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Abstract

In many applications researchers are typically interested in testing for inequality con-
straints in the context of linear fixed effects and mixed effects models. Although there
exists a large body of literature for performing statistical inference under inequality con-
straints, user friendly statistical software for implementing such methods is lacking, espe-
cially in the context of linear fixed and mixed effects models. In this article we introduce
CLME, a package in the R language that can be used for testing a broad collection of
inequality constraints. It uses residual bootstrap based methodology which is reasonably
robust to non-normality as well as heteroscedasticity. The package is illustrated using two
data sets. The package also contains a graphical interface built using the shiny package.
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1. Introduction

Inequality constraints arise naturally in many applications. For example, to evaluate if a
chemical is a toxin, a toxicologist may conduct a dose-response study to determine if the mean
response is monotonic in dose. More precisely, suppose θi, i ≥ 2, are the mean responses
of a chemical corresponding to p dose groups. Thus in this case the null and alternative
hypotheses of interest are H0 : θ1 = θ2 = . . . = θp, and Ha : θ1 ≤ θ2 ≤ . . . θp, with at least
one strict inequality (known as the simple order constraint), respectively. Sometimes, when
the doses exceed the maximum tolerated dose (MTD), it may result in a dose-related toxicity
and the monotonicity is violated causing down-turn at some (unknown) dose i (Simpson and
Margolin 1986). In such cases, researchers are interested in testing for an umbrella alternative
Hai : θ1 ≤ θ2 . . . ≤ θi−1 ≤ θi ≤ θi+1 ≥ . . . ≥ θp, with at least one strict inequality.

In a multi-center rat uterotophic assay conducted by the OECD (Organization for Economic
Cooperation and Development), researchers were interested in studying the effect of exposure
to estrogen like compounds in the uterine weights of pre-pubertal rats. They were interested
in testing if the mean uterine weights of animals exposed to estrogen like compounds increased
in comparison to the uterine weights of control animals (Kanno et al. 2003). Thus in this case
the alternative hypothesis of interest is Ha : θ1 ≤ θi, i ≥ 2, with at least one strict inequality,
known as the simple tree order. Here θ1 is the mean of the control group and θi, i ≥ 2, are
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the means of the treatment groups.

In cancer trials, it is common for researchers to be interested in evaluating a cocktail of two or
more experimental drugs in combination, each tried at low, medium and high doses. In such
cases, the typical order restriction of interest is the loop order denoted by {θcontrol,control ≤
θcontrol,low ≤ θcontrol,medium ≤ θhigh,high}

⋃
{θcontrol,control ≤ θlow,control ≤ θmedium,control ≤

θhigh,high}, where θa,b denotes the mean response corresponding to ath dose of the first treat-
ment and bth dose of the second treatment. The above null and alternative hypotheses can
in general be expressed as H0 : Aθ = c and Ha : Aθ ≥ c, respectively, where A is a suitable
matrix of zeros, ones and negative ones of appropriate order, θ = (θ1, θ2, . . . , θp)

′ and c is a
suitable vector of known scalars, for example a vector of zero’s. Some examples of A and c
are provided later, and an illustration of some common orders is given in Figure (1).
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Figure 1: Illustration of order restrictions. Each circle represents a parameter of interest.
Inequalities between two parameters (i.e. circles) are provided by the lines. The vertical axis
denotes relative magnitude of connected parameters. No relationship (either <, =, or >) is
known among parameters that are not connected. A nodal parameter is a parameter whose
order relationship with every other parameter is known a priori or given by the hypothesis
that is is being tested. For example, θ3 is the nodal parameter in the umbrella orders.

It is of common interest to perform statistical inference under inequality constraints, such as
those described above, in a linear mixed effects model setting, especially in the context of
repeated measures design where a researcher may be interested in detecting trends. However,
despite the existence of a large body of literature on constrained inference spanning over five
decades and three books on testing for order restrictions (Barlow et al. 1972; Robertson et al.
1988; Silvapulle and Sen 2005), it was only recently that researchers developed methods for
performing constrained inference in linear mixed effects models (Davidov and Rosen 2011;
Rosen and Davidov 2011; Farnan et al. 2014). While Davidov and Rosen (2011) and Rosen
and Davidov (2011) developed likelihood ratio based methods, Farnan et al. (2014) developed
a residual bootstrap based method that is designed to be robust to non-normality as well as
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to heteroscedasticity. Furthermore, Farnan’s methodology allows for modeling categorical as
well as continuous covariates.

Surprisingly, not even the popular statistical analysis program SAS (SAS Institute Inc. 2011)
has the capability to perform tests under general inequality constraints in a linear fixed effects
model, let alone in the context of mixed effects models. As demonstrated in Farnan et al.
(2014), statistical methods that are specifically designed for testing inequality constraints are
expected to enjoy substantially higher power than the usual omnibus procedures such as the
ANOVA which are designed for two-sided alternatives. This observation, together with the
fact that there does not exist a general software for performing statistical tests under linear
inequality constraints in linear mixed effects models, motivates the current work. In this
paper we introduce an R package, called CLME (‘Constrainted Linear Mixed Effects’) based
on the distribution-free residual bootstrap methodology developed in Farnan et al. (2014).
There are several packages in R which offer constrained fixed effects models, such as glmc
(Chaudhuri et al. 2006) and ic.infer (Grömping 2010), but neither of these offer support
for mixed models. Both also assume parametric models: ic.infer assumes a normal model,
glmc offers some flexibility for the error distribution, but still requires a parametric family
to be specified. The present work fills this void with a flexible model able to handle fixed
or mixed effects models and allows (but does not require) additional, unconstrained, fixed
effects. Furthermore, since the methodology is based on residual bootstrap, CLME does not
depend on normality or homogeneity of variances for the residuals or random effects.

The rest of the paper is organized as follows: Section 2 provides a brief description of the
constrained inference for linear mixed effects (LME) models presented by Farnan et al. (2014).
Section 3 describes the contents of the package CLME along with implementation details.
Section 5 provides some illustrative examples using the package, and Section 6 concludes the
paper with a summary and some comments on planned developments of CLME.

