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1 Introduction

Gene set enrichment analysis is broadly used in microarray data analysis [8, 5].
It aimes to find which biological functions are affected by a group of related
genes behind the massive information. The most used methotology is finding
these significant gene set from a 2 × 2 contingency table, usually by Fisher’s
exact test or chi-square test. This kind of analysis is known as Over-represented
Analysis (ORA). It takes a list of differential expressed gene, and returns sig-
nificant gene sets that the differential genes are enriched in. A lot of meth-
ods have been developed under the framework of ORA such as DAVID [6]
(http://http://david.abcc.ncifcrf.gov/) and GOstats package [3]. The second
methodology to find significant pathways is to use whole expression matrix,
named Gene-set Analysis (GSA). GSA methods are implemented via either a
univariate or a multivariate procedure [1]. In univariate analysis, gene level s-
tatistics are initially calculated from fold changes or statistical tests (e.g., t-test).
These statistics are then combined into a pathway level statistic by summation
or averaging. GSEA [11] is a widely used univariate tool that utilizes a weighted
Kolmogorov-Smirnov test to measure the degree of differential expression of a
gene set by calculating a running sum from the top of a ranked gene list. Mul-
tivariate analysis considers the correlations between genes in the pathway and
calculates the pathway level statistic directly from the expression value matrix
using Hotelling’s T 2 test [10] or MANOVA models [7].

For a specific form of gene sets, biological pathways are collections of cor-
related genes/proteins, RNAs and compounds that work together to regulate
specific biological processes. Instead of just being a list of genes, a pathway
contains the most important information that is how the member genes inter-
act with each other. Thus network structure information is necessary for the
intepretation of the importance of the pathways.

In this package, the original pathway enrichment method (ORA and GSA)
is extended by introducing network centralities as the weight of nodes which
have been mapped from differentially expressed genes in pathways [4]. There
are two advantages compared to former methods. First, for the diversity of
genes’ characters and the difficulties of covering the importance of genes from
all aspects, we do not design a fixed measurement for each gene but set it as an
optional parameter in the model. Researchers can select from candidate choices
where different measurement reflects different aspect of the importance of genes.
In our model, network centralities are used to measure the importance of genes
in pathways. Different centrality measurements assign the importance to nodes
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from different aspects. For example, degree centrality measures the amoun-
t of neighbours that a node directly connects to, and betweenness centrality
measures how many information streams must pass through a certain node.
Generally speaking, nodes having large centrality values are central nodes in
the network. It’s observed that nodes represented as metabolites, proteins or
genes with high centralities are essential to keep the steady state of biological
networks. Moreover, different centrality measurements may relate to differen-
t biological functions. The selection of centralities for researchers depends on
what kind of genes they think important. Second, we use nodes as the basic
units of pathways instead of genes. We observe that nodes in the pathways
include different types of molecules, such as single gene, complex and protein
families. Assuming a complex or family contains ten differentially expressed
member genes, in traditional ORA, these ten genes behave as the same position
as other genes represented as single nodes, and thus they have effect of ten. It
is not proper because these ten genes stay in a same node in the pathway and
make functions with the effect of one node. Also, a same gene may locate in dif-
ferent complexes in a pathway and if taking the gene with effect of one, it would
greatly decrease the importance of the gene. Therefore a mapping procedure
from genes to pathway nodes is applied in our model. What’s more, the nodes
in pathways also include non-gene nodes such as microRNAs and compounds.
These nodes also contribute to the topology of the pathway. So, when analyzing
pathways, all types of nodes are retained.

2 Pathway Catalogue

Pathways are collected from public databases, such as PID, KEGG, BioCarta
etc. In CePa package, four catalogues (PID, KEGG, BioCarta and Reactome)
from PID database have been integrated. The pathway data are parsed from
XML format file provided by the PID FTP site. The Perl code for parsing can be
obtained from the author’s website (http://mcube.nju.edu.cn/jwang/lab/soft/cepa/).
The pathway data is stored in PID.db.

