
Using the DCGL Package

Bao-Hong Liu1,3 and Hui Yu2,3

August 17, 2010

1School of Life Science and Technology, Tongji University. Shanghai 200092, P.R. China.
2Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences. Shanghai 200031, P.R. China.
3Shanghai Center for Bioinformation Technology,Shanghai 200035, P.R. China.

bhliu@scbit.org and yuhui@scbit.org

Contents

1 Introduction 2

2 Getting started 2

3 Methods 2
3.1 Gene Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1.1 Expression based gene filtering . . . . . . . . . . . . . . . . . . . . . 3
3.1.2 Variability based gene filtering . . . . . . . . . . . . . . . . . . . . . 3

3.2 Link filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.1 A systematic procedure for estimating a cutoff threshold of coexpres-

sion networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.2 Filtering gene coexpression links according to the q-values of expres-

sion correlation values . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2.3 Filtering gene coexpression links according to the max expression cor-

relation value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 DCp for identifying DCGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 DCe for identifying DCGs and DCLs . . . . . . . . . . . . . . . . . . . . . . 5
3.5 WGCNA for identifying DCGs . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.6 ASC for identifying DCGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.7 LRC for identifying DCGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Dataset 6

5 Example 7
5.1 link filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 DCp for identifying DCGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1



5.3 DCe for identifying DCGs and DCLs . . . . . . . . . . . . . . . . . . . . . . 10
5.4 Narrowing down preferential DCLs . . . . . . . . . . . . . . . . . . . . . . . 11
5.5 WGCNA, ASC and LRC for identifying DCGs . . . . . . . . . . . . . . . . 13

1 Introduction

This document gives instructions on how to use the functions in the package DCGL.
DCGL is a free R package assisting differential coexpression analysis (DCEA), specifically,
for identifying Differentially Coexpressed Genes (DCGs) and Differentially Coexpressed
Links (DCLs) from gene expression microarray data. In the package five DCEA meth-
ods are implemented, including two proposed by us (DCp and DCe) and three other ones
(WGCNA,LRC,ASC). The major input of DCGL are the expression data from two contrastive
conditions with rows representing genes and columns representing microarrays. The output
of DCGL always include a talbe of the DCGs mined from the input expression data. Note
that DCe outputs DCLs as an additional result.

We also provide functions expressionBasedfilter and varianceBasedfilter to fil-
ter genes in the expression dataset and systematicLinkfilter, qLinkfilter and per-

centLinkfilter to filter gene coexpression links in coexpression networks.
The DCGL package employs R library igraph which must be installed in advance.

2 Getting started

Prior to using DCGL, users should download the installation file of DCGL to their local
computer, and install DCGL as a package of their R computing environment. For linux
users, they should type ”R CMD INSTALL DCGL 1.0.tar.gz” in the shell (suppose the
installation file ”DCGL 1.0.tar.gz” is in the current working directory); for windows users,
they should go to the R menu ”Packages” and click the ”Install package(s) from local zip
files” and then locate the local file ”DCGL 1.0.zip”. If the package is installed successfully,
a file folder named ”DCGL” would appear beneath the folder ”library” in the R installation
directory.

To load the DCGL package, type library(DCGL).

3 Methods

DCGL provides facilities for gene filtering, link filtering and DCGs/DCLs identification.

3.1 Gene Filtering

If there are too many genes in the expression dataset, one can filter out some genes using
the two functions described below. Before gene filtering, the data from the two conditions
should be combined into one gene expression matrix.
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3.1.1 Expression based gene filtering

expressionBasedfilter: Genes which have a Between-Experiment Mean Expression Sig-
nal (BEMES) lower than the median of BEMES’s of all genes will be filtered out (Prieto and etal.,2008).
That is, half genes in the dataset will be filtered out after this filtering step.

3.1.2 Variability based gene filtering

varianceBasedfilter: This is an approximate test of the hypothesis that gene has the
same variance as the median variance (Simon and Lam,2006). The variance of the log-
values for each gene is compared to the median of all the variances. The quantity

quantity = (n− 1) ∗ vari/varm

for each gene is compared to a percentile of the chi-square distribution with n-1 degrees
of freedom (n is the number of columns of the input gene-expression matrix or the sample
size), where vari is the variance of the ith gene and varm is the median of these gene-specific
variances. Those genes not significantly more variable than the median gene are filtered
out.