2. Linear Mixed Effect (LME) models under inequality constraints

Let

Y = X1θ1 + X2θ2 + Uξ + ε (1)

denote a linear mixed effects (LME) model where Y is the N × 1 response vector, X1 is a
design matrix of order N × p1 and θ1 is the corresponding p1 × 1 vector of coefficients (often
treatment effects). X2 is an N × p2 a known matrix of covariates, θ2 is the p2 × 1 vector of
regression coefficients, and U is a N × c matrix of known constants (random effects). For
simplicity we write X = (X1 : X2) and U =

(
U1 : U2 : . . . , : Ucq

)
, where : denotes column-

binding and Ui is an N × ci matrix, with
∑q

i=1 ci = c. We also denote θ = (θ′1, θ
′
2)
′ and

p = p1 + p2.

The random vector ξ =
(
ξ′1, ξ

′
2, . . . , ξ

′
q

)′
is c× 1, where each ξi is a ci× 1 vector corresponding

to Ui, for i = 1, . . . , q. The elements of ξ are independently distributed with mean 0 and
covariance matrix T = diag

(
τ21 Ic1 , τ

2
2 Ic2 , . . . , τ

2
q Icq

)
. The residual term ε is similarly defined

with mean 0 and covariance matrix Σ = diag
(
σ21In1 , σ

2
2In2 , . . . , σ

2
kInk

)
, where i = 1, . . . , k

and
∑k

i=1 ni = N.

Although the above model description and the methodology implemented in CLME allows for
fairly general settings, in many applications one may not require the full available flexibility.
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For example, in most applications it may be sufficient to assume that T = τ2I, instead of the
general heteroscedastic structure for T described above.

Let A be an r× p matrix so that Aθ represents the linear combinations which are subject to
inequality constraints specified by the alternative hypothesis. Thus the hypotheses of interest
are given by:

Ho : Aθ = 0 versus Ha : Aθ ≥ 0, (2)

such that at least one of the r inequalities is strict. A is represented in block form as
A = [A1 : 0r×p2 ] , where A1 is an r × p1 matrix and 0r×p2 is a null matrix of size r × p2
indicating no constraints on the coefficients of any covariate terms. One can specify A1 to
test any desired pattern among the elements of θ1.

CLME is designed to implement two general classes of statistical tests. The likelihood ra-
tio type (LRT) statistic (Hoferkamp and Peddada 2002; Davidov and Rosen 2011) is the
default setting, but the user may instead choose the Williams’ type test statistic (Williams
1971, 1977). In both cases, to keep the methodology robust to non-normality and potential
heteroscedasticity, the p-values are evaluated using the residual bootstrap methodology de-
veloped in Farnan et al. (2014). Thus, although the likelihood ratio type statistic is motivated
by the likelihood ratio principle under the normality assumption, it does not use the normal
theory based asymptotic distribution for the test statistic. Hence we use the phrase ‘likelihood
ratio type test’ rather than ‘likelihood ratio test’. In addition, the constrained estimate of θ1
can be obtained using either quadratic minimization, or the the algorithm provided in Hwang
and Peddada (1994). When the covariance matrix of the unconstrained estimator is diagonal
and the means are subject to simple order and the variances are known, then the algorithm
provided by Hwang and Peddada (1994) is identical to the classical pool adjacent violators
algorithm (PAVA). For convenience of notation, we shall refer to both algorithms as “PAVA”.

Using simulations, Farnan et al. (2014) demonstrated that the Willaims’ type test enjoys
higher power than the likelihood ratio type statistic for simple alternative hypothesis; hence
it may be preferred over the likelihood ratio type statistic in such cases. In general the
Williams’ type test statistic is of the form:

W = max

[Bθ̃1]�
[√

diag
{

BVar(θ̂)B′
}]−1 , (3)

where � denote the Schur-product of vectors, i.e. a�b = (a1b1, a2b2, . . . , arbr)
′, θ̃1 denotes the

estimator of θ1 under the inequality constraint of interest, and θ̂1 denotes the unconstrained
estimator of θ1 (e.g., the MLE). For a given order restriction specified by A, the contrast
matrix B is derived by the largest hypothesized difference; for example in the simple order,
the difference between θ1 and θp1 . Examples of A and B for some specific order restrictions
are provided in the next section.

3. Contents of CLME

In this section we describe the functions included in CLME and some notes on their im-
plementation. We start by describing the main function of the package, constrained.lme.
Afterwards, we detail some of the secondary functions which users may find useful.
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3.1. Main Function

The main function of CLME is constrained.lme. This function implements the order re-
stricted residual bootstrap test described in Farnan et al. (2014). The arguments are listed
and described in Table 1. The only required arguments are the method of isotonization, the
response vector, and the design matrix (respectively: method, Y, X1). Covariates and random
effects, X2 and U from equation (1), can be included (respectively: X2 and U), but are not
required. A series of flowcharts are provided in the appendix (Figures (6), (7), and (8)) to
guide a user through specification of the arguments for constrained.lme.

Although under some conditions the PAVA type estimator of Hwang and Peddada (1994)
is proved to be efficient (smaller average quadratic loss and higher coverage probability), it
is not always straightforward to implement. The quadratic programming estimator (QPE)
optimizes the least squares under inequality constraints and is easy to obtain using quadratic
programming (function solve.QP from package quadprog). Furthermore, under the normality
assumption, with known covariance matrix, the QPE yields the restricted maximum likelihood
estimator. Several of the arguments to constrained.lme require further explanation.

Constraints The argument constraints is a list describing the order restrictions using
the following elements:

order Text string specifying the type of order. Allowed values are ‘simple’, ‘umbrella’, and
‘simple.tree’.

node Scalar indicating which element of θ1 is the node.

decreasing Logical indicating whether the initial order restrictions are increasing or de-
creasing. The three order restrictions described in section 2 are all increasing. See
Figure (1) for an illustration.

A The A matrix containing the order restrictions.

B The matrix of coefficients for the Williams type statistic.

As an example, the values of A and B are shown below. These are for an increasing umbrella
order with p1 = 5, no covariates, and a node at θ1,3 (the third element of θ1).

A =


−1 1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
0 0 0 1 −1


and,

B =

[
−1 0 1 0 0
0 0 1 0 −1

]
The alternative hypothesis is Ha : θ1 ≤ θ2 ≤ θ3 ≥ θ4 ≥ θ5. The first row of A thus corresponds
to the constraint θ1 ≤ θ2, the second row to the constraint θ2 ≤ θ3, and so on. Under the
umbrella order, the greatest difference in parameters will be between the node and the first
or last values, so the Williams’ type statistic from Equation (3) takes the form:
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Argument Description

method The method to implement order restriction. Must be text, either ‘QPE’
or ‘PAVA’.

