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Abstract

The R package CFC performs cause-specific, competing-risk survival analysis by com-
puting cumulative incidence functions from unadjusted, cause-specific survival functions.
A high-level API in CFC enables end-to-end survival and competing-risk analysis, using
a single-line function call, based on the parametric survival regression models in survival
package. A low-level API allows users to achieve more flexibility by supplying their cus-
tom survival functions, perhaps in a Bayesian setting. Utility methods for summarizing
and plotting the output allow population-average cumulative incidence functions to be
calculated, visualized and compared to unadjusted survival curves. Numerical and com-
putational optimization strategies are employed for efficient and reliable computation of
the coupled integrals involved. To address potential integrable singularities caused by in-
finite cause-specific hazards, particularly near time-from-index of zero, integrals are trans-
formed to remove their dependency on hazard functions, making them solely functions of
cause-specific, unadjusted survival functions. This implicit variable transformation also
provides for easier extensibility of CFC to handle custom survival models since it only
requires the users to implement a maximum of one function per cause. The transformed
integrals are numerically calculated using a generalization of Simpson’s rule to handle
the implicit change of variable from time to survival, while a generalized trapezoidal rule
is used as reference for error calculation. An OpenMP-parallelized, efficient C++ imple-
mentation – using Rcpp and RcppArmadillo packages – makes the application of CFC
in Bayesian settings practical, where a potentially large number of samples represent the
posterior distribution of cause-specific survival functions.

Keywords: Newton-Cotes, adaptive quadrature, Monto Carlo Markov Chain.

1. Introduction

Motivation: Consistent propagation and calculation of uncertainty using predictive poste-
rior distributions is a key advantage of Bayesian frameworks (Gelman and Hill 2006), par-
ticularly in survival analysis, where predicted entities such as survival probability can be
highly-nonlinear, time-dependent functions of estimated model parameters. In the absence
of high-performance software for Bayesian prediction, premature point-estimation of model
parameters can only produce approximate – sometimes grossly wrong – mean values for pre-
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dicted entities (Figure 1, left panel). The R package CFC seeks to address this void for
Bayesian cause-specific competing-risk analysis.

Existing methods and tools for competing-risk procedure: In survival analysis with
multiple, mutually-exclusive, end-points, competing-risk techniques must be used to properly
account for interaction among causes while estimating the expected percentage of population
likely to experience events of a particular cause. Several techniques exist for competing-risk
analysis, some of which have been implemented as open-source R packages. Among the more
established technique are the cause-specific framework (Prentice, Kalbfleisch, Peterson Jr,
Flournoy, Farewell, and Breslow 1978), sub-distribution hazard (Fine and Gray 1999) (avail-
able in cmprsk (Gray 2014)), mixture models (Larson and Dinse 1985) (available in NPM-
LEcmprsk (Chen, Chang, and Hsiung 2015)), vertical modeling (Nicolaie, van Houwelingen,
and Putter 2010), and the method of pseudo-observations (Andersen, Klein, and Rosthøj
2003) (available in pseudo (Maja Pohar Perme and Gerster 2012)). For an in-depth review
and comparison of competing-risk methods, see Haller, Schmidt, and Ulm (2013). More
recently, machine learning techniques such as random forests (Breiman 2001) and gradient
boosting machines (Friedman 2001) have been extended to survival models (available via ran-
domForestSRC (Ishwaran and Kogalur 2015) and gbm (Ridgeway 2015), respectively). The
random forest survival implementation in randomForestSRC includes competing-risk analy-
sis (Ishwaran, Gerds, Kogalur, Moore, Gange, and Lau 2014).

Cause-specific competing-risk analysis: The cause-specific framework for competing-risk
analysis (CFC) is a two-step process. First, independent survival models are constructed for
each cause. In each cause-specific model, events due to alternative causes are treated as cen-
soring. To arrive at cause-specific cumulative incidence functions, however, the population
depletion due to competing risks must be taken into account, in order to avoid over-estimating
the cause-specific incidence probabilities (Figure 1, right panel). This leads to a second step,
where a set of coupled, first-order differential equations must be solved. A key advantage
of CFC is that, by separating the two steps, it allows for full flexibility in using different
survival models as input into the second step, including a combination of parametric and
non-parametric model. The only requirement for each cause-specific survival model is the
implementation of a function that returns the unadjusted survival probability at any given
time from index. While the first step is straightforward, applying the second step - calcu-
lation of cumulative incidence functions from cause-specific survival models - is non-trivial
due to numerical and computational challenges. These challenges are especially pronounced
in Bayesian settings involving a large number of MCMC samples representing the posterior
distribution of time-dependent functions for each subject. While a non-parametric version of
the cause-specific framework is available in the survival package (Therneau 2015) via function
survfit, no reliable and modular open-source software enables the application of CFC to
arbitrary parametric models, Bayesian or non-Bayesian, despite the popularity and intuitive
appeal of this approach to competing-risk analysis.