> library(CePa)

> data(PID.db)

> names(PID.db)

[1] "NCI" "BioCarta" "KEGG" "Reactome"

Each pathway catalogue has been stored as a pathway.catalogue class ob-
ject. The print.pathway.catalogue function simply prints the number of
pathways in the catalogue. The plot.pathway.catalogue function visulizes
general information of the catalogue (figure 1). It plot: A) Distribution of the
number of member genes in each node; B) Distribution of the number of nodes
in which a single gene resides; C) Relationship between node count and gene
count in biological pathways.

> class(PID.db$NCI)

[1] "pathway.catalogue"

> PID.db$NCI
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The catalogue contains 225 pathways.

> plot(PID.db$NCI)
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(A) Distribution of the number
of member genes in each node
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(B) Distribution of the number
of nodes in which a single gene resides
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Figure 1: Meta analysis of pathway catalogue

The pathway catalogue data contains a list of pathways and each pathway
contains a list of interactions. There are several parts in the pathway data where
three of them is must: the pathway list, the interaction list and the mapping list.
The corresponding list name are pathList, interactionList and mapping.

> names(PID.db$NCI)

[1] "pathList" "interactionList" "mapping" "node.name"

[5] "node.type" "created"

The pathList is a list in which each item is a list of interaction IDs

> head(PID.db$NCI$pathList[[1]])

[1] "209941" "209933" "209957" "209927" "209931" "209958"

The interactionList is a three-column matrix in which the first column is
the interaction ID, the second column is the input node ID and the third column
is the output node ID.

> head(PID.db$NCI$interactionList)

interaction.id input output

1 201405 200665 205628

2 201405 200666 205628

3 204164 208481 208484

4 204164 202538 208484

5 206327 200592 200709

6 206327 210859 200709

The mapping is the two-column matrix in which the first column is the node
ID and the second column is the gene ID.

> head(PID.db$NCI$mapping)
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node.id symbol

1 201978 HGS

2 202230 ARHGAP6

3 201405 XIAP

4 201647 CRY2

5 202024 GZMA

6 201386 HFE2

The pathway catalogue can also be self-defined by set.pathway.catalogue

function. The function returns a pathway.catalogue class object. E.g. we only
need the first ten pathways in NCI catalogue.

> new.catalogue = set.pathway.catalogue(pathList = PID.db$NCI$pathList[1:10],

+ interactionList = PID.db$NCI$interactionList,

+ mapping = PID.db$NCI$mapping)

In the following examples, we will use NCI catalogue as the default pathway
catalogue.

3 ORA Extension

The pathway score is defined as the summation of the weights of differentially
affected nodes in the pathway:

s =

n∑
i=1

widi (1)

where s is the score of the pathway, wi is the weight of the ith node and
reflects the importance of the node, n is the number of nodes in the pathway,
and di identifies whether the ith node is differentially affected ( = 1) or not (
= 0).

The CePa package needs a differentially expressed gene list and a background
gene list. The differential gene list can be obtained through variaty of methods
such as t-test, SAM [12] and limma [9]. The background gene list is the complete
category of genes that exist on a certain microarray platform or from the whole
genome. The CePa package contains an example gene list and a background
gene list. The gene list is obtained from a microarray study by t-test [2].

> data(gene.list)

> names(gene.list)

[1] "bk" "dif"

In order to find significant pathways under several centrality measurements,
we use cepa.all function.In the function, dif refers to the differential gene list,
bk refers to the background gene list and the pc refers to the pathway catalogue.

> res = cepa.all(dif = gene.list$dif, bk = gene.list$bk,

+ pc = PID.db$NCI)
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Calculate pathway scores...

1/205, hif1_tfpathway...

- equal.weight: 0.7212787

- in.degree: 0.7972028

- out.degree: 0.8321678

- betweenness: 0.8031968

- in.reach: 0.6603397

- out.reach: 0.8141858

...

The differential gene list and the background gene list should be indicated
with the same identifiers (e.g. gene symbol or refseq ID). All genes in the
differential gene list should exist in the background gene list. In this example,
gene list must be formatted as gene symbol. If background gene list is not
specified, the function use whole human genome genes as default.