Y The response vector, must be numeric.
X1 The design matrix, must be numeric.
X2 (Optional) Matrix of covariates, must be numeric. Defaults to NULL.
U (Optional) Matrix of random effects, must be numeric. Defaults to NULL.
Nks (Optional) Vector of ni where i = 1, . . . , k. Defaults to the sample size,

N = dim(X1)[1].
Qs (Optional) Vector of ci where i = 1, . . . , q. Defaults to c = dim(U)[2].
constraints (Optional) List including elements A, B, node, and decreasing as de-

scribed for function create.constraints, or the output from that func-
tion.

nsim Number of bootstrap samples to generate. Defaults to 1000.
em.eps Convergence criterion for the EM algorithm. Defaults to

sqrt(.Machine$double.eps)

em.iter Maximum number of iterations the EM algorithm is permitted to run.
Defaults to 500.

mq.eps Convergence criterion for the MINQUE algorithm. Defaults to
sqrt(.Machine$double.eps)

mq.iter Maximum number of iterations the MINQUE algorithm is permitted to
run. Defaults to 500.

verbose Vector of 3 logicals. The first causes printing of iteration step, the second
two are passed as the verbose argument to the functions minque and
clme.em, respectively. Defaults to rep(FALSE,3).

tsf Function to compute the test statistic. Defaults to w.stat.
tsf.ind Function to compute the test statistic for individual contrasts. Defaults

to w.stat.ind.
pav.alg Function to implement the PAVA. Defaults to NULL. Ignored when

method=’QPE’.
hp logical to indicate whether weights for PAVA should be the full covari-

ance matrix or just the diagonal elements of the covariance matrix. Ig-
nored when method=’QPE’.

seed set the seed for the RNG.

Table 1: Arguments for constrained.lme
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W = max


θ̃3 − θ̃1√

Var
(
θ̂3 − θ̂1

) , θ̃3 − θ̃5√
Var

(
θ̂3 − θ̂5

)
 ,

hence the B matrix holds the contrasts θ̃3 − θ̃1 and θ̃3 − θ̃5.
Not all of the elements of constraints are necessary. The node is unnecessary for simple
orders or when using the QPE, and B is only needed for the Williams type test. If A is
not specified, CLME contains a function create.constraints which will be called to gen-
erate A and B using the supplied values of order, node, and decreasing. Each of these
elements can be a vector to test for multiple orders or nodes. If any of these are miss-
ing, the function will test all possible default values of the missing element(s). Though,
because it is not a trend, the simple tree ordering is omitted from this default search pat-
tern. A user may force the program the search to include the simple tree order by setting
constraints$order=c(’simple’,’umbrella’,’simple.tree’).

Custom order constraints can be implemented by specifying A directly. In this case if the user
wishes to use PAVA, a custom function for pav.alg is needed. Also, if the Williams test is
selected, B must be provided. The program will revert to QPE or the LRT, respecitively, if
these are not supplied.

The test statistic is taken as the maximum of the test statistics for all these possible orderings,
and the program will note this order as the estimated ordering. The bootstrap null distribution
of the test statistic is constructed from all the order restrictions under consideration, not just
the estimated order (that is, for each bootstrap sample, the test statistic for all candidate
orders are computed, and the maximum is taken). For reproducibility, one may use seed

argument to set the seed for the pseudorandom number generator.

Test Statistic: tsf and tsf.ind The argument tsf is a function which computes the
desired global test statistic. This defaults to lrt.stat, the LRT statistic. Alternatively one
may select the Williams’ type statistic from equation (3) by setting tsf=w.stat. For other test
statistics, the user may submit a custom function. The related argument tsf.ind computes
the test statistic to test the individual constraints. The Williams type test, w.stat.ind,
is default. No other functions are currently available, though a user may submit a custom
function.

The full list of arguments available to the test statistic functions is: theta, cov.theta, B, Y,
X1, X2, U, tsq, ssq, Nks, and Qs. Note that tsq and ssq may be vectors or scalars, depending
on the assumption of homogeneity of variances for ξ and ε, respectively. The argument
cov.theta is the p × p covariance matrix of θ. The output from any custom tsf should be
a vector or a scalar. Vector output corresponds to multiple global hypotheses being tested,
though this should not be used for testing each individual constraint from the A matrix, as
these are calculated separately using the tsf.ind argument. An example of testing multiple
global hypotheses is shown in section 5.2, a reanalysis of data from the Fibroid Growth Study
(Peddada et al. 2008).

PAVA: pav.alg There are three functions provided to implement PAVA for simple, um-
brella, and simple tree orders. If A and B were not specified, then constrained.lme can
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automatically select the proper function to implement PAVA. However, if the user specified a
custom A, there are two options for estimation under inequality constraints: (1) use QPE, or
(2) specify a custom function for the PAVA constraints. The argument pav.alg is included
for this purpose. If custom constraints are provided and no custom PAVA is supplied, the
program will revert to QPE. The PAVA functions, including specification of custom PAVA
functions, are described in more detail in section 3.2. Several examples are provided for
clarification.

> constrained.lme(...,constraints=list(order='simple' ,decreasing=FALSE),...)

In this case, the program will automatically generate A and B and select the appropriate
function for PAVA (in this case, pava.simple.order).

> A.simple = as.matrix(rbind(

> c(-1 , 1 , 0 , 0),

> c( 0 ,-1 , 1 , 0),

> c( 0 , 0 ,-1 , 1)))

> constrained.lme(...,constraints=list(order='simple' , A=A.simple ,

decreasing=FALSE),...)

In this case the program will not call create.constraints, instead, the provided A will be
used. When a custom A is submitted, the program is ‘blind’ to the pattern of order restrictions.
As a result, even though this A is equivalent to a simple order, the program would not be able
to generate B or select a PAVA algorithm; if either argument is needed, it would need to be
submitted manually.

> B.simple = matrix( c(-1 , 0 , 0 , 1) , nrow=1 )

> constrained.lme(method='PAVA', tsf=w.stat,

constraints=list( A=A.simple , B=B.simple),...)

In this case, even though PAVA was selected, the program will note that custom order re-
strictions are specified, but not a custom pav.alg, and so it will revert to using QPE for
estimation. However, since B was supplied, the Williams type test will be used.

