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1 Introduction

This document gives instructions on how to use the functions of DCGL 2.0 which is an
advanced and upgraded version of DCGL 1.0 . DCGL 2.0 contains four modules which are
Gene filtration module, Link filtration module, differential co-expression analysis (DCEA)
module and differential regulation analysis (DRA) module.

In Gene filtration module, there are expressionBasedfilter and varianceBasedfil-

ter functions to filter genes on expression microarray data. rLinkfilter, percentLink-
filter and qLinkfilter functions were wrapped in Link filtration module to filter gene
co-expression links in co-expression networks. DCp, DCe, WGCNA, LRC and ASC functions were
implemented in DCEA module for extracting differentially coexpressed genes (DCGs) and
differentially coexpressed links (DCLs). These above functions have been accomplished into
DCGL 1.0 .

In DCGL 2.0 , we attached to DCEA module a new function, DCsum, to determine a
final set of DCGs and DCLs which come from multiple DCEA methods. Most important-
ly, we produced DRA module which contains DRsort, DRplot and DRrank for differential
regulation analysis. DRsort identifies differentially regulated genes (DRGs) and differential-
ly regulated links (DRLs) from DCsum-outputted DCGs and DCLs based on TF-to-target
knowledge. DRplot visualizes DRLs and DRLs-related TF-to-target links. Function of pri-
oritizing regulators in terms of their potential relevance to the biological phenotype was
designed in DRrank. Figure 1 shows the overall design of DCGL 2.0 .

The major input of DCGL 2.0 are two expression data matrices from two contrastive
conditions, where the rows and columns correspond to genes and microarrays respectively.
TF-to-target regulation knowledge, which was wrapped in the package, is another required
input dataset.

The DCGL 2.0 package employs R library igraph, limma, org.Hs.eg.db, which must be
installed in advance.

2 Getting started

Prior to using DCGL 2.0 , users should download the installation file of DCGL 2.0 to
their local computer, and install DCGL 2.0 as a package of their R computing environment.
For Linux users, they should type ‘R CMD INSTALL DCGL 2.0.tar.gz’ in the shell (suppose
the installation file ‘DCGL 2.0.tar.gz’ is in the current working directory); for windows users,
they should go to the R menu ‘Packages’ and click the ‘Install package(s) from local zip
files’ and then locate the local file ‘DCGL 2.0.zip’. If the package is installed successfully,
a file folder named ‘DCGL’ should appear beneath the folder ‘library’ in the R installation
directory.
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Figure 1: Overall design of DCGL 2.0. Functions implemented in both DCGL 1.0 and D-
CGL 2.0 are represented in light gray background. DCEA: differential co-expression anal-
ysis; DRA: differential regulation analysis.
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To load the DCGL 2.0 package, type library(DCGL).

3 Methods

DCGL 2.0 provides the pre-existing facilities for gene filtering, link filtering and D-
CGs/DCLs identification of DCGL 1.0 , as well as newly added functions for DCGs/DCLs
summarization, DRGs/DRLs identification, networks visualization, and regulators ranking.

3.1 Gene filtration

If there are too many genes in the expression dataset, one can filter out some genes us-
ing the expressionBasedfilter or varianceBasedfilter or both of them. expression-
Basedfilter filters out a half genes that have their Between-Experiment Mean Expression
Signal (BEMES) lower than the median BEMES of all genes (Prieto and etal.,2008). vari-
anceBasedfilter is an approximate test of the hypothesis that gene has the same variance
as the median variance (Simon and Lam,2006). The variance of the log-values for each gene
is compared to the median of all the variances.The quantity

quantity = (n− 1) ∗ vari/varm

for each gene is compared to a percentile of a chi-square distribution (with a degree of
freedom of n − 1, n being the number of arrays) to filter out those genes not significantly
more variable than the median gene.

3.2 Link filtration

For all DCEA methods but WGCNA, a link filtering step is necessary to build up two
gene co-expression networks for the two contrastive conditions. The two gene co-expression
networks have identical linking structures but different edge weights (co-expression values).
The input to link filtering methods always includes two separate gene expression matrices
for the two conditions, and the output mainly comprises two data vectors, each coming
from a half of the symmetrical gene-versus-gene co-expression matrices. One can imagine
that, in the intermediate co-expression matrices, retained links have non-zero values while
discarded links are denoted with zero values.