3.2 Link filtering

For all DCEA methods but WGCNA, a link filtering step is necessary to build up two
gene coexpression networks for the two contrastive conditions. One can imagine two gene
coexpression networks having identical linking structures but different edge weights (co-
expression values). The input to link filtering methods always include two separate gene
expression matrices for the two conditions, and the output often takes the form of two
gene-versus-gene coexpression matrices. In the coexpression matrices, retained links have
non-zero values while discarded links are denoted with zero values.

Three stand-alone functions are implemented for link filtering, which are the systematic
investigation of the relationship between the correlation threshold and the clustering coef-
ficient (systematicLinkfilter), the q-value based link filtering (qLinkfilter), and the
correlation-value fraction based link filtering (percentLinkfilter). However, these link
filtering functions are seldomly called as independent functions; instead, they are wrapped
in the DCEA functions DCp, DCe, ASC, LRC, and can be determined through setting the
”method” and ”cutoff” parameters.

The first method is feasible for small datasets (for example, with a gene total less than
500); the second one is suitable for medium datasets (for example, with a gene total less
than 5000); and the last one is recommended for the largest datasets.

3.2.1 A systematic procedure for estimating a cutoff threshold of coexpression
networks

systematicLinkfilter: This is a systematic procedure for inferring a cutoff threshold of
coexpression networks directly from their topological properties (Elo and etal.,2007). The
objective is to automatically select a threshold that preserves as many valid coexpression
links as possible, while simultaneously controlling the number of false detections. The
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procedure is based on comparing the observed clustering coefficient and its randomized
counterpart as the number of connections is gradually decreased.

3.2.2 Filtering gene coexpression links according to the q-values of expression
correlation values

qLinkfilter: For each of the two conditions, the coexpression values are associated with
the corresponding p-values (student T-test of the zero nature of a PCC), and these p-values
are sorted and transformed to q-values (or formally, false discovery rates). Gene links with
q-values of coexpression values in either of two conditions lower than the cutoff (qth) are
retained.

3.2.3 Filtering gene coexpression links according to the max expression corre-
lation value

percentLinkfilter: Each gene link is associated with two correlation values (one out of
condition A and the other out of condition B) and thus a list of ’maximum absolute values’
for all correlation value pairs is decided. Then these ’maximum absolute values’ are sorted
in decreasing order. At last, a fraction of gene pairs with the highest max correlation values
will be retained.

3.3 DCp for identifying DCGs

DCp necessitates a link filtering step before its main analysis, which can be specified through
setting the ”method” and ”cutoff” parameters. After the link filtering, coexpression pairs
with q-values/r-values of coexpression values in either of two conditions lower/higher than
the cutoff (qth/rth) are retained.

DCp works on the filtered set of gene coexpression value pairs, where each pair is made
up with two coexpression values of a gene pair calculated under two different conditions.
The subset of coexpression value pairs associated with a particular gene can be written as
two vectors X and Y (n is the length of the vector or the coexpression neighbors for a gene).

X = (xi1, xi2, ..., xin)

Y = (yi1, yi2, ..., yin)

Then a length normalized Euclidean distance is used for measuring differential coexpression
(dC) of this gene.

dCn(i) =

√
(xi1 − yi1)2 + (xi2 − yi2)2 + ...+ (xin − yin)2

n

To evaluate whether a gene has significant dC, we perform a permutation test, in which
we randomly permute the disease and normal conditions of the samples, calculate new
PCCs, filter gene pairs based on the new PCCs, and calculate new dC statistics. The
sample permutation is repeated (N) times, and a large number of permutation dC statistics
form an empirical null distribution. The p-value for each gene can then be estimated.
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3.4 DCe for identifying DCGs and DCLs

DCe is based on the ’Limit Fold Change’ (LFC) model, a robust statistical method originally
proposed for selecting DEGs from microarray data (Mutch and etal.,2002).

First, the correlation pairs are divided into three parts according to the pairing of signs
of coexpression values and the multitude of coexpression values: pairs with same signs
(N1), pairs with different signs (N2) and pairs with differently-signed high coexpression
values (N3). The first two parts are processed with the ’LFC’ model separately to yield two
subsets of DCLs (K1,K2), while the third part (N3)adds to the set of DCLs directly. So a
total of K=N3+K1+K2 DCLs are determined from a total of N gene links. For a gene (gi),
the total number of links (ni) and DCLs in particular(ki) associated with it are counted,
and the Binomial Probability model is used to estimate the significance of the gene being a
DCG.