Homogeneity of Variances: Qs and Nks The model described in section 2 permits a
large degree of flexibility. In particular, both ξ (if random effects are included) and ε may
be modeled under the assumption of homogeneity or heterogeneity of variances. The argu-
ments Qs and Nks correspond to this. First, Qs is the vector (c1, cs, . . . , cq)

′ . The default is
homogeneity, Qs = dim(U)[2], which models all the elements of ξ with common variance τ2.
Similarly, Nks determines the homogeneity of variances for ε, and corresponds to the vector
(n1, ns, . . . , nk)′ . The meaning of this is that the first n1 elements of Y share a common
variance σ21, the next n2 elements share a common variance σ22, and so on. Again, the default
is homogeneity of variances, setting Nks = dim(X1)[1] (that is, equal to N). On the other
hand, if there are N = 50 observations, and Nks=c(25,25), then the first 25 observations
will be modeled with residual variance σ21 and the second 25 will be modeled with residual
variance σ22. Typical use of this argument is to model factor levels with separate variance
terms.

The output of constrained.lme is a list with elements:
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method the method that was used to apply order constraints (QPE or PAVA).

theta vector of estimates of θ.

ssq vector of estimates of σ2i , i = 1, . . . , k.

tsq vector of estimates of τ2i , i = 1, . . . , q.

cov.theta the covariance matrix of θ.

ts.glb test statistic for the global hypothesis.

ts.ind vector of test statistics for each of the constraints (each row of A).

p.value p−value for the global hypothesis.

p.value.ind Vector of p−values for each of the constraints.

constraints List containing the constraints (A) and the contrast for the global test (B).

est.order Sentence describing the estimated order (or whether custom constraints were spec-
ified).

3.2. Secondary Functions

These are functions that perform an integral role for constrained.lme and may be of use as
independent functions outside of normal use. For most users these may be ignored as they
are automatically called in the background. They are detailed individually to facilitate other
functionality (e.g. bootstrapping the residuals, but not necessarily running the EM algorithm
and obtaining the test statistic). Most of the arguments are equivalent to arguments passed
to constrained.lme, so they will not be described in detail.

Residual Bootstrap The function resid.boot obtains the bootstrap samples Y∗ of the
data response vector. The list of arguments is provided in Table 2; of these, only mq.phi is
not also an argument to constrained.lme. This argument should generally not be used. In
typical use of the package, the variance component estimates will have been calculated already
and computation time can be saved by passing this as an argument. The initial iterate of
the random effect variance component estimates are the Minimum Norm Quadratic Unbiased
Estimate (see Rao and Kleffe 1988). If running resid.boot separately, the user is suggested
to leave this argument blank so that it is automatically calculated. The output of resid.boot
is a matrix of size N ×nsim, where each column is a bootstrap sample Y∗ of the data vector
Y.

Constrained Expectation-Maximization Algorithm There are three functions to im-
plement the constrained expectation-maximixzation (EM) algorithm. They are clme.em.all,
clme.em.fixed, and clme.em.mixed. The general case is implemented by clme.em.all. The
other two versions are simplified to handle the more specific situations of fixed effects only
or mixed effects. Numerous evaluations of conditional (if(...)) are eliminated by having
constrained.lme check once whether the model is fixed or mixed effects, and selecting the
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Argument Description

Y The response vector, must be numeric.
X1 The design matrix, must be numeric.
constraints List containing the order restrictions.
X2 (Optional) Matrix of covariates, must be numeric. Defaults to NULL.
U (Optional) Matrix of random effects, must be numeric. Defaults to NULL.
Nks (Optional) Vector of ni where i = 1, . . . , k. Defaults to the sample size,

N = dim(X1)[1].
Qs (Optional) Vector of ci where i = 1, . . . , q. Defaults to c = dim(U)[2].
nsim (Optional) Number of bootstrap samples to generate. Defaults to 1000.
mq.phi (Optional) MINQUE estimates of τ2i and σ2j , where i = 1, . . . , q and

j = 1, . . . , k. Defaults to NULL and is automatically calculated.
seed optional. Set the seed for the RNG.

Table 2: Arguments for resid.boot

Argument Description

X1 The design matrix, must be numeric.
X2 (Optional) Matrix of covariates, must be numeric. Defaults to NULL

constraints List of length three with elements:
order Text string name of order. One of: simple, umbrella, sim-

ple.tree
node The nodal element for umbrella or simple.tree orders, la-

beled θs. For simple order a node is not required.
decreasing Logical value that allows order to be reversed. See Figure

(1) for illustration.

Table 3: Arguments for create.constraints

appropriate function. We mention these internal functions only because they are a primary
component of constrained.lme. In general they should not be used, because they lack the
error-catching ability of constrained.lme. If the user simply desires the parameter estimates
without running the bootstrap test, it is recommended to run constrained.lme with nsim=0.

Constraints The function create.constraints generates A and B for simple, umbrella,
and simple tree orders. The arguments and their descriptions are given in Table 3.

As an example, constraints for testing the simple order Ha : θ1 ≤ θ2 ≤ . . . ≤ θ5 could be
generated using the command:

> create.constraints( X1 , constraints=list( order='simple' , decreasing=FALSE))

See Figure (1) for an illustration of some common order specifications with the appropriate
values of order and decreasing. The output of create.constraints is a list containing the
elements of the argument constraints, with two additional elements: A and B, which were
described previously.
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Argument Description

theta The estimates of θ1.
cov.theta The covariance matrix of θ1.
node The nodal element (for pava.simple.order, set node=NULL).
decreasing Logical indicating whether the initial order is increasing or decreasing.

See Figure (1) for an illustration of this.
hp logical indicating whether the weights should be the full covariance ma-

trix (TRUE) or just the diagonal elements (FALSE). Default is FALSE.

Table 4: Arguments for PAVA functions

PAVA Functions There are three built-in functions to perform the Pool Adjacent Vi-
olators Algorithm (PAVA). The functions are pava.simple.order, pava.umbrella, and
pava.simple.tree . They implement, respectively, a simple order, umbrella order, and
simple tree order. All three functions take the arguments shown in Table 4.

To implement the PAVA for an alternate order restriction, the user must define a cus-
tom function, which may be submitted as the argument pav.alg to the main function
constrained.lme or to clme.em. The arguments must be equivalent to those shown in Table
4, and the output must be a numeric vector of the same length as the input argument theta.
Often these may be a problem-specific sequence of calls to the default PAV algorithms. See
section 5.2 for an example of a custom pav.alg.

3.3. Other package contents

Shiny application The shiny package (RStudio and Inc. 2014) offers the ability to develop
a graphical user interface (GUI) which implements CLME. This GUI can be run locally or
deployed online. This would seem to be particularly beneficial to researchers who may not be
as familiar with R, but wish to use the methods described here. To this end we have included
an application, built in shiny, which generates a GUI to implement CLME. After installing
the package, a user may run the command shiny.clme() to call the GUI and begin using
CLME without any need for further programming.