Three stand-alone functions are implemented for link filtering, which are the correla-
tion value threshold (rLinkfilter), the correlation-value fraction based link filtering (per-
centLinkfilter) and the q-value based link filtering (qLinkfilter). However, these link
filtering functions are seldom called as independent functions; instead, they are wrapped in
the DCEA functions DCp, DCe, ASC and LRC, and can be tuned with the ‘link.method’ and
‘cutoff’ parameters.

3.2.1 Filtering gene links according to the correlation threshold

As an argument to the ‘link.method’ parameter, rLinkfilter is abbreviated to ‘rth’.
Each gene link is associated with two correlation values (one out of condition A and the
other out of condition B); if either of the two correlation values is greater than the given
correlation threshold (‘cutoff’), the gene link is retained.
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3.2.2 Filtering gene links according to the max correlation value

As an argument to the ‘link.method’ parameter, percentLinkfilter is abbreviated
to ‘percent’. Each gene link is associated with two correlation values (one out of condition
A and the other out of condition B) and thus a vector of ‘maximum absolute values’ for
all correlation value pairs is decided. Then these ‘maximum absolute values’ are sorted in
decreasing order. At last, a fraction (‘cutoff’) of gene pairs with the highest max correlation
values will be retained.

3.2.3 Filtering gene links according to the q-values of correlation values

As an argument to the ‘link.method’ parameter, qLinkfilter is abbreviated to ‘qth’.
For each of the two experimental conditions, the co-expression values are associated with
the corresponding p-values (student T-test of the zero nature of a Pearson Correlation Co-
efficient (PCC)), and these p-values are sorted and transformed to q-values (false discovery
rates). In this way, each gene link is associated with a pair of q-value, and those links with
at least one q-value lower than the threshold (‘cutoff’) are retained.

3.3 Differential co-expression analysis

DCEA module contains five DCEA methods. DCp and DCe(Yu and etal.,2011)(Liu and etal.,2010)
proposed by us, and WGCNA, ASC, and LRC were proposed by other inventors. All the methods
are aimed to extract DCGs/DCLs through analysing the changes of the connections. All
methods must be preceded by a link filtering step, which can be tuned with the ‘link.method’
and ‘cutoff’ parameters. After the link filtering, co-expression pairs with rth/percent/qth
of co-expression values in either of two conditions higher/higher/lower than the cutoff are
retained.

3.3.1 DCp for identifying DCGs

DCp works on the filtered set of gene co-expression value pairs, where each pair is
made up with two co-expression values calculated under two different conditions separately.
The subset of co-expression value pairs associated with a particular gene, in two groups for
the two conditions separately, can be written as two vectors X and Y (n is co-expression
neighbors for a gene).

X = (xi1, xi2, ..., xin)

Y = (yi1, yi2, ..., yin)

Then a length-normalized Euclidean distance is used for measuring differential co-expression
(dC) of this gene.

dCn(i) =

√
(xi1 − yi1)2 + (xi2 − yi2)2 + ... + (xin − yin)2

n

To evaluate whether a gene has significant dC, we perform a permutation test, in
which we randomly permute the disease and normal conditions of the samples, calculate
new PCCs, filter gene pairs based on the new PCCs, and calculate new dC statistics. The
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sample permutation is repeated N times, and a large number of permutation dC statistics
form an empirical null distribution. The p-value for each gene can then be estimated.

3.3.2 DCe for identifying DCGs and DCLs

DCe is based on the ‘Limit Fold Change’ (LFC) model, a robust statistical method
originally proposed for selecting differentially expressed genes(DEGs) from microarray data
(Mutch and etal.,2002).

First, the correlation pairs are divided into three parts according to the pairing of signs
of co-expression values and the multitude of co-expression values: pairs with same signs
(N1), pairs with different signs (N2) and pairs with differently-signed high co-expression
values (N3). The ”high co-expression values” are deemed based on the same correlation
value threshold as in the qLinkfilter function. The first two parts are processed with
the ‘LFC’ model separately to yield two subsets of DCLs (K1,K2), while the third part
(N3) adds to the set of DCLs directly. So a total of K=N3+K1+K2 DCLs are determined
from a total of N gene links. For a gene (gi), the total number of links (ni) and DCLs in
particular(ki) associated with it are counted, and the Binomial Probability model is used
to estimate the significance of the gene being a DCG.