P (gi) =

ni∑
x=ki

Cxni
(
K

N
)x(1− K

N
)ni−x

3.5 WGCNA for identifying DCGs

WGCNA adopts the soft thresholding method to construct coexpression network of all possible
gene pairs (Fuller and etal.,2007; van Nas and etal.,2009). The nodes of such a network
correspond to genes, and edges between genes are tagged with values ’softly thresholded’
from the Pearson correlation coefficients. By raising the absolute value of the Pearson
correlation to a power

β ≥ 1

the soft thresholding strategy emphasizes large correlations at the expense of low correla-
tions. Specifically,

aij = |1 + cor(xi, yi)

2
|β

represents the edge weights of the coexpression networks (or transformed coexpression val-
ues). For a specific gene, there are two vectors of transformed coexpression values with a
length of m-1 (m is the number of genes).

a1 = (a11, a21, ..., am−1,1)

a2 = (a12, a22, ..., am−1,2)

For the ith gene, k1(i) and k2(i) denote the whole-network connectivity in networks 1 and
2 (sum of the a/b values), respectively.

k1(i) = a11 + a21 + ...+ am−1,1

k2(i) = a12 + a22 + ...+ am−1,2

To achieve a more fair comparison of connectivities, the authors in the original paper divide
each gene connectivity with the maximum connectivity, i.e.,

K1(i) =
k1(i)

max(k1)
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and

K2(i) =
k2(i)

max(k2)

Finally a measure of differential connectivity is

WGCNAi = |K1(i)−K2(i)|

Described above is the original version of the WGCNA method. We also include another
variant of the WGCNA method by defining the ultimate differential coexpression measure
using the length-normalized Euclidean distance:

WGCNAi =

√
(a11 − a12)2 + (a21 − a22)2 + ...+ (am−1,1 − am−1,2)2

m− 1

The higher the WGCNA score is, the more likely a gene is a DCG.

3.6 ASC for identifying DCGs

ASC is abbreviated from ’Average Specific Connection’ (Choi and etal.,2005). The ASC
method employs the ’hard thresholding’ strategy to construct the coexpression networks.
I.e., coexpression values lower than the cut-off are converted to zero, while those higher are
converted to one. ASC pays special attention to the ’specific connections’, or links existing
in only one coexpression network. The specific connections for a gene in networks 1 and 2
total (SCi1 and SCi2), respectively.

ASCi =
SCi1 + SCi2

2

The higher the ASC score is, the more likely a gene is a DCG.

3.7 LRC for identifying DCGs

LRC is abbreviated from ’Log Ratio Connections’ (Reverter and etal.,2005). The LRC
method also employs the ’hard thresholding’ strategy to construct the coexpression net-
works. With degrees of a same gene counted in the two networks (degreei1 and degreei2),
we have

LRCi = | log10
degreei2
degreei1

|

The higher the LRC score is, the more likely a gene is a DCG.

4 Dataset

DCGL includes three simulated datasets, each having a total of 1000 genes. These ex-
pression data were simulated by software SynTReN (Bulcke and etal.,2006) using networks
originated from E.coli regulatory network. To simulate datasets, the underlying networks
for condition one were fixed, but they had 10% links perturbed for condition two. Specif-
ically, those links were eliminated to naught (dataset A), toggled to the opposite (dataset
B), or eliminated and toggled half-and-half (dataset C).
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5 Example

The following examples are based on the test dataset C (dataC).

5.1 link filtering

> library(DCGL)

> data(dataC)

> dataC[1:3, 1:3]

Sample1 Sample2 Sample3

EG10006 0.4533798 0.3461948 0.1350374

EG10007 0.6430745 0.9126034 0.6241110

EG10008 0.6570491 0.9214012 0.5319754

The first ten samples (Sample1 to Sample10) belong to one condition and the remaining ten
samples belong to another condition. So we firstly divide dataC to two parts corresponding
to condition A (exprs.1) and condition B (exprs.2) respectively.

> exprs.1 <- dataC[, 1:10]

> exprs.2 <- dataC[, 11:20]

The number of genes in dataC is moderate (1000), so the most time-consuming link fil-
tration function (qLinkfilter) can be run. Through link filtering, correlation pairs with
q values lower than qth(0.25) in either condition are kept whereas the other pairs are set to 0.
Links$rth contain the two correlation thresholds for both conditions; Links$cor.filtered$cor.filtered.1
and Links$cor.filtered$cor.filtered.2 keep the filtered correlation matrices for condition A
and B.