Class clme The S3 class clme has been defined for objects produced by the package CLME,
specifically the function constrained.lme. The purpose of the class is to facilitate future
development of the package, and the display or manipulation of objects produced by the
package. The methods defined are as follows.

clme Creates an object of class clme.

is Determine whether an object is of class clme. Also available as is.clme.

as If possible, coerces an object to be of class clme. Also available as as.clme.

summary A function to display the output of constrained.lme in a more user-friendly and
readable fashion. Results printed by summary are the global hypothesis test(s), all
tests of individual constraints, and the estimates of θ, σ2, and τ2. This method is also
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accessible as summary.clme. The output will also note the estimated order if specific
constraints were not supplied. The individual tests are based on the estimated order.

plot Plots the estimated values of θ1 and denotes the significance of individual constraints.
The function is capable of plotting confidence intervals for the parameters which, al-
though they are centred at the constrained estimates, use standard errors of the uncon-
strained estimates.

4. Examples of Implementation

In this section we demonstrate the use of CLME by applying it to two real-world data sets.
Some of the analyses mimic those performed in the original papers in the context of order-
restricted inference. Other analysis are intended to exhibit certain features of the package or
compare the available options. We emphasize that these analyses are intended as illustration,
not scientific reanalyses of the data. Consequently some modeling choices, the assumption of
homegeneity of variances in particular, are not be thoroughly investigated.

The data from section 5.1 is included in the package. However, the data in section 5.2 concerns
human subjects and cannot be released publically.

4.1. Hematologic Parameters from Sprague-Dawley rats

In a recent study of the effect of amount of time a sample is stored on various hematological
parameters, Cora et al. (2012) conducted a time course study using blood samples drawn
from Sprague-Dawley rats. Blood samples from 11 female and 11 male rats were kept at
either room temperature 21 ◦C (the control group) or refrigerated at 3 ◦C for 6, 24, 48 or
72 hours (see Cora et al. (2012) for more details). Although the authors obtained data on a
variety of hematological variables in this repeated measure time course study, we shall focus
on hematocrit (HCT) and the white blood cell (WBC) count over time. In the case of HCT we
shall illustrate some of the options of CLME while testing for simple order with an increasing
trend in time. In the case of WBC we test for simple tree order the mean WBC count in the
freezer group was at least as high as that of the 0 hour.

First, we load the package and the data with the following commands. The package nnet
(Venables and Ripley 2002) is called for converting factor objects to indicator matrices. While
CLME is not dependent upon it, the function class.ind is useful.

> library("CLME")

> library("nnet")

> data(rat.blood)

Hematocrit We illustrate CLME using two different settings. In the first case (Case A)
we test the following hypotheses:

H0 : θ1 = θ2 = θ3 = θ4 = θ5

Vs.
HaA : θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ θ5, (A)
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with at least one strict inequality, here θi is the mean corresponding to either 0, 6, 24, 48 or
72 hours. In the second case (Case B), we test for a union of umbrella alternatives. If the
null hypothesis is rejected then the algorithm selects the pattern that has largest value of test
statistic:

H0 : θ1 = θ2 = θ3 = θ4 = θ5

Vs.

HaB :


5⋃

i=1

θ1 ≤ θ2 ≤ . . . ≤ θi ≥ . . . ≥ θ5 ∪
5⋃

i=1

θ1 ≥ θ2 ≥ . . . ≥ θi ≤ . . . ≤ θ5.

 (B)

Thus in (B) the order is unspecified but limited to either umbrella or inverted umbrella orders.
Note that simple orders (increasing or decreasing) are a special case of umbrella orders, where
the peak is the first or last parameter. The peak or the trough of each umbrella is specified
using the specification of node.

We initially use the default arguments as far as possible. This entails assuming homogeneity
of variances between the time groups, using the QPE for isotonization, the LRT statistic, and
nsim=1000 bootstrap samples. We use the gender of the rat, and the storage temperature of
the sample as covariates in these models. The R code to test case (A) are provided below
along with the results. While not shown, we also ran three other models with differing options
for isotonization (method) and the test statistic (tsf). These are for later comparisons of
computational time.

> Y <- as.matrix(rat.blood$hct)

> X1 <- class.ind(rat.blood$time)

> U <- class.ind(rat.blood$id)

> X2 <- cbind( class.ind(rat.blood$temp) , class.ind(rat.blood$sex) )

> X2 <- X2[ , -c(2,4) ]

> # Case (A)

> const <- list( order="simple" , decreasing=FALSE)

> set.seed(42)

> timea <- system.time(

+ hct.a <- constrained.lme(Y=Y, X1=X1, X2=X2, U=U, constraints=const)

+ )[3]

> summary(hct.a)

Global Test:

W = 44.582 p = 0.0000

Order was increasing simple order.

Individual Tests:

Contrast 1: 6 Hour - 0 Hour

W = 4.862 p = 0.0000

Contrast 2: 24 Hour - 6 Hour

W = 0.399 p = 0.1510

Contrast 3: 48 Hour - 24 Hour

W = 0.829 p = 0.0550
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Contrast 4: 72 Hour - 48 Hour

W = 0.693 p = 0.1080

Theta Coefficients:

0 Hour = 39.58

6 Hour = 40.92

24 Hour = 41.01

48 Hour = 41.19

72 Hour = 41.34

Ref = -0.50

Female = 1.83

Variances (ssq = sigma^2 , tsq = tau^2):

ssq_1 = 1.0314

tsq_1 = 2.2006

> plot( hct.a )

The program found strong evidence (p < 0.0001) of an increasing pattern in mean HCT.
The coefficients are plotted in Figure (2) with indications of significance for the individual
contrasts.

To test case (B) we simply need to erase the constraints from the call to constrained.lme.
The code and results are given below.

> # Case (B)

> timeb <- vector(length=4)

> set.seed(42)

> timeb[1] <- system.time(

+ hct.b1 <- constrained.lme(Y=Y, X1=X1, X2=X2, U=U)

+ )[3]

> summary(hct.b1)

Global Test:

W = 55.326 p = 0.0000

Estimated order was increasing umbrella order with node=4.