P (gi) =

ni∑
x=ki

Cx
ni

(
K

N
)x(1 − K

N
)ni−x

3.3.3 WGCNA, ASC and LRC for identifying DCGs

WGCNA (Fuller and etal.,2007; van Nas and etal.,2009), ASC (Choi and etal.,2005) and
LRC (Reverter and etal.,2005) are other methods for measuring genes’ differential co-expression.
For more details please consult (Yu and etal.,2011; Liu and etal.,2010) (i.e. DCGL 1.0 ).

3.3.4 DCsum for summarizing DCGs and DCLs

DCsum, short for differentially co-expression summarization, summarizes 1) a set of
DCGs, which is an intersection of DCp-derived DCGs (selected with a q value cutoff or
a given percentage of dC) and DCe-derived DCGs (selected with a q value cutoff), 2) a
set of DCLs, which is sifted from DCe-derived DCLs that are connected to at least one
DCG determined by the first step. As a result, DCsum combines results from two different
co-expression analysis methods.

3.4 Differential regulation analysis

3.4.1 DRsort for sorting out DRGs and DRLs

DRsort, the first function of DRA module, is aimed to sift DCGs and DCLs according to
regulation knowledge (i.e. TF-to-target) which will be introduced in the section of ‘Dataset’.

If a DCG is a TF, it is intuitively speculated that its related differential co-expression
may be attributed to the change of its regulation relationships with its targets. So this type
of DCGs are termed differential regulation genes (DRGs). Besides if the upstream TFs of
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a DCG is identified, that DCG is possibly a differentially regulated target of an implicated
regulator, and so such DCGs are also kept in the set of DRGs.

If a DCL happens to be a TF-to-target relation, we highlight this DCL because it is the
direct attribution to differential regulation. This type of DCLs are termed ‘TF2target DCL’.
On the other hand, if there are one or more common TFs regulating the two genes of a DCL,
we also give priority to this DCL because the change in the expression correlation of the two
genes could be attributed to the disruption of their co-regulation by the common TFs. This
type of DCLs are termed ‘TF bridged DCLs’. TF2target DCLs and TF bridged DCLs,
therefore, together form the set of differentially regulated links(DRLs).

3.4.2 DRplot for visualizing differential co-expression and regulatory relation-
ships

We built a function DRplot to display combined information of DCGs/DCLs, DRGs/DRLs
and TF-to-target. DRplot generates DRL-centered networks. Due to the definite of DRL,
TFs, TFs’ regulation links and DCGs were involved to form two heterogeneous network-
s which are 1): TF2target DCL-centered network (Figure 2) and 2): TF bridged DCL-
centered network (Figure 3). In both networks, we rely on different node shapes to dif-
ferentiate TFs and non-TFs (square for TFs, circle for non-TFs), different node colors to
categorize genes (pink for DCGs, blue for non-DCGs, gray for TFs which are not tested
in expression microarray data and therefore cannot be determined as DCGs or not), and
different edge types to express different relations of gene pairs (solid for DCLs, dashed for
non-DCLs; edges with arrow indicate TF-to-target relations).

In addition, DRplot allows user to delimit a sub-network around a predefined set
of genes of interest (Figure 4 as an example of TF bridged DCL-centered sub-network).
DRLs in TF2target DCL-centered sub-network were extracted from whole TF2target DCLs
when interested gene(s) was/were either gene of a TF2target DCL. In TF bridged DCL-
centered sub-network, DRLs were kept when predefined gene(s) was/were either gene of
a TF bridged DCL or the common TF. Meanwhile corresponding regulation links which
regulated by common TF were also extracted.

3.4.3 DRrank for ranking regulators

DRrank is implemented for ranking potential TFs in terms of their relevance to the
phenotypic change or biophysical process of interest. It contains three methods: RIF
(Reverter and etal.,2010), TED, and TDD. The latter two methods were proposed by us
firstly in this package.

TED, short for ‘Target Enrichment Density’, employs Binomial Probability model to
quantify the enrichment of a TF’s targets in the DCG set, and as such to evaluate which
regulators are more likely to be subject-relevant or even causal. Suppose we sift K DCGs
from expression profile which contains N genes (there, K and N must have available ex-
pression data and were covered by TF2target library). If TFi has Ti targets in regulation
knowledge, there should be Ti∗K/N DCGs appeared in TFi targets list randomly. Actually,
it is found that TI DCGs are included in TFi’s targets list. The larger TI than Ti ∗K/N is,
the more targets of TFi enriched, the more likely TFi is a relevant or causative regulator.
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Following is TED formula.