Our contribution: The R package CFC provides – to our knowledge – the first open-source,
general-purpose software for numerical calculation of cumulative incidence functions from
cause-specific (unadjusted) survival functions (hereafter referred to as survival functions).
Through a combination of algorithmic innovations, performance optimization techniques, and
software design choices, CFC provides both an easy-to-use API for performing competing-
risk analysis of standard parametric survival regression models (via integration with survival
package) as well as the machinery for efficient and reliable application of CFC to arbitrary
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Figure 1: Motivating Bayesian cause-specific competing-risk analysis. Left panel: Estimated
survival probability, based on a Bayesian Weibull regression, at 614 days from index, for
‘ovarian’ data set, available in R package BSGW (Mahani and Sharabiani 2015a). The x
axis corresponds to the ‘incorrect’ (non-Bayesian) method of calculating the average of model
coefficients, followed by calculation of survival probability using the coefficient averages. The
y axis corresponds to the mean+/se values of the same survival probabilities, this time using
the ‘correct’ (Bayesian) method of calculating the probabilities once for each sample, and
then averaging the probabilities. All survival probabilities are significantly over-estimated
by the non-Bayesian method. The underlying MCMC run consisted of 5000 iterations, the
first 2500 of which were discarded as burn-in. Right panel: Comparison of cumulative inci-
dence probability, with and without competing-risk correction, for the ‘pcm’ event in ‘mgus1’
data set, taken from R package survival (Therneau 2015). Compared to a naive Kaplan-
Meyer estimate, competing-risk analysis removes cases lost to ‘death’, thus reducing the pool
of available subjects for ‘pcm’, and therefore leading to a smaller estimate for cumulative
incidence probability for ‘pcm’.
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survival models, using both R and C++ interfaces. The C++ implementation and interface
is based on the convenient framework of Rcpp (Eddelbuettel, François, Allaire, Chambers,
Bates, and Ushey 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014) packages.
As such, CFC should appeal to practitioners as well as package developers.

Paper outline: The rest of this paper is organized as follows. In Section 2 we discuss the
challenges of – and solutions for – the numerical quadrature problem of Bayesian CFC. In
Section 3, we review the CFC package in some detail, including a description of its three usage
modes. Section 4 presents several examples illustrating these usage modes and other features
of CFC. Section 5 concludes with a summary of our work and pointers to pontential future
research and development.

2. Bayesian CFC quadrature

This section provides the mathematical framework for CFC, discusses the shortcomings of
existing quadrature techniques for the numerical integration involved in Bayesian CFC, and
presents our alternative quadrature algorithm, the generalized Newton-Cotes framework.

2.1. Cause-specific competing-risk survival analysis

The following set of K coupled, first-order differential equations describe the time evolution
of cause-specific cumulative incidence functions, Fk(t):

dFk(t)

dt
=

(
1−

K∑
k′=1

Fk′(t)

)
λk(t), (1)

where λk(t) (≥ 0, ∀t > 0) refers to the k’th (non-negative) cause-specific hazard function.
These equations can be decoupled and transformed into integrals. We do so by summing the
two sides of Equation 1 over all k:

K∑
k=1

dFk(t)

dt
=

(
1−

K∑
k′=1

Fk′(t)

)
K∑
k=1

λk(t), (2a)

=⇒ dE(t)

E(t)
= −

∑
k

λk(t), (2b)

where we have defined the event-free probability function, E(t), as:

E(t) ≡ 1−
K∑
k=1

Fk(t), (3)

Solving for E(t) in Equation 2b, we obtain:

E(t) =
K∏
k=1

Sk(t), (4)

where Sk(t) stands for the unadjusted survival function for cause k. They are defined as:

Sk(t) ≡ exp

(
−
∫ t

t′=0
λk(t

′) dt′
)