Individual Tests:

Contrast 1: 6 Hour - 0 Hour

W = 5.446 p = 0.0000

Contrast 2: 24 Hour - 6 Hour

W = 0.447 p = 0.1820

Contrast 3: 48 Hour - 24 Hour

W = 1.317 p = 0.0480

Contrast 4: 48 Hour - 72 Hour

W = 0.000 p = 0.9950



Casey M. Jelsema, Shyamal Peddada 15

38
39

40
41

42
43

Component of θ1

E
st

im
at

ed
 V

al
ue

 o
f θ

1

0 Hour 6 Hour 24 Hour 48 Hour 72 Hour

p > 0.05   p < 0.05   

Figure 2: Plot of estimated coefficients of mean hematocrit (HCT) from Case (A). The model
assumed an increasing simple order and homogeneity of variances across treatment groups.
Solid lines denote no significant difference, while dashed lines denote statistical significance.

Theta Coefficients:

0 Hour = 39.58

6 Hour = 40.92

24 Hour = 41.01

48 Hour = 41.26

72 Hour = 41.26

Ref = -0.50

Female = 1.83

Variances (ssq = sigma^2 , tsq = tau^2):

ssq_1 = 0.8221

tsq_1 = 2.2015

Note that in searching for the order, the program determined the order was an increasing
umbrella order with node at θ4 (the 48 hour group). Inspecting the coefficient estimates, we
see there is no decrease from the node (the estimate for θ5, the 72 hour group, is equal to
that of the 48 hour group). Hence, in reality the result is an increasing simple order, but the
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program described it as an umbrella order.

This may seem odd, but is not problematic. For example, suppose the true order is θ1,1 <
θ1,2 < θ1,3 < θ1,4 = θ1,5. In this case, the alternative hypotheses of an increasing simple order
or an increasing umbrella order with node at θ4 are indistinguishable. CLME selects the order
that produces the maximum of the test statistics for all the tested orders. In these data, that
occurred for the umbrella order with node of 4.

This also presents an interesting scenario to explore the data and the package. First, we note
that this is not particularly dependent upon the method: all four combinations of the method
of isotonization and test statistic provide the same estimated order, as seen below.

> # Case (B)

> set.seed(42)

> timeb[2] <- system.time(

+ hct.b2 <- constrained.lme( method="QPE", tsf=w.stat, Y=Y, X1=X1, X2=X2, U=U)

+ )[3]

> hct.b2$est.order

[1] "Estimated order was increasing umbrella order with node=4."

> set.seed(42)

> timeb[3] <- system.time(

+ hct.b3 <- constrained.lme( method="PAVA", tsf=lrt.stat, Y=Y, X1=X1, X2=X2, U=U)

+ )[3]

> hct.b3$est.order

[1] "Estimated order was increasing umbrella order with node=4."

> set.seed(42)

> timeb[4] <- system.time(

+ hct.b4 <- constrained.lme( method="PAVA", tsf=w.stat, Y=Y, X1=X1, X2=X2, U=U)

+ )[3]

> hct.b4$est.order

[1] "Estimated order was increasing umbrella order with node=4."

To take this a step further, see the boxplot of residuals (from an unconstrained glm) in
Figure (3). This provides some indication that the assumption of homogenous variances is
not optimal in this case.

We may be able to improve the model by modeling the time groups with individual variances
instead of with a pooled variance. Since X1 is already an indicator matrix, we can accomplish
this simply be setting Nks=colSums(X1). We will call this case (C), and again run all four
models.

> # Case (C)

> timec <- vector( length=4 )
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Figure 3: Boxplots of residuals from unconstrained GLM on rat hematocrit. Group means
are denoted by red triangles, and variances are given below the labels.
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> set.seed(42)

> timec[1] <- system.time(

+ hct.c1 <- constrained.lme( method="QPE" , tsf=lrt.stat ,

+ Y=Y, X1=X1, X2=X2, U=U , Nks=colSums(X1))

+ )[3]

> hct.c1$est.order

[1] "Estimated order was increasing simple order."

> set.seed(42)

> timec[2] <- system.time(

+ hct.c2 <- constrained.lme( method="QPE" , tsf=w.stat ,

+ Y=Y, X1=X1, X2=X2, U=U , Nks=colSums(X1) )

+ )[3]

> hct.c2$est.order

[1] "Estimated order was increasing simple order."

> set.seed(42)

> timec[3] <- system.time(

+ hct.c3 <- constrained.lme( method="PAVA" , tsf=lrt.stat ,

+ Y=Y, X1=X1, X2=X2, U=U , Nks=colSums(X1) )

+ )[3]

> hct.c3$est.order

[1] "Estimated order was decreasing umbrella order with node=2."

> set.seed(42)

> timec[4] <- system.time(

+ hct.c4 <- constrained.lme( method="PAVA" , tsf=w.stat ,

+ Y=Y, X1=X1, X2=X2, U=U , Nks=colSums(X1) )

+ )[3]

> hct.c4$est.order

[1] "Estimated order was increasing simple order."

When modeling the groups with unequal variances, the estimated order is now the increas-
ing simple order for three cases, and a decreasing umbrella order with node of 2 for the
PAVA/LRT combination. This highlights the fact that, as with many statistical procedures,
heteroskedasticity can affect the results of an analysis. A researcher may test for the equality
of variances to verify equality of variances, or may simply assume the more general case of
heteroskedasticity.

When using an alternative implementation of PAVA (notably, with weights based on the
full covariance matrix of θ̂ instead of just the diagonal), the estimated order for all four
combinations was the increasing simple order. This is simply a result of using different
estimation techniques.
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A factor to consider when selecting which model to run is the computation time necessary. We
ran four models for each of cases (A), (B), and (C). These models considered each combination
of the method of isotonization and type of test statistic. The runtimes for every model is
presented in Table 6. As should be expected, the more complex the model becomes, the more
computation time is generally needed. We can also see that the main computational burdens
come from estimating the order, assuming heteroskedasticity, and using PAVA instead of the
QPE.

Isotonization Test Statistic Case (A) Case (B) Case (C)

QPE LRT 15 112 198
QPE Williams 12 98 184
PAVA LRT 74 1856 2625
PAVA Williams 72 1841 2612

Table 5: CPU runtimes (in seconds) for each model of the three cases. Case (A) used fully
specified constraints and assumed homogeneity of variances. Case (B) used unspecified con-
straints and assumed homogeneity of variances. Case (C) used unspecified constraints and
assumed heterogeneity of variances. All models used 1000 bootstrap samples.

White Blood Cell Count To illustrate testing for more specific patterns, we mimic one
of the tests conducted in Cora et al. (2012) by testing for a simple tree order with the 0 hour
group as the control group, i.e. the nodal parameter. We assume homogenous variances based
on exploratory boxplots. Since we are interested in specifying a control group, we select a
simple tree order with the 0 hour group as the node. The R code and results are below, and
the coefficients are plotted in Figure (4).