> Links <- qLinkfilter(exprs.1, exprs.2, 0.25)

> Links$rth

$rth.1

[1] 0.5864986

$rth.2

[1] 0.6609703

> Links$cor.filtered$cor.filtered.1[1:5, 1:5]

EG10006 EG10007 EG10008 EG10012 EG10020

EG10006 0.0000000 0.0000000 0.0000000 0.0000000 0.6280721

EG10007 0.0000000 0.0000000 0.9779899 0.0000000 0.0000000

EG10008 0.0000000 0.9779899 0.0000000 0.3272847 0.5899156

EG10012 0.0000000 0.0000000 0.3272847 0.0000000 0.0000000

EG10020 0.6280721 0.0000000 0.5899156 0.0000000 0.0000000

> Links$cor.filtered$cor.filtered.2[1:5, 1:5]
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EG10006 EG10007 EG10008 EG10012 EG10020

EG10006 0.0000000 0.0000000 0.00000000 0.000000 0.16323178

EG10007 0.0000000 0.0000000 0.68937477 0.000000 0.00000000

EG10008 0.0000000 0.6893748 0.00000000 -0.733558 -0.05414101

EG10012 0.0000000 0.0000000 -0.73355799 0.000000 0.00000000

EG10020 0.1632318 0.0000000 -0.05414101 0.000000 0.00000000

With a sufficiently small dataset, one can try the systematic investigation of the relationship
between correlation threshold and clustering coefficient. Here we demonstrate it on the top
100 genes of dataC as an example.

> exprs <- dataC[1:100, ]

> C_r <- systematicLinkfilter(exprs)

The function outputs a table of ’correlation threshold’ vs. ’clustering coefficient’.

> plot(C_r[, 1], C_r[, 2], xlab = "correlation threshold", ylab = "C-C0")

> lines(C_r[, 1], C_r[, 2])

A curve of ’correlation threshold’ vs. ’clustering coefficient’ is plotted, which may assist
the users to determine correlation threshold (Figure 1). Further details are to be found in
the original paper (Elo and etal.,2007).

5.2 DCp for identifying DCGs

For the ’Differential Coexpression Profile’ (DCp) method, there are three choices for the
wrapped link-filtering algorithms, which can be specified by setting the parameter ’method’
as ’qth’,’rth’, or ’percent’. The parameter ’cutoff’ also needs to be specified, which may
have different explanation in light of different link-filtering ’method’.

The following shows the usage of the ’qth’ version of DCp method.

> Result <- DCp(exprs.1, exprs.2, method = "qth", cutoff = 0.25,

+ N = 0)

> Result[1:10, ]

dC length

EG10006 0.5907748 394

EG10007 0.5089185 414

EG10008 0.6662489 382

EG10012 0.7727753 178

EG10020 0.6651723 608

EG10022 0.8111587 21

EG10023 0.7727377 105

EG10024 0.7094249 226

EG10025 0.5901216 196

EG10026 0.9735308 205
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Figure 1: Behavior of the clustering coefficient at different correlation thresholds.

9



’Result’ is a table of DCGs, in which the first column gives the dC value for every gene,
the second column gives the length of its ’Differential Coexpression Profiles’ (or, ’degree’ in
the coexpression networks).

At this demonstration we set N=0, specifying that no permutation is incurred. If N>0,
the permutation step will be repeated N times for estimating p-values. Correspondingly, ’Re-
sult’ will be extended to four columns of ’dC’ value, ’profile length’, ’p value’ and ’FWER’.

5.3 DCe for identifying DCGs and DCLs

For the method DCe, you can also choose one of three link filtering options. The following
is exemplified with the ’qth’ option.