(5)
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Since hazard functions are non-negative, we conclude that

0 ≤ Sk(t) ≤ 1, ∀ k = 1, . . . ,K , t ≥ 0, (6)

and also that Sk(0) = 1. These functions correspond to the naive, Kaplan-Meyer approach
depicted in Figure 1 (left panel). Substituting back into Equation 1 and integrating the two
sides, we arrive at the following K, one-dimensional integral equations:

Fk(t) =

∫ t

t′=0

(
K∏
k′=1

Sk(t
′)

)
λk(t

′)dt′. (7)

The integrals of Equation 7 do not generally have closed-form solutions. For example, in a
Weibull survival model, we have

λk(t) = αk γk t
αk−1, (8a)

Sk(t) = exp(−γktαk), (8b)

which leads to the following expression for cumulative incidence functions with two competing
risks (K = 2):

F1(t) = −α1γ1

∫ t

0
uα1−1 e−(γ1u

α1+γ2uα2 ) du, (9)

and similarly for F2(t). In the absence of an exact solution, we must resolve to numerical
integration.

In most real-world problems, each of the K integrals of Equation 7 must be evaluated more
than once. For example, in regression settings each observation will have a distinct set of
cause-specific hazard, survival, and cumulative incidence functions that are dependent on the
value of the feature vector for that observation. Furthermore, in Bayesian settings where
posteriors are approximated by MCMC samples, each combination of observation and cause
will have as many integrals as samples. For example, in a competing-risk analysis with 3
causes, 1000 observations, and 5000 posterior samples, 3×1000×1000 = 3 million cumulative
incidence functions must be calculated. As a result, computational efficiency of the quadrature
algorithm is of prime importance in Bayesian CFC.

2.2. Shortcomings of current quadrature techniques for Bayesian CFC

Most modern techniques for one-dimensional, numerical integration are based on function
interpolation. Perhaps the most common set of techniques are Gaussian quadratures (Stroud
and Secrest 1966), which approximate an integral by a weighted sum of function values eval-
uated on a pre-specified, irregular grid, often yielding exact results for polynomials. A partic-
ular flavor called Gauss-Kronrod quadrature (Laurie 1997) allows function evaluations to be
re-used in successive, adaptive iterations. The QUADPACK library (Piessens, de Doncker-
Kapenga, Überhuber, and Kahaner 2012), ported to R via the integrate function in stats
package, is based on Gauss-Kronrod, and augmented by Wynn’s epsilon algorithm (Wynn
1966) to accelerate convergence for end-point singularities.

A direct application of this software to the Bayesian CFC quadrature problem, however, is
inefficient due to several reasons. Firstly, and most importantly, users often expect a dense
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output for cumulative incidence functions, i.e., Fk(t)’s in Equation 7 must be evaluated at
multiple values of t. QUADPACK, on the other hand, is not designed to produce dense
output, and therefore would require as many calls as the number of outputs desired. This
can lead to an excessive number of function evaluations, which is particularly troubling in
time-consuming, Bayesian problems. Secondly, there is a significant opportunity to share
computational work across the K integrals in CFC. This is due to the fact that the inte-
grands in Equation 7 are various multiplicative permutations of cause-specific hazard and
survival functions. Taking advantage of this opportunity, however, requires custom code that
is designed for the particular structure of the CFC problem. Finally, direct calculation of each
intergal in Equation 7 is suboptimal from a usability pespective, since it requires the user to
supply two functions per cause: the hazard function, λk(t), and the survival function, Sk(t).
While the two functions are related by Equation 5, yet their conversion requires integration or
differentiation. Also, in non-parametric survival models, the survival function is usually not
differentiable (e.g., piece-wise step function) and hence the hazard function is unavailable. In
the best case, requiring both functions adds a burden to the user and increases the possibility
of mistakes. Numeric differentiation, e.g., using numDeriv (Gilbert and Varadhan 2012), is
an option, but it is computationally expensive.