> Y <- as.matrix(rat.blood$wbc)

> X1 <- class.ind(rat.blood$time)

> U <- class.ind(rat.blood$id)

> X2 <- cbind( class.ind(rat.blood$temp) , class.ind(rat.blood$sex) )

> X2 <- X2[ , -c(2,4) ]

> idx <- rat.blood$temp=="Ref" | rat.blood$time=="0 Hour"

> Yb <- Y[ idx==TRUE ]

> X1b <- X1[idx==TRUE,]

> X2b <- X2[idx==TRUE, -1,drop=FALSE]

> Ub <- U[ idx==TRUE,]

> const <- list( order="simple.tree" , node=1 , decreasing=FALSE)

> set.seed(41218)

> clme.wbc <- constrained.lme( Y=Yb , X1=X1b , X2=X2b , U=Ub ,

+ constraints=const , mq.eps=0.001 , em.eps=0.001 )

> summary(clme.wbc)

Global Test:

W = 119.117 p = 0.0000

Order was increasing simple.tree order with node=1.
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Individual Tests:

Contrast 1: 6 Hour - 0 Hour

W = 0.000 p = 0.9890

Contrast 2: 24 Hour - 0 Hour

W = 1.638 p = 0.0610

Contrast 3: 48 Hour - 0 Hour

W = 3.744 p = 0.0000

Contrast 4: 72 Hour - 0 Hour

W = 9.259 p = 0.0000

Theta Coefficients:

0 Hour = 7.25

6 Hour = 7.25

24 Hour = 7.47

48 Hour = 7.76

72 Hour = 8.51

Female = -1.84

Variances (ssq = sigma^2 , tsq = tau^2):

ssq_1 = 0.2034

tsq_1 = 2.1772

> # plot(clme.wbc)

Our results are consistent with those of Cora et al. (2012), but we have in addition detected
the 0 hour - 48 hour contrast as being significant, which was not identified by Cora et al.
(2012). There does appear to be an increasing pattern over time, but the differences from
control are not statistically significant until sufficient time has passed.

4.2. Fibroid Growth Rates

Peddada et al. (2008) investigated growth rate of of uterine leiomyomata (fibroids) in black
and white women. Since fibroids are hormonally mediated and there is a drop in estrogen
levels as women age, it may be reasonable to hypothesize a reduction in fibroid growth rates.
Interestingly, Peddada et al. (2008) reported that for white women the rate of growth of
fibroids decreased with age (i.e. simple order with decreasing pattern), whereas they did not
find any reduction in the average growth rate of fibroids with age for black women. They
defined the three age groups as follows: Young (< 35), Middle (35− 44), and Old (≥ 45). We
shall now re-analyze their data using the methodology available in our package CLME where
the alternative hypothesis for women of each race group is a decreasing simple order.

The interest in this case is to test for a simple order for each race using a linear mixed
effects model. Thus in this case we define X1 to be a matrix with p1 = 6 columns, these
being indicators for: Young Black, Middle-age Black, Older Black, Young White, Middle-age
White, and Older White. This analysis serves as a useful illustration of customizing the order
restrictions, because it cannot be performed with the default settings of CLME.
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Figure 4: Plot of estimated coefficients of white blood cell (WBC) count. Solid lines denote
no significant difference, while dashed lines denote statistical significance. This is plot is not
produced by default, but future updates to the package may include it.

We performed our analysis adjusting for all covariates that were considered in Peddada et al.
(2008). Specifically, these included: Fibroid type (namely, submucosal, subserosal and intra-
mural), location (namely, fundus, corpus and lower segment), parity (binary, parenthood or
not), initial fibroid volume (14− 65cm3, ≥ 65cm3), BMI (25− 30, ≥ 30), number of fibroids
(1, 2, 3− 8), and an intercept term (a column of 1’s). Therefore, X2 has p2 = 12 columns.

For the interaction between the Age and Race terms, we require constraints which define a
decreasing simple order for both blacks and whites, but do not impose any order restriction
between blacks and whites. We do this as follows:

A =

[
A1 02×3 02×12

02×3 A1 02×12

]
,

where

A1 =

[
1 −1 0
0 1 −1

]
,

To understand the construction of these matrices, recall the parameter vector θ1 is ordered
as: Young Black, Middle-age Black, Older Black, Young White, Middle-age White, and Older
White. The A1 matrix above defines a decreasing simple order for three parameters, which
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we must apply individually to the black and white women. Hence, the first row of A contains
A1 to define the simple order on the black women, then a null matrix to define no constraints
for the white women, and a null matrix to define no constraints on the covariates. The second
row is constructed similarly, but A1 is shifted so that it defines constraints for the white
women instead of the black women.

Next, we define a function which implements the PAVA separately for the first three elements
of θ1 (blacks) and the last three elements of θ1 (whites). This is easily done by:

> pava.blk.wht <- function( theta , wt , node , decreasing ){

+ coef.blk <- pava.simple.order( theta[1:3] , wt=wt[1:3] , node , decreasing )

+ coef.wht <- pava.simple.order( theta[4:6] , wt=wt[4:6] , node , decreasing )

+ theta <- c( coef.blk , coef.wht )

+ return(theta)

+ }

To test for a decreasing simple order for both blacks and whites, we must also define a function
to compute the Williams’ type test statistic of Farnan et al. (2014) for both blacks and whites
separately. The matrix of contrasts is:

B =

[
1 0 −1 0 0 0 01×12
0 0 0 1 0 −1 01×12

]
.

The construction of this matrix is similar to constructing the A matrix. The first row defines
the constrast Young Black - Older Black and the second row defines the constrast Young
White - Older White. A slight modification to the default Williams’ type test statistic function
(w.stat), such that it outputs the test statistic for both contrasts instead of the maximum,
will allow the program to provide a p−value testing for a simple order for both blacks and
whites separately.

> w.stat2 <- function( theta , cov.theta , B , ... ){

+ cov.contrast <- c( diag( B %*% cov.theta %*% t(B) ) )

+ diffs <- c( B%*%theta )

+ W.to.return <- diffs/sqrt(cov.contrast)

+ W.to.return

+ }

For simplicity, homogeniety of variances was assumed. Results of the analysis are shown in
Figure (5). The global tests found evidence of a decreasing simple order for whites (p = 0.004),
but not for blacks (p = 0.300). This confirms the observation of Peddada et al. (2008). Tests
on the individual contrasts show that for whites, the decrease from Young to Middle-aged was
nearly significant at 5% level of significance (p = 0.070), and the decrease from Middle-aged
to Older was significant (p = 0.011). For blacks, while there was a small decrease, neither
Young vs. Middle-aged (p = 0.107) nor Middle-aged vs. Older (p = 1.000) were statistically
significant. The full output from constrained.lme is given in Table (7).