> Results <- DCe(exprs.1, exprs.2, method = "qth", cutoff = 0.25,

+ nbins = 20, p = 0.1, figname = c("LFC.s.jpeg", "LFC.d.jpeg"))

> Results$DCGs[1:10, ]

All.links DC.links DCL_same DCL_diff DCL_switch p

EG13414 588 338 37 62 239 3.145296e-139

EG10170 595 331 21 60 250 1.218457e-130

EG10624 583 327 16 67 244 1.711025e-130

EG10350 603 333 20 60 253 3.792867e-130

EG13736 594 330 31 59 240 5.082115e-130

EG10398 602 331 31 56 244 1.250686e-128

EG10441 573 319 35 52 232 4.239250e-126

EG11540 579 318 15 62 241 1.802350e-123

EG30070 599 323 27 64 232 2.415852e-122

EG12541 598 318 22 51 245 3.060324e-118

q

EG13414 3.145296e-136

EG10170 1.218457e-127

EG10624 1.711025e-127

EG10350 3.792867e-127

EG13736 5.082115e-127

EG10398 1.250686e-125

EG10441 4.239250e-123

EG11540 1.802350e-120

EG30070 2.415852e-119

EG12541 3.060324e-115

> Results$DCL.same[1:10, ]

Gene.1 Gene.2 cor.1 cor.2

1 EG10024 EG10012 0.81617035 0.045106980

2 EG10026 EG10023 0.05169217 0.868128384

3 EG10026 EG10025 -0.79035351 -0.022894525

4 EG10052 EG10008 0.60671292 0.011411682
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5 EG10055 EG10008 0.64599310 0.009903623

6 EG10082 EG10054 0.04237940 0.730497994

7 EG10082 EG10059 0.03397799 0.717081246

8 EG10082 EG10072 0.64274138 0.033586636

9 EG10095 EG10044 0.06950081 0.868045498

10 EG10109 EG10007 0.62771284 0.006943263

> Results$DCL.diff[1:10, ]

Gene.1 Gene.2 cor.1 cor.2

1 EG10049 EG10026 -0.89472063 0.41455106

2 EG10061 EG10026 -0.87645970 0.58490389

3 EG10079 EG10078 0.97457478 -0.40227097

4 EG10110 EG10109 -0.29427998 0.96955919

5 EG10111 EG10026 0.89654124 -0.60581126

6 EG10112 EG10061 0.50386949 -0.96183454

7 EG10112 EG10111 -0.38284091 0.95820855

8 EG10149 EG10044 0.03810221 -0.93670079

9 EG10152 EG10133 0.92601219 -0.34645884

10 EG10153 EG10012 0.96124730 -0.02015280

> Results$DCL.switched[1:10, ]

Gene.1 Gene.2 cor.1 cor.2

822 EG10719 EG10714 0.9992682 -0.9964497

820 EG10716 EG10714 0.8348981 -0.9991135

815 EG10714 EG10490 0.9990988 -0.9903306

339 EG10466 EG10350 0.9987030 -0.9861219

125 EG10350 EG10349 0.9986616 -0.9922408

2479 EG11886 EG10047 0.9629320 -0.9985700

1843 EG11401 EG10714 0.9985022 -0.9933157

467 EG10539 EG10500 -0.9864642 0.9984770

4908 EG13965 EG10624 -0.9172892 0.9984616

2158 EG11565 EG10170 -0.9186945 0.9980134

’Result’ is a list with four components, one for DCGs and another three for different types
of DCLs. The DCGs table include seven columns - all links, DCLs, same signed DCLs,
differently signed DCLs, switched links, the p value, and the FWER value.

5.4 Narrowing down preferential DCLs

DCe is recommended the optimal method for DCL identification because this method can
select DCLs more accurately. In reality, biologists usually welcome a smaller set of DCLs
than a larger one. So narrowing down preferential DCLs is necessary. This can be achieved
by setting higher coexpression value cut-offs (qth or rth ) or stricter outlier fractions (p) of
the LFC model.

For switched links:
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> Results$DCL.switched[1:10, ]

Gene.1 Gene.2 cor.1 cor.2

822 EG10719 EG10714 0.9992682 -0.9964497

820 EG10716 EG10714 0.8348981 -0.9991135

815 EG10714 EG10490 0.9990988 -0.9903306

339 EG10466 EG10350 0.9987030 -0.9861219

125 EG10350 EG10349 0.9986616 -0.9922408

2479 EG11886 EG10047 0.9629320 -0.9985700

1843 EG11401 EG10714 0.9985022 -0.9933157

467 EG10539 EG10500 -0.9864642 0.9984770

4908 EG13965 EG10624 -0.9172892 0.9984616

2158 EG11565 EG10170 -0.9186945 0.9980134

The DCLs can be selected by sorting max absolute correlation of a link. Because it was
proved that the DCLs with highest max absolute correlation were more accurate.