A second class of integration algorithms are quadrature by variable transformation (Press
2007, Chapter 4), better known as double-exponential (DE) or Tanh-Sinh methods (Takahasi
and Mori 1974). They combine a hyperbolic change-of-variable with trapezoidal rule to induce
exponential convergence of the integral near end-point singularities. As such, they are better
suited to handle such singularities compared to Gauss-Kronrod techniques. DE quadrature
has recently been implemented in R via the package deformula (Okamura 2015). For an
empirical comparison of quadrature techniques, see Bailey, Jeyabalan, and Li (2005). Of the
three problems with QUADPACK discussed above, the last two are equally applicable to
DE methods. (The trapezoidal rule used in DE methods can produce cumulative integrals.)
We therefore develop a custom quadrature algorithm for Bayesian CFC that addresses the
shortcomings of existing techniques.

2.3. Implicit variable transformation quadrature using generalized Newton-
Cotes

We transform Equation 7 to an equivalent form that removes the hazard function, thereby
freeing it from potential singularities. To do so, we use the definition of Sk(t) in Equation 5
to get

dSk(t) = d

(
exp(−

∫ t

0
λk′(t

′)dt′)

)
= −λk(t)Sk(t) (10)

Solving for λk(t), and inserting back into Equation 7, we obtain:

Fk(t) = −
∫ t

0

∏
k′ 6=k

Sk′(t
′)

 dSk(t
′), ∀ k = 1, . . .K. (11)

Thanks to the conditions described in 6, the integrand is now bounded.

The transformation from Equation 7 to Equation 11 is closely related to the DE method, with
two notable differences: First, while in DE we use a double-exponential change of variable such
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as t = tanh(π2 sinh(u)), here we use a custom transformation, t = S−1k (u). Secondly, rather
than applying the transformation explicitly – which would require the user to supply the
inverse survival functions – we leave it implicit. This allows us to handle cases where explicit
derivation of inverse survival functions is impossible; it also makes the software user-friendly.

Similar to the DE method, we apply Newton-Cotes techniques to the integrals of Equation 11.
However, in exchange for removing the singularity, the new form – with variable transforma-
tion left implicit – imposes limits such as inability to cheaply find interval midpoints on the
scale of transformed variable, thus rendering the classical Newton-Cotes expressions invalid
(with the exception of trapezoidal rule). We have thus developed a generalized Simpson’s rule
that applies to integrals with an implicit change of variable, such as in Equation 11. Recall
the standard Simpson’s rule which approximates the integral of f(t) in the interval [a, b] via
a quadratic approximation of the function:∫ b

a
f(t) dt ∼= Iss(f ; a, b) ≡ b− a

6

{
f(a) + 4f(

a+ b

2
) + f(b)

}
. (12)

In generalized Simpson, we have:∫ b

a
f(t) dg(t) ∼= Igs(f, g; a, b)

≡ g(b)− g(a)

6

f(a) + 4f(a+b2 ) + f(b) + 2r(f(a)− f(b))− 3r2(f(a) + f(b))

1− r2
,

r ≡
2g(a+b2 )− g(a)− g(b)

g(b)− g(a)
.

(13a)

(13b)

Proof is given in Appendix A, which relies on a quadratic expansion of f in terms of g
over the interval [a, b]. Note that if g(t) is linear in t, then r = 0 and the generalized
equation in 13a reduces to the standard form in Equation 12. Also, in the corner cases where
g(a) = g((a + b)/2) or g((a + b)/2)) = g(b) (leading to r2 = 1), the above equation must
be overridden in favor of a single trapezoidal step over the other half of the interval [a, b].
The implementation in CFC contains this protective measure, which is particularly useful for
handling non-parametric survival functions.

While it is possible to use the inequalities of 6 to derive firm upper bounds for integration
error, such upper bounds are too pessimistic since they assume piece-wise constant survival
curves. Instead, we opt for a common approach in adaptive quadrature literature, i.e., using
the difference between our method, and the output of a less accurate technique as a proxy
for integration error. In our case, we use the trapezoidal rule as reference, which is easily
generalized to the implicit variable transformation method:∫ b

a
f(t) dg(t) ∼= Igt(f, g; a, b) =

g(b)− g(a)

2
(f(a) + f(b)). (14)

The advantage of using a generalized Newton-Cotes framework is that 1) it permits an adap-
tive subdivision scheme which reuses all previous integrand evaluations (Press 2007, Chap-
ter 4), and 2) in the process, we obtain dense output for the integral, i.e., at all subdivision
boundaries. To provide dense output at arbitrary points requested by the user, we use in-
terpolation. Pseudo-code for the CFC quadrature algorithm is listed below. (For simplicity,
we focus on a single integration task, which is wrapped in a for loop, corresponding to
observations and/or Bayesian samples.)
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Algorithm 1
Input: {Sk(.)}, k = 1, . . . ,K (cause-specific survival functions)
Input: tout (dense output time vector)
Input: Nmax (maximum number of adaptive subdivisions)
Input: ε (relative error tolerance for integration)
Output: {Ik}, k = 1, . . . ,K (cause-specific CI functions, each one evaluated at tout)
1. tmax ←max(tout)
2. t ←