TED(TFi) = −log2sum
Ti
x=TI

CTi
x (

K

N
)x(1 − K

N
)Ti−x

Taking the simplified scenario of 13 genes and 23 links in Figure 4 as an example, suppose
this expression profile (GSE17967, downloaded from GEO) tested 12632 genes, and 1052
DCGs identified after DCEA. If EGR1 has 4 targets in TF-to-target knowledge, EGR1
should have 4 ∗ 1052/12632 DCG targets by chance, but the real number is 3. So we take
TED formula to calculate TED(EGR1)=−log2sum

4
x=3C

4
3 ( 1052

12632)x(1 − 1052
12632)4−x=14.34351.

TDD, short for ‘Targets’ DCL Density’, uses Clustering Coefficient to quantify the
density of DCLs among a regulator’s targets, and so to judge the importance of a TF.
Suppose that TFi has n targets, and that there are k DCLs among these targets. A larger
k means more DCLs are bridged by the common TFi. We intuitively assume that, if a
TF bridged more TF bridged DCL it is of more importance (even if the regulator is not
a DCG). Based on this hypothesis, we employ Clustering Coefficient formula to calculate
TDD as follow:

TDD(TFi) = ClusteringCoefficient(TFi) =
k

n∗(n−1)
2

Again, same example like in TED (Figure 4), EGR1 has 3 DCLs among 4 targets, TDD(Egr-
1)=2*3/4(4-1)=0.5.

Of note even though no expression data is available for a TF, its TED and TDD could
still be calculated only if the expression level of its targets are measured.

RIF method, short for ‘Regulator Impact Factor’, simultaneously integrates three
sources of information: (i) the extent of differential expression; (ii) the abundance of differ-
entially expressed genes, and (iii) differential co-expression between TF and its differentially
expressed target genes to assess which TFs are consistently most differentially co-expressed
with the highly abundant and highly differentially expressed genes (Reverter and etal.,2010;
Hudson and etal.,2009).

RIF (TFi) =
1

nde

j=nde∑
j=1

[(e1j ∗ r1ij)
2 − (e2j ∗ r2ij)

2]

where nde means the number of DEGs, e1 (e2) means the expression value of DEGj in
condition 1 (condition 2), r1ij (r2ij) means the correlation of TFi and DEGj in condition
1 (condition 2).

To evaluate the statistical significance of scores which derived by our novel TED and
TDD methods, we performed a permutation test, in which we randomly constructed the
number of TF ↪aŕs targets-sized pseudo targets for each TF, calculated the new TED scores
and TDD scores. This target permutation was repeated many times (Repeat times can be
decided by user via a parameter, Permutation_Times, the default value is 0. If Permuta-
tion_Times equal to 0, it indicate that there is no permutation.), and a large number of
permutation-generation TED scores and TDD scores formed an empirical null distribution
respectively. The p-value and FDR of TED or TDD for each TF can then be estimated.
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4 Dataset

DCGL 2.0 includes five datasets: exprs, tf, tf2target, exprs_design and int-

genelist. exprs, contains 1000 genes and 63 samples, is a sub-dataset from a real mi-
croarray data (GSE17967) from GEO (http://www.ncbi.nlm.nih.gov/geo/). exprs_design,
required by DRrank, elucidates the experiment design of the exprs. tf and tf2target, ob-
tained through processing relevant data (TFbsConFactors.txt and TFbsConsSites.txt) from
UCSC hg19, contain 199 human Transcription Factors (TFs) and 19,9950 TF-to-target re-
lationships. First, two files, TFbsConFactors.txt and TFbsConsSites.txt, were downloaded
from UCSC hg19 (http://genome.ucsc.edu/). TFbsConsSites gives predicted chromosomal
coordinates of TF binding sites(TFBSs) on human, mouse and rat genes, while TFbsConfac-
tors.txt links the internal TF accessions to SWISS-PROT IDs. Then, these SWISS-PROT
IDs were further converted to NCBI gene IDs via BioMart (http://www.ebi.ac.uk/biomart/),
and NCBI ↪aŕs homologene.data file was used to find the human homologs of mouse and rat
TFs, enabling us to compile an enlarged set of human TF-TFBS relationships. After that,
we downloaded gene coordinate information (refGene.txt file), which specifies the chromoso-
mal locations of 18620 human genes. The promoter region of each gene [from 1 kb upstream
of the transcription start site (TSS) to 0.5 kb downstream of the TSS] was scanned for the
TFBSs identified in the above TF-TFBS relationships. If an occurrence of a certain TFBS
was found, the corresponding TF was linked with that gene. In this way, we developed a set
of TF-to-target regulatory relationships. In addition, we retrieved TF target information
from another source, the TRED database (http://rulai.cshl.edu/TRED/), which collects
mammalian cis- and trans-regulatory elements, accompanied by experimental evidence. Fi-
nally, tf2target (TF-to-target) included 19,9950 binary tuples involving 199 human TFs
and 16831 targets (Tu and etal.,2009). intgenelist data is a sample set of user-interested
genes, and is required by DRplot to plot sub-networks.