By default, cepa.all use equal.weight, in.degree, out.degree, between-
ness, in.reach and out.reach centralities as pathway nodes’ weight. More
centrality measurements can be used by setting it as a function (such as close-
ness, cluster coefficient).

In order to generate the null distribution of the pathway score, novel differ-
ential gene list is sampled from the background gene list. P-values are calculated
from 1000 simulations by default.

res is a cepa.all class object. To see the general information of this object:

> res

number of pathways: 205

Significant pathways (p.value <= 0.01):

Number

equal.weight 18

in.degree 20

out.degree 16

betweenness 15

in.reach 21

out.reach 20

It will print the number of significant pathways under different centralities.
For ORA extension, cepa.all in fact calls cepa.ora.all function. So the
following code is same as the former code.

> res = cepa.ora.all(dif = gene.list$dif, bk = gene.list$bk,

+ pc = PID.db$NCI)

The p-values or adjusted p-values of all pathways under different centralities
can be compared through the heatmap of p-values (Figure 2). Users can select
methods to adjust raw p-values.

> plot(res, adj.method = "BH", cutoff = 0.05)

By default, plot generates the heatmap containing all pathways. If only
significant pathways are of interest, the only.sig argument can be set to TRUE.
(Figure 3).
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Figure 3: Heatmap of p-values of significant pathways
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> plot(res, adj.method = "BH", only.sig = TRUE, cutoff = 0.01)

The numeric values of p-values can be obtained via p.table. The function
just returns the raw p-values.

> pt = p.table(res)

> head(pt)

equal.weight in.degree out.degree betweenness

hif1_tfpathway 0.721278721 0.797202797 0.832167832 0.803196803

s1p_s1p5_pathway 0.144855145 0.199800200 0.160839161 0.055944056

wnt_signaling_pathway 0.869130869 0.864135864 0.907092907 0.896103896

ap1_pathway 0.002997003 0.002997003 0.000999001 0.000999001

lpa4_pathway 0.811188811 0.830169830 0.815184815 0.714285714

avb3_opn_pathway 0.796203796 0.594405594 0.649350649 0.310689311

in.reach out.reach

hif1_tfpathway 0.660339660 0.814185814

s1p_s1p5_pathway 0.069930070 0.145854146

wnt_signaling_pathway 0.809190809 0.906093906

ap1_pathway 0.003996004 0.000999001

lpa4_pathway 0.765234765 0.751248751

avb3_opn_pathway 0.729270729 0.589410589

We can get the result for single pathway under specific centrality from the
cepa.all object by identifying the index for the pathway and the index for the
centrality.

> g = get.cepa(res, id = "mapktrkpathway", cen = "in.degree")

> g

procedure: ora

weight: in.degree

p-value: 0.010

g is a cepa class object. It stores information of the evaluation of a single
pathway under a single centrality. The distribution of the pathway score and
the network graph can be generated by plot function on the cepa object by
specifying type argument (figure 4 and figure 5).

> plot(g, type = "graph")

> plot(g, type = "null")

By default, type is set to graph, and the node labels is combined from mem-
ber genes. The exact name for each node can be set by node.name argument.
Also, more detailed categories of the nodes can be set by node.type argument
(Figure 6).

> plot(g, node.name = PID.db$NCI$node.name,

+ node.type = PID.db$NCI$node.type)

For simplicity, the plotting for the cepa object can be directly applied on
the cepa.all object by specifying the index of the pathway and the index of
the centrality (Figure 6).
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(A) Distribution of in.degree centrality
in the pathway under simulation
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Figure 5: Null distribution of pathway score

> plot(res, id = "mapktrkpathway", cen = "in.degree")

> plot(res, id = "mapktrkpathway", cen = "in.degree", type = "null")

> plot(res, id = "mapktrkpathway", cen = "in.degree",

+ node.name = PID.db$NCI$node.name,

+ node.type = PID.db$NCI$node.type)

If userd use plot to draw network graphs, the function would return an
igraph object. So if users are not satisfy with the default graph, they can
visulize by their own methods.