For same signed and differently signed DCLs, one effective method is to lower the outlier
fractions (p) of the LFC model. For example, when the p=0.1, the result is:

> Results <- DCe(exprs.1, exprs.2, method = "qth", cutoff = 0.25,

+ nbins = 20, p = 0.1, figname = c("LFC.s.jpeg", "LFC.d.jpeg"))

> Results$DCGs[1:10, ]

All.links DC.links DCL_same DCL_diff DCL_switch p

EG13414 588 338 37 62 239 3.145296e-139

EG10170 595 331 21 60 250 1.218457e-130

EG10624 583 327 16 67 244 1.711025e-130

EG10350 603 333 20 60 253 3.792867e-130

EG13736 594 330 31 59 240 5.082115e-130

EG10398 602 331 31 56 244 1.250686e-128

EG10441 573 319 35 52 232 4.239250e-126

EG11540 579 318 15 62 241 1.802350e-123

EG30070 599 323 27 64 232 2.415852e-122

EG12541 598 318 22 51 245 3.060324e-118

q

EG13414 3.145296e-136

EG10170 1.218457e-127

EG10624 1.711025e-127

EG10350 3.792867e-127

EG13736 5.082115e-127

EG10398 1.250686e-125

EG10441 4.239250e-123

EG11540 1.802350e-120

EG30070 2.415852e-119

EG12541 3.060324e-115

when the p=0.01, the result is:
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> Results <- DCe(exprs.1, exprs.2, method = "qth", cutoff = 0.25,

+ nbins = 20, p = 0.01, figname = c("LFC.s.jpeg", "LFC.d.jpeg"))

> Results$DCGs[1:10, ]

All.links DC.links DCL_same DCL_diff DCL_switch p

EG10170 595 260 3 7 250 6.244839e-171

EG13414 588 258 6 13 239 3.495622e-170

EG10350 603 259 1 5 253 5.643703e-168

EG11031 591 256 2 5 249 3.610319e-167

EG10398 602 257 3 10 244 6.904445e-166

EG10441 573 251 7 12 232 2.115086e-165

EG10624 583 252 3 5 244 2.601132e-164

EG13736 594 254 2 12 240 3.459804e-164

EG12541 598 253 1 7 245 3.635239e-162

EG11540 579 249 0 8 241 1.005535e-161

q

EG10170 6.244839e-168

EG13414 3.495622e-167

EG10350 5.643703e-165

EG11031 3.610319e-164

EG10398 6.904445e-163

EG10441 2.115086e-162

EG10624 2.601132e-161

EG13736 3.459804e-161

EG12541 3.635239e-159

EG11540 1.005535e-158

We can see that the numbers of same and different signed DCLs decreased.

5.5 WGCNA, ASC and LRC for identifying DCGs

Users can also identify DCGs using the method of WGCNA,ASC and LRC.
The method WGCNA does not need the link filtering step; but it needs a new parame-

ter ’power’ which is necessary in the ’soft thresholding’ (or transformation) of the original
correlation values. There are two variants for the WGCNA method: the first one, a com-
bination of the two original papers (Fuller and etal.,2007; van Nas and etal.,2009), and the
second one with integration from the ’DCp’ method. Here we use power=12 as an example.

> Results <- WGCNA(exprs.1, exprs.2, power = 12, variant = "WGCNA")

> Results[1:10]

EG10006 EG10007 EG10008 EG10012 EG10020 EG10022

0.130436661 0.002313100 0.070444785 0.003444917 0.021990313 0.012220093

EG10023 EG10024 EG10025 EG10026

0.009754864 0.058267889 0.139482501 0.003448272
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The other two methods ’ASC’ and ’LRC’ also requires setting the link-filtering ’method’, but
they exert a hard thresholding strategy and basically compares the numbers of connected
edges.

> Results <- ASC(exprs.1, exprs.2, method = "qth", cutoff = 0.25)

> Results[1:10]

EG10006 EG10007 EG10008 EG10012 EG10020 EG10022 EG10023 EG10024 EG10025

193.0 162.5 157.0 75.0 172.5 10.5 52.0 111.0 92.5

EG10026

97.0

> Results <- LRC(exprs.1, exprs.2, method = "qth", cutoff = 0.25)

> Results[1:10]

EG10006 EG10007 EG10008 EG10012 EG10020 EG10022

0.867762025 0.077915080 0.454258372 0.050654764 0.187339802 0.041392685

EG10023 EG10024 EG10025 EG10026

0.115393419 0.106268337 0.004196115 0.414973348
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