5 Examples

5.1 Gene filtration

One can filter genes by expressionBasedfilter or varianceBasedfilter, keep sub-
set.

> library(DCGL)

> data(exprs)

> dim(exprs)

[1] 1000 63

> exprs.filter.1 <- expressionBasedfilter(exprs)

> dim(exprs.filter.1)

[1] 500 63

> exprs.filter.2 <- varianceBasedfilter(exprs, 0.05)

> dim(exprs.filter.2)
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[1] 374 63

5.2 DCp: Identifying DCGs

> library(DCGL)

> data(exprs)

> exprs[1:3, 1:3]

Sample1 Sample2 Sample3

AACS 5.267744 5.225570 5.202380

FSTL1 8.629291 8.797554 8.353277

ELMO2 6.096321 6.180715 5.824657

exprs was designed to study gene expression in cirrhotic tissues with (N=16) and with-
out (N=47) HCC. So we firstly divide exprs into two parts corresponding to condition 1
(exprs.1) and condition 2 (exprs.2) respectively.

> exprs.1 <- exprs[, 1:16]

> exprs.2 <- exprs[, 17:63]

> DCp.res <- DCp(exprs.1, exprs.2,

+ r.method = c("pearson", "spearman")[1],

+ link.method = c("qth", "rth", "percent")[1],

+ cutoff = 0.25,

+ N = 0,

+ N.type = c("pooled", "gene_by_gene")[1],

+ q.method = c("BH", "holm", "hochberg", "hommel", "bonferroni","BY", "fdr")[1])

> DCp.res[1:3, ]

dC links p.value q.value

AACS 0.2955923 394 NA NA

FSTL1 0.3255206 584 NA NA

ELMO2 0.2687325 642 NA NA

> DCp.res.N <- DCp(exprs.1, exprs.2,

+ r.method = c("pearson", "spearman")[1],

+ link.method = c("qth", "rth", "percent")[1],

+ cutoff = 0.25,

+ N = 100,

+ N.type = c("pooled", "gene_by_gene")[1],

+ q.method = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr")[1])

10 %

20 %

30 %

40 %

50 %
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> DCp.res.N[1:3, ]

dC links p.value q.value

AACS 0.2955923 394 0.875 0.9988584

FSTL1 0.3255206 584 0.708 0.9985896

ELMO2 0.2687325 642 0.965 0.9989648

Link filter methods(rLinkfilter, percentLinkfilter and qLinkfilter) are wrapped
in DCp with available parameter ‘link.method’. Correlation coefficient methods are also giv-
en a option by ‘r.method’. So is ‘q.method’ for adjusting p value methods.

Parameter ‘N.type’ is used for choosing the permutation type. If ‘N.type’ is set to
‘pooled’, that means pooling all the dC together to form a null distribution and estimate
corresponding statistical significance (p-value) against null statistics. If ‘N.type’ is set to
‘gene by gene’, that means calculating p-value of a gene only against this gene’s null distri-
bution of dC.

The ‘DCp.res’ ia a matrix of all genes with ‘dC’ column, ‘link’ column (degree in co-
expression networks), ‘p.value’ column and ‘q.value’ column. If we set N=0, no permutation
has been done, and in this case the ‘p.value’ and ‘q.value’ are <NA>.

5.3 DCe: Identifying DCGs and DCLs

As shown in the example of DCp, ‘link.mehtod’, ‘r.method’ and ‘q.method’ are pa-
rameters for choosing link-filtration method, correlation-calculating method, and q-value
calculating method respectively.