[
0 tmax

]
(integration time grid)

3. Apply generalized Simpson and trapezoidal to t to initialize CI estimates and errors.
4. e ← Maximum integration error across all causes at tmax
5. N ← 1
6. while (e > ε) and (N < Nmax)
7. Identify time interval with maximum contribution towards integration error.
8. Split the the identified interval in half.
9. Update generalized Simpson and trapezoidal CI estimates and errors.
10. e ← Maximum integration error across all causes at tmax
11. N ←N + 1
12. Interpolate generalized Simpson CI estimates over t to produce {Ik} for tout.
13. return {Ik}

In implementing the above quadrature algorithm in CFC, we have used several performance
optimization strategies, which are discussed next.

2.4. Performance optimization strategies in CFC

Since a key target application of CFC is Bayesian survival models, performance is an im-
portant consideration. We have adopted three performance optimization strategies in CFC
for executing the quadrature algorithm described in Section 2.3: 1) C++ implementation, 2)
work sharing, and 3) parallel execution. Below we discuss each strategy.

C++ implementation: This includes two interconnected but distinct concepts, 1) imple-
mentation of the CFC quadrature algorithm in C++, and 2) API definition for user-supplied
survival functions in C++. While it is possible to accept and call an R implementation of
survival functions inside the C++-based quadrature algorithm, the data marshalling overhead
of repeated calls from C++ to R can more than nullify the benefits of porting the quadrature
algorithm to C++ (Eddelbuettel 2013). In other words, if the survival function must be exe-
cuted in R, it is best for the quadrature algorithm to also run in R. We rely on the framework
provided by the Rcpp package (Eddelbuettel et al. 2011) for our C++ implementation, which
facilitates the development and maintenance of CFC and also encourages more efficient C++
implementations of survival functions by users and package developers. Details regarding the
C++ components of CFC are provided in Section 3.

Work sharing: In most cases, evaluating the integrand is where a significant fraction, if
not the majority, of time is spent in a quadrature algorithm. Therefore, minimizing the
number of such function evaluations can be a rewarding performance optimization technique.
In generalized Simpson (Equation 13a) and trapezoidal (Equation 14) steps applied to the
CFC problem, we need to evaluate two types of entities: 1) individual survival functions
(Sk’s), and 2) their leave-one-out products (

∏
k′ 6=k Sk′). We use two types of optimizations

to minimize unnecessary calculations: 1) calculation of Sk’s is shared across all causes, and
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2) the full product
∏
k Sk is calculated once, and divided by individual Sk terms to arrive at

leave-one-out terms.

Parallelization: Calculation of cumulative incidence functions for different observations
and/or samples is clearly an independent set of tasks, which can be executed in parallel. We
use OpenMP in C++, and doParallel (Analytics and Weston 2015a) and foreach (Analytics
and Weston 2015b) packages in R, for this task parallelization. As long as the span of the
iterator, which is typically the product of observation count and number of samples per
observation (in Bayesian models), is sufficiently large, this parallelization scales well with
the number of threads used (up to the physical/logical core count on the system). For an
illustration of the impact of parallelization on performance, see Section 4.3.

3. CFC implementation and features

This section introduces the CFC software and its components, including the three usage
modes for cause-specific competing-risk analysis. Examples illustrating each usage mode will
be provided in Section 4. As usual, package documentation is the ultimate reference for all
details.

3.1. Overview of CFC

CFC functionalities can be categorized into three groups: 1) core functionality, 2) utilities,
and 3) legacy code. The core functionality in CFC is numerical calculation of cause-specific,
competing-risk differential equations in Eq. 1, using the implicit variable transformation in
Eq.11, and based on the generalized Newton-Cotes method outlined in Eqs. 13a and 14. There
are two implementations of Algorithm 1 in CFC: the R-based function cscr.samples.R, and
the C++-based function cscr_samples_Cpp. Both these functions are private, and exposed
through a common interface, cfc, which dispatches the right method by inspecting the first
argument. The cfc API provides the users and package developers with the capability to
perform cause-specific, competing-risk analysis using their custom-built survival functions, as
long as they conform to a pre-specified but flexible interface, which is described in Section 3.2.
These functions can be Bayesian or non-Bayesian, parametric or non-parametric.