5. Summary
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Figure 5: Plot of estimated coefficients of 6-month mean fibroid growth by race and age group.
Black lines with circles correspond to Blacks, green lines with triangles correspond to Whites.
Solid lines denote no significant difference, dashed lines denote statistical significance. Growth
rates for each fibroid were averaged over the 2-4 time points.

In this paper we have introduced the R package CLME for performing statistical tests under
linear inequality constraints using either the likelihood ratio type statistic or Williams’ type
statistic. It allows the user to choose between either constrained quadratic programing or
PAVA type algorithm to derive the constrained estimates for parameters. Since it is based
on the residual bootstrap methodology it alleviates the need for any normality assumption
on the data. As demonstrated in the paper, the package is simple to implement with default
settings (section 5.1), and that more complex hypotheses (section 5.2) can be accommodated
with relatively little effort.

Due to the flexibility and distribution-free nature of the model, as well as the ease of use,
we anticipate that many researchers may benefit from using the order-restricted model im-
plemented in CLME instead of standard ANOVA models. Other than this package, there
does not appear to be any software which offers constrained inference for linear mixed effects
models.

While the current release is stable, the authors have an interest in further developing the
functionality of CLME. There are many potential improvements that we foresee. On the
methodological side, these include implementing an automated choice of the number of boot-
strap samples (see Jiang and Salzman 2012), allowing for correlated random effects, and
adding functionality for power calculations. Further, the software does not currently allow
for complex covariance structures for the variance components, such as the AR(1) process,
although it can be extended to accommodate such structures. Other projected developments
include enabling the program to take advantage of parallel processing to speed up the repet-
itive calculations for each bootstrap sample. Finally, as noted, the shiny offers the ability
to create apps, making complex models easily available to researchers without the need to
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write R codes. The included app can be run locally, but shiny apps can be hosted on a server
and deployed online. A well-designed and web-based application could put the power and
flexibility of CLME at a researcher’s fingertips. Future development include improving the
app and deploying it online.
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Global Tests:

W1 = 0.9 p = 0.3000

W2 = 3.1 p = 0.0040

Custom order restrictions were specified.

Individual Tests:

Contrast 1: Yng.Blk - Mid.Blk

W = 1.1 p = 0.1070

Contrast 2: Mid.Blk - Old.Blk

W = 0.0 p = 1.0000

Contrast 3: Yng.Wht - Mid.Wht

W = 1.4 p = 0.0700

Contrast 4: Mid.Wht - Old.Wht

W = 1.8 p = 0.0110

Theta Coefficients:

Yng.Blk = 14.44

Mid.Blk = 7.02

Old.Blk = 7.02

Yng.Wht = 21.10

Mid.Wht = 9.36

Old.Wht = -4.45

Subser = 1.93

Fundus = -3.88

LSegmnt = -0.90

Parity = 5.97

InitVol.2 = -4.50

InitVol.3 = -3.30

BMI.2 = -3.51

BMI.3 = 2.07

nFibroid.1 = 30.94

nFibroid.2 = 2.00

nFibroid.3 = 7.21

Variances (ssq = sigma^2 , tsq = tau^2):

ssq_1 = 417.65

tsq_1 = 110.26

Table 6: Output of constrained.lme for fibroid data.
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A. Flowcharts to determine arguments

Define required data objects: 
  Y = N x 1 vector of responses 
 X1 = N x P1 design matrix  
           (often group indicator) 

Any covariates or 
random effects? 

Define as necessary: 
X2 = N x P2 matrix of covariates 
 U = N x Q matrix of random effects 

Determine constraints. 

Determine homogeneity 
arguments: Nks and Qs. 

Define test statistic functions: 
tsf and tsf.ind. 

Specify method of isotonization: 
method and pav.alg. 

Run constrained.lme() 
with selected inputs. 

No 

Yes 

Main Workflow 

Figure 6: Main flowchart to determine arguments for constrained.lme.
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Determine constraints. 

Set constraints=list() and 
specify as elements A 

(and, if needed, B), both being 
matrices. 

No 

Yes 

Leave constraints 
blank, all default orders 

tested. 

Test one (or more) of the default orders? 
Simple , umbrella , or simple tree? 

No Yes 

To test multiple default orders, each element may 
be a vector of corresponding type. All combinations 

will be tested.  

Any element may be left blank. All default 
values will be tested for that element. 

Return to main workflow. 

Anything known about  
the constraints? 

Set constraints=list() 
and specify the elements: 
order = text string node    = 
numeric scaler decreasing 
= logical 

Specify method of isotonization: 
method and pav.alg. 

Use PAVA for 
isotonization? 

No 

Yes 

Set method=“QPE”. 
pav.alg not used. 

Were custom constraints specified 
( constraints$A ) ? 

No Yes 

Leave pav.alg blank, 
program selects correct 

function. 

Define custom function and pass 
to pav.alg. Program reverts to 
QPE otherwise. 

Return to main workflow. 

Set 
method=“PAVA”. 

Figure 7: Flowcharts to determine constraints (top) and method of isotonization (bottom).
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Determine homogeneity arguments:  
Nks and Qs. 

Assume homogeneity of  
variances for residuals? 

Yes No 

Leave Nks blank. 

Assume homogeneity of variances 
for random effects? 

Yes No 

Set Nks to be group sample 
sizes (rows of data must be 

sorted by group). 

Leave Qs blank. 
Set Qs to be random effect 
group sizes (columns of U 
must be sorted by group). 

Return to main workflow. 

Define function for test statistic: 
 tsf and tsf.ind. 

Use Williams type test 
statistic for global test? 

Yes 

No 

Leave tsf blank. 

Use Williams type test 
statistic for individual 

contrast tests? 

Yes 

No 

Set tsf to specified 
function (lrt.stat is 

included, other test stats 
must be manually 

programmed) 

Leave tsf.ind blank. 

Return to main workflow. 

Set tsf.ind to specified 
function (no alternatives 

included by default) 

Figure 8: Flowcharts to determine arguments controlling homogeneity and test statistic.
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