> DCe.res <- DCe(exprs.1, exprs.2,

+ link.method = c("qth", "rth", "percent")[1],

+ cutoff = 0.25,

+ r.method = c("pearson", "spearman")[1],

+ q.method = c("BH", "holm", "hochberg", "hommel","bonferroni", "BY", "fdr")[1],

+ nbins = 20, p = 0.1, figname = c("LFC.s.jpeg", "LFC.d.jpeg"))

> DCe.res$DCGs[1:3, ]

All.links DC.links DCL_same DCL_diff DCL_switch p q

CXCL13 411 206 93 101 12 8.433654e-90 8.433654e-87

RPS21 718 250 68 125 57 9.130849e-68 4.565425e-65

METTL5 702 224 54 113 57 2.083395e-53 6.944650e-51

‘DCe.res’ contains two components, one is DCe.res$DCGs and the other is DCe.res$DCLs.
DCe.res$DCGs is a matrix which includes seven columns: ‘All.links’ (degree of genes in

whole co-expression network), ‘DC.links’ (degree of genes after Linkfilter), ‘DCL same’
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(the count of same signed correlation coefficient of two conditions in ‘DC.links’), ‘DCL diff’
(the count of different signed correlation coefficient of two conditions in ’DC.links’), ‘D-
CL switch’ (the count of switched opposites correlation coefficient of two conditions in
‘DC.links’), ‘p’ (p.value) and ‘q’ (q.value).

> DCe.res$DCLs[1:3, ]

Gene.1 Gene.2 cor.1 cor.2 type cor.diff

C9orf45,AACS C9orf45 AACS -0.679430350 -0.1120171 same signed 0.5674132

ABCD4,AACS ABCD4 AACS -0.046094800 -0.3431368 same signed 0.2970420

KIAA1661,AACS KIAA1661 AACS 0.008438316 0.3069050 same signed 0.2984666

DCe.res$DCLs is a matrix which covers links (‘Gene.1’ and ‘Gene.2’), correlation co-
efficient (‘cor.1’, ‘cor.2’ in two conditions), type (‘same signed’, ‘diff signed’ or ‘switched
opposites’) and ‘cor.diff’ (the absolute value of ‘cor.1’ minus ‘cor.2’). If the user need to
narrow down DCGs or DCLs, the may consider setting lower ‘cutoff’ (in ‘qth’ or ‘percent’)
or higher co-expression correlation coefficient ‘cutoff’ (in ‘rth’) or giving a stricter outlier
fraction (p-value).

5.4 DCsum: Summarizing DCGs and DCLs

We implemented DCsum to summarize DCGs and DCLs from ‘DCp.res’ and ‘DCe.res’.

> DCsum.res <- DCsum(DCp.res, DCe.res,

+ DCpcutoff = 0.25,

+ DCecutoff = 0.25)

> DCsum.res$DCGs[1:3, ]

DCG dC All.links.DCp DCp.p DCp.q All.links.DCe DC.links DCL.same

1 A4GNT 0.5308694 356 NA NA 356 90 41

2 ADAM23 0.5242025 312 NA NA 312 71 35

3 ADAM29 0.4779226 596 NA NA 596 102 56

DCL.diff DCL.switch DCe.p DCe.q

1 38 11 2.493160e-15 1.325344e-13

2 25 11 3.347260e-10 9.297944e-09

3 38 8 6.845184e-07 1.037149e-05

> DCsum.res$DCLs[1:3, ]

Gene.1 Gene.2 cor.1 cor.2 type cor.diff

ADAM23; GMPPA ADAM23 GMPPA -0.5719228 -0.02508201 same signed 0.5468408

ADAM23; CEP350 ADAM23 CEP350 0.6860120 -0.22261784 diff signed 0.9086298

ADAM23; SOD2 ADAM23 SOD2 0.5292947 -0.33945089 diff signed 0.8687456

DCG

ADAM23; GMPPA ADAM23

ADAM23; CEP350 ADAM23

ADAM23; SOD2 ADAM23
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5.5 DRsort: Sorting out DRGs and DRLs

DRsort recommends TF-to-target regulation information which was downloaded from
UCSC to identify whether DCGs are TFs or not. If a DCG happened to encode a TF, this
DCG is considered to be a DRG. Specially for DCLs, DRsort sorts out DCLs to two types,
TF2target DCL and TF bridged DCL. Both of them are considered to be DRLs.