> obj = plot(res, id = "mapktrkpathway", cen = "in.degree")

> class(obj)

[1] "igraph"

The igraph package provides a write.graph function to output graph in-
to several formats. As I have tried, with graphml format, Cytoscape Web
(http://http://cytoscapeweb.cytoscape.org/) can make a more beautiful visu-
alization of the network.

> write.graph(obj, file = "example-network.xml", format = "graphml")

> write.graph(obj, file = "example-network.gml", format = "gml")

Instead of analysis a list of pathways, users can also be focused on a single
pathway under a single centrality by identifying the id of the pathway in the
catalogue.

> res.pathway = cepa(dif = gene.list$dif, bk = gene.list$bk,

+ pc = PID.db$NCI, id = 2)

Similarly, cepa function here directly calls cepa.ora.
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4 GSA extension

In the traditional univariate GSA procedure, the score s of the pathway is
defined as:

s = f(g) (2)

where f transforms the gene-level statistic to a pathway-level statistic (e.g.
by summation, averaging) and g is the gene-level statistic vector which typically
comprises t-values. In ORA, g is a binary variant and f(g) is summation. In
our model to extend GSA, gene-level statistic is first transformed to node-level
statistic. We define the vector of the node-level statistics as d. When nodes
in pathways comprise multiple genes, the node-level statistic can be considered
as the largest principle component of the corresponding member genes. Using
centrality as the weight, the score is defined as

s = f(wd) (3)

where w is the weight vector and the transformation function f acts upon
the product of w and d. Equation 3 incorporates centrality weight into the
original node-level statistic. The null distribution of the pathway score could
then be generated by permuting the gene expression matrix.

Since GSA procedure need a complete expression matrix, we first read the
P53 microarray data set. The P53_symbol.gct and P53.cls can be downloaded
from http://mcube.nju.edu.cn/jwang/lab/soft/cepa/.

> eset = read.gct("P53_symbol.gct")

> # some process of the names of genes

> rownames(eset) = gsub("\\s+.*$", "", rownames(eset))

> label = read.cls("P53.cls", treatment="MUT", control="WT")

Here, we also use cepa.all to do batch pathway analysis.

> res = cepa.all(mat = eset, label = label, pc = PID.db$NCI,

glevel = "tvalue_sq", plevel = "mean")

Calculate gene level values.

Calculate pathway score...

1/205, hif1_tfpathway...

Calculate node level value and permutate sample labels...

- equal.weight: 0.788

- in.degree: 0.653

- out.degree: 0.405

- betweenness: 0.303

- in.reach: 0.917

- out.reach: 0.499

...

Here, we use mat and label arguments instead of dif and bk arguments. In
fact, when specifying mat and label arguments, cepa.all calls cepa.univaraite.all.

In GSA procedure, first a node level statistic should be calculated. In CePa

package, there are three methods to calculate node level statistics. User can
choose from tvalue, tvalue_abs and tvalue_sq. tvalue_abs is choosen as
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the default node level method because it can capture two directional regula-
tions. After we get the node level statistics in the pathway, a pathway level
transformation should be applied. User can choose from max, min, median, sum,
mean and rank. mean is taken as default.

Print the general result of the analysis and plot figures (figure 7).

> res

number of pathways: 205

Significant pathways (p.value <= 0.01):

Number

equal.weight 5

in.degree 5

out.degree 7

betweenness 5

in.reach 6

out.reach 5

> plot(res, only.sig = TRUE, adj.method = "BH", cutoff = 0.15)

Heatmap of FDRs of pathways (only significant) 1 0.10.15

equal.weight

in.degree

out.degree

betweenness

in.reach

out.reach

p73pathw
ay

tap63pathw
ay

p53dow
nstream

pathw
ay

Figure 7: Heatmap of p-values of significant pathways

If we are instread in p73 pathway. First we extract this pathway under
”in.degree” centrality from res.

