character-method
	dbQuoteString,DatabaseConnectorConnection,character-method
	dbReadTable,DatabaseConnectorConnection,character-method
	dbRemoveTable,DatabaseConnectorConnection,character-method
	dbSendQuery,DatabaseConnectorConnection,character-method
	dbSendStatement,DatabaseConnectorConnection,character-method
	dbUnloadDriver,DatabaseConnectorDriver-method
	dbWriteTable,DatabaseConnectorConnection,character,data.frame-method
	disconnect
	executeSql
	getTableNames
	insertTable
	jdbcDrivers
	lowLevelExecuteSql
	lowLevelQuerySql
	lowLevelQuerySql.ffdf
	querySql
	querySql.ffdf
	show,DatabaseConnectorConnection-method
	show,DatabaseConnectorDriver-method
	Index