> data(tf2target)

> DRsort.res <- DRsort(DCsum.res$DCGs, DCsum.res$DCLs, tf2target, exprs)

> DRsort.res$DRGs[1:3, ]

DCG Upstream_TFofDCG

1 A4GNT CDC5L

2 ADAM23 NF-1;STAT1;PAX3;BRIP1;...;CUX1;MRPL36;DAND5;BACH1;ER-alpha

3 ADAM29 NA

DCGisTF dC DCp.p All.links.DCe DC.links DCL.same DCL.diff

1 FALSE 0.5308694 NA 356 90 41 38

2 FALSE 0.5242025 NA 312 71 35 25

3 FALSE 0.4779226 NA 596 102 56 38

DCL.switch

1 11

2 11

3 8

> DRsort.res$DRLs[1:3, ]

pairID common.TF internal.TF

1 ABHD5; CDC25B CREB1; deltaCREB <NA>

2 ABHD5; USP6NL Egr-1; EGR1 <NA>

3 ABR; AGPAT1 FOS; FOSB; JUN; JUNB; JUND; MIF-1; PLAU; SPZ1 <NA>

Gene.1 Gene.2 cor.1 cor.2 type cor.diff DCG

1 ABHD5 CDC25B 0.5788734 -0.30345618 switched opposites 0.8823296 CDC25B

2 ABHD5 USP6NL -0.4089767 0.46839285 diff signed 0.8773695 USP6NL

3 ABR AGPAT1 -0.8306742 -0.05507074 same signed 0.7756035 AGPAT1

> DRsort.res$DCGs[1:3, ]

DCG Upstream_TFofDCG

1 A4GNT CDC5L

2 ADAM23 SP1;NF1;Pax-5;CUX1;MRPL36;DAND5;BACH1;ER-alpha

3 ADAM29 NA

DCGisTF dC DCp.p All.links.DCe DC.links DCL.same DCL.diff

1 FALSE 0.5308694 NA 356 90 41 38

2 FALSE 0.5242025 NA 312 71 35 25

3 FALSE 0.4779226 NA 596 102 56 38

DCL.switch
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1 11

2 11

3 8

> DRsort.res$DCLs[1:3, ]

pairID common.TF internal.TF

1 ABHD5; CDC25B CREB1; deltaCREB <NA>

2 ABHD5; USP6NL Egr-1; EGR1 <NA>

3 ABR; AGPAT1 FOS; FOSB; JUN; JUNB; JUND; MIF-1; PLAU; SPZ1 <NA>

Gene.1 Gene.2 cor.1 cor.2 type cor.diff DCG

1 ABHD5 CDC25B 0.5788734 -0.30345618 switched opposites 0.8823296 CDC25B

2 ABHD5 USP6NL -0.4089767 0.46839285 diff signed 0.8773695 USP6NL

3 ABR AGPAT1 -0.8306742 -0.05507074 same signed 0.7756035 AGPAT1

> dim(DRsort.res$DRGs)

[1] 207 10

> dim(DRsort.res$DCGs)

[1] 207 10

> dim(DRsort.res$DRLs)

[1] 4317 10

> dim(DRsort.res$DCLs)

[1] 14059 10

DRGs, DRLs, DCG2TF, TF_bridged_DCL, DCGs and DCLs, six components comprise ‘DR-
sort.res’. ‘Upstream TFofDCG’ and ‘DCGisTF’ columns were added to the list of DR-

sort.res$DRGs to display the differential regulation genes and differential regulated genes.
‘common.TF’ and ‘internal.TF’ columns were added to the list of DRsort.res$DRLs to iden-
tify two type of differential regulated links. Lists of DRsort.res$DCGs and DRsort.res$DCLs

contain all the genes and links came out from DCsum, and were annotated regulation infor-
mation whenever available. And more details were displayed in DRsort.res$DCG2TF and
DRsort.res$TF_bridged_DCL for the ease of follow-up investigation.