> g = get.cepa(res, id = "p73pathway", cen="in.degree")

> g

procedure: gsa.univariate

weight: in.degree

p-value: 0.002
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Figure 8: Network visulization of a pathway
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> plot(g)

Figure 8 illustrates the graph of p73 pathway. Since the pathway is evaluated
under GSA procedure, the color of each node is continues in which red refers to
up-regulated, green refers to down-regulated and white refers to no-change.

5 The report function

One of the advantages of CePa package is that it can generate a detailed report
in HTML format. The function report is used to generate report. The report
will locate in the current working directory. By default it only generate figures of
the significant pathways, but this can be changed by setting only.sig argument
to FALSE.

> report(res)

generate images for ap1_pathway ...

generate images for epopathway ...

generate images for il12_stat4pathway ...

generate images for foxm1pathway ...

generate images for mapktrkpathway ...

generate images for aurora_a_pathway ...

...

> report(res, adj.method = "BH", cutoff = 0.15)

> report(res, sig.only = FALSE)

An example of the report can be found in figure 9.

6 Parallel computing

Since CePa evaluates pathways independently, the process can be realized through
parallel computing. In R statistical environment, there are many packages focus-
ing on parallel computing such as snow, multicore, etc. Here we demonstrate
how to apply the parallel version of CePa, taking multicore for example.

> library(multicore)

> # identify how many cores you want to use in your computer

> ncores = 4

Since there are a list of pathways, we would link to divide them into several
approximately equal groups, so we have a divide function (maybe you have a
better function like this).

> divide = function(x, k) {

+ if(length(x) ==1 && is.numeric(x)) {

+ x = 1:x

+ }

+ if(length(x) < k) {

+ stop("o")
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Figure 9: An report of the CePa analysis
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+ }

+ w = floor(length(x)/k)

+ q = length(x) - k*w

+ d = matrix(0, nrow=k, ncol=2)

+ n = 1

+ for(i in 1:k) {

+ d[i, 1] = n

+ d[i, 2] = n+w-1+ifelse(q>0, 1, 0)

+ n = d[i,2]+1

+ q = ifelse(q > 0, q-1, 0)

+ }

+ d[k,2] = length(x)

+ return(d)

+ }

In the divide function, the first argument is a vector, usually a index vector,
and the second argument identify how many part you want to divide into. Also,
the first argument can be a positive integer. For example, we want to divide
1:10 into two groups.

> divide(1:10, 2)

[,1] [,2]

[1,] 1 5

[2,] 6 10

The function returns a matrix. Rows correspond to groups and columns
correspond to the start index and the end index. If the vector can not be
divided equally, the function would return an approximately division.

> divide(1:10, 3)

[,1] [,2]

[1,] 1 4

[2,] 5 7

[3,] 8 10

Now we can divide the complete NCI pathway catalogue into several groups.

> NCI = PID.db$NCI

> d = divide(1:length(NCI$pathList), ncores)

Then we use mclapply which is something like a parallel version of lapply
to do parallele computing.

> res = mclapply(1:ncores, function(i) {

+ pc = NCI

+ pc$pathList = pc$pathList[d[i, 1]:d[i, 2]]

+ cepa.all(dif = dif, bk = bk, pc = pc)},

+ mc.cores = ncores)

> res = mclapply(1:ncores, function(i) {

+ pc = set.pathway.catalogue(pathList = PID.db$NCI$pathList[d[i, 1]:d[i, 2]],

interactionList = PID.db$NCI$interactionList,

16



mapping = PID.db$NCI$mapping)

+ cepa.all(mat = eset, label = label, pc = pc)},

+ mc.cores = ncores)

In the mclapply, calculation in each core would returns a cepa.all object.
Thus, res is a list of cepa.all objects. We need some code to transform it into
a single cepa.all object containing all pathways.

> obj = list()

> for(i in 1:length(res)) {

+ obj = c(obj, res[[i]])

+ }

> class(obj) = "cepa.all"

OK, now the obj is a cepa.all object just like the one generated from
non-parallel CePa.
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