The utility methods in CFC, on the other hand, expose a convenient API for users to perform
end-to-end survival and competing-risk analysis with minimal effort. The tradeoff is that the
set of survival functions available through this API is limited to (non-Bayesian) parametric
survival regression models of package survival. This still represents a core set of popular
models, and should address the needs of many practitioners. The functions in this API are
cfc.survreg, summary.cfc.survreg, plot.summary.cfc.survreg, cfc.survreg.survprob
and cfc.prepdata. The last two functions are described in Section 3.2, and all functions are
illustrated via examples in Section 4.

Legacy functions in CFC (cfc.tbasis and cfc.pbasis and their associated S3 methods)
apply a composite trapezoidal rule to user-supplied survival curves, i.e., evaluated at pre-
determined time points. Here the choice of time intervals is not optimized, and no error
analysis is performed. The use of legacy CFC is deprecated in favor of the new machinery
described in this paper. Interested readers can refer to package documentation for further
details on how to use the legacy code.
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3.2. CFC usage modes

In order to achieve the dual objectives of user-friendliness and flexibility, CFC offers three
usage modes: 1) end-to-end survival and competing-risk analysis, using cfc.survreg, 2)
competing-risk analysis of user-supplied survival functions, written in R, and 3) competing-
risk analysis of user-supplied functions, written in C++. The last two usage modes are exposed
through a common interface, i.e., the public function cfc. We review each usage mode below,
with examples to follow in Section 4.

Parametric survival regression and competing-risk analysis: This is the most conve-
nient usage mode, in which a one-line call to cfc.survreg performs both cause-specific sur-
vival regression and competing-risk analysis. More specifically, cfc.survreg executes three
steps: i) parsing the survival formula to create cause-specific status columns and formulas;
ii) calling the survreg function from survival package (Therneau 2013) for each cause; iii)
calling the internal CFC function, cscr.samples.R, to perform competing-risk analysis. To
perform the first step, we use the (public) utility function cfc.prepdata. To perform the
last step, the (unadjusted) survival function associated with the survreg models is needed,
which we have implemented in cfc.survreg.survprob. This survival function is made pub-
lic, so as to allow users to easily combine survreg models with other types of survival models.
It contains a custom implementation of the survival functions needed by cscr.samples.R,
using the "dist" field of the returned object from survreg, along with the definition of dis-
tributions made available via survreg.distributions. The implementation is a verbatim
translation of the definition of location-scale family (Datta 2005). This usage mode trades off
flexibility for user-friendliness, as it is restricted to the survival regression models covered in
the survival package, as well as user-defined survival distributions following the conventions
of that package. An example is provided in Section 4.1.

CFC for user-supplied survival functions implemented in R: If the f.list argument
passed to cfc is a list of functions - implemented in R - then cfc dispatches cscr.samples.R.
This is more flexible than using cfc.survreg since the user can supply any arbitrary survival
function, as long as it conforms to the prototype expected by cscr.samples.R. However, it
requires the user to implement one or more survival functions. These functions must follow
this prototype:

func(t, args, n)

where t is a vector of time-from-index (non-negative) values, args is a list of argument needed
by the function, and n is an iterator that spans the observations and/or samples. It is the
responsibility of function implementation to consistently interpret n, and map it from one
dimension to multiple dimensions, e.g., to obtain observation and sample indices. Of course,
we could have chosen to hide n inside args, but decided to make it explicit to draw attention
to its special meaning. In Section 4 we will see several example implementations of survival
functions conforming to the above prototype.

CFC for custom models - C++ mode: This usage mode offers the same functionality as
the previous one, but requires the user to supply the survival functions in C++. This often
leads to significant speedup; however, implementation is also more involved as it requires
at least three functions per distinct cause-specific model: initializer, survival function, and
resource de-allocator. An example is provided in Section 4.3, illustrating the impact of transi-
tion from C++ to R implementation (of survival functions) on performance. To facilitate both
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package development and maintenance as well as survival-function implementation by users,
we have adopted the framework of Rcpp (for data exchange with R) and RcppArmadillo (for
linear algebra):

typedef arma::vec (*func)(arma::vec x, void* arg, int n);

typedef void* (*initfunc)(Rcpp::List arg);

typedef void (*freefunc)(void *arg);

Note the use of void* pointer in function prototypes. This allows for a uniform API across
all survival functions, leaving the casting and interpretation of this pointer to each implemen-
tation. See Example 3 in Section 4.3.