5.6 DRplot: Visualizing differential co-expression and regulatory rela-
tionships

DRplot plots TF2target DCL-centered (Figure 2) and TF bridged DCL-centered (Fig-
ure 3) networks depending on igraph. Sub-network of TF bridged DCL-centered is plotted
according to predefined gene ‘A2M’ which tuned in intgenelist (Figure 4).
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> DRplot.res <- DRplot(DRsort.res,

+ type = c("both", "TF2target_DCL", "TF_bridged_DCL")[1],

+ intgenelist = NULL,

+ vsize=5,asize=0.25,lcex=0.3,ewidth=1,

+ figname = c("TF2target_DCL.pdf", "TF_bridged_DCL.pdf"))

The graph of TF2target_DCL.pdf has been completed and saved in your working directory.

The graph of TF_bridged_DCL.pdf has been completed and saved in your working directory.

> data(intgenelist)

> DRplot.res <- DRplot(DRsort.res,

+ type = c("both", "TF2target_DCL", "TF_bridged_DCL")[3],

+ intgenelist = intgenelist,

+ vsize=5,asize=0.25,lcex=0.3,ewidth=1,

+ figname = c("TF2target_DCL.pdf", "TF_bridged_DCL_int.pdf"))

The graph of TF_bridged_DCL_int.pdf has been completed and saved in your working directory.

If ‘type’ is set to ‘TF2target DCL’ or ‘TF bridged DCL’, DRplot only plots the chosen
network. If ‘type’ is set to ‘both’, two networks will be plotted. However, total information of
DCGs/DCLs and DRGs/DRLs are not always needed. DRplot gives ‘intgenelist’ parameter
which represents a group of interested gene symbols for user to delimit a sub-network.

5.7 DRrank: Ranking regulators

DRrank implements three approaches to form a potential rank to show which regulators
are more relevant to a phenotypic change or biophysical process in these conditions of
expression profiles.

> data(tf)

> data(tf2target)

> data(exprs_design)

> DRrank.res <- DRrank(exprs, exprs.1, exprs.2, tf, tf2target,

+ exprs_design, p.value=0.05, DRsort.res, Permutation_Times=0)

> DRrank.res[1:3,]

TF TED_score TED_rank TED_p.value TED_FDR TDD_score TDD_rank

129 NKX2-5 5.514987 1 NA NA 0.6875000 18

52 FOXD3 5.133101 2 NA NA 0.5468750 38

58 FOXO1 5.094599 3 NA NA 0.4926802 60

TDD_p.value TDD_FDR RIF_score RIF_rank

129 NA NA NA NA

52 NA NA NA NA

58 NA NA 2.261597 7
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Figure 2: Visualization of TF2target DCL-centered network. exprs was the sample dataset.
Nodes represent genes and edges represent DCL TF-to-target link (see symbol illustration).
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Figure 3: Visualization of TF bridged DCL-centered network. exprs was the sample
dataset. Nodes represent genes and edges represent DCLs or TF-to-target (see symbol
illustration).
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Figure 4: Visualization of TF bridged DCL-centered sub-network delimited by predefined
gene list. The entire GSE17967 was used as sample dataset, the predefined gene was ‘A2M’.
Nodes represent genes and edges represent DCLs or TF-to-target (see symbol illustration).
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> DRrank.PT.res <- DRrank(exprs, exprs.1, exprs.2, tf, tf2target,

+ exprs_design, p.value=0.05, DRsort.res, Permutation_Times=1000)
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30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

> DRrank.PT.res[1:3,]

TF TED_score TED_rank TED_p.value TED_FDR TDD_score TDD_rank

129 NKX2-5 5.514987 1 0.00744186 0.48 0.6875000 18

52 FOXD3 5.133101 2 0.01023256 0.48 0.5468750 38

58 FOXO1 5.094599 3 0.01023256 0.48 0.4926802 60

TDD_p.value TDD_FDR RIF_score RIF_rank

129 0.04930233 0.5727273 NA NA

52 0.14418605 0.6792453 NA NA

58 0.20744186 0.7433333 2.261597 7

6 List of abbreviations used

DEA: differential expression analysis
DCEA: differential co-expression analysis
DCG: differentially co-expressed gene
DCL: differentially co-expressed link
DRA: differential regulation analysis
DRG: differentially regulated gene
DRL: differentially regulated link
LRC: Log Ratio of Connectivity
ASC: Average Specific Connectivity
WGCNA: Weighted Gene Co-expression Network
DCp: Differential Co-expression profile
DCe: Differential Co-expression enrichment
GSCA: Gene Set Co-expression Analysis
RIF: Regulatory Impact Factor
TED: Targets Enrichment Density
TDD: Targets ↪aŕ DCL Density
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