4. Using CFC

As discussed in Section 3.2, CFC can be used in three modes, which progressively become
more flexible but also require more significant programming effort. Examples 1-3 illustrate
how each mode can be used. The final example illustrates a key advantage of the CFC frame-
work, namely the logical separation of cause-specific survival analysis from the competing-risk
analysis, which in turns allows for combining survival models of different kind in the same
competing-risk analysis.

4.1. Example 1: end-to-end competing-risk analysis using Weibull regres-
sion

In our first example, we illustrate the easiest usage mode in CFC, i.e., the cfc.survreg

function. It first creates parametric survival regression models using the survreg function of
the survival package, and passes these models to cfc for competing-risk analysis.

We begin by setting up our environment, including a 70-30 split of our test data set, bmt, into
training and prediction sets:

R> library("CFC")

R> data("bmt")

R> rel.tol <- 1e-3

R> seed.no <- 0

R> set.seed(seed.no)

R> idx.train <- sample(1:nrow(bmt), size = 0.7 * nrow(bmt))

R> idx.pred <- setdiff(1:nrow(bmt), idx.train)

R> nobs.train <- length(idx.train)

R> nobs.pred <- length(idx.pred)

(In real-world applications, rel.tol must be set to a smaller number for better accuracy.) A
one-line call to sfc.survreg is all we have to do:

R> out.weib <- cfc.survreg(Surv(time, cause) ~ platelet + age + tcell,

+ bmt[idx.train, ], bmt[idx.pred, ], rel.tol = rel.tol)

The output can be summarized for any subset of observations, using the obs.idx parameter:
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Figure 2: Cause-specific cumulative incidence functions for the Weibull survival regression
models built for bmt data set.

R> summ <- summary(out.weib, obs.idx = which(bmt$age[idx.pred] > 0))

and plotted:

R> plot(summ, which = 1)

to produce and visualize the sub-population-average cumulative incidence functions for each
cause (Figure 2).

It is instructive to visualize the impact of competing-risk adjustment on cumulative incidence
rates:

R> old.par <- par(mfrow=c(1,2)); plot(summ, which = 2); par(old.par)

We can see from Figure 3 that the competing-risk adjustment, using the CFC framework, has
a very significant corrective impact on the cumulative incidence probability for both causes.

Users can switch from Weibull to other distributions through the parameter dist. For exam-
ple, the following command switches the survival models from Weibull to exponential:

R> out.expo <- cfc.survreg(Surv(time, cause) ~ platelet + age + tcell,

+ bmt[idx.train, ], bmt[idx.pred, ],

+ dist = "exponential", rel.tol = rel.tol)

We can even use different distributions for each cause, by passing a vector as the dist argu-
ment:
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Figure 3: Comparison of adjusted and unadjusted cumulative incidence curves for Weibull
survival regression models built for bmt data set.

R> out.mix <- cfc.survreg(Surv(time, cause) ~ platelet + age + tcell,

+ bmt[idx.train, ], bmt[idx.pred, ],

+ dist = c("weibull", "exponential"), rel.tol = rel.tol)

4.2. Example 2: Bayesian CFC in R

Utilizing the function cfc requires that cause-specific, unadjusted survival functions be avail-
able or implemented, in R or C++. This is in contrast to cfc.survreg which has encapsulated
the survival functions corresponding to the class of survival models in survival package.

First, we use the utility function cfc.prepdata to prepare the bmt data set and set up
formulas for cause-specific survival analysis:

R> out.prep <- cfc.prepdata(Surv(time, cause) ~ platelet + age + tcell, bmt)

R> f1 <- out.prep$formula.list[[1]]

R> f2 <- out.prep$formula.list[[2]]

R> dat <- out.prep$dat

R> tmax <- out.prep$tmax

Next, we create cause-specific Bayesian Weibull survival regression models, using BSGW
package (Mahani and Sharabiani 2015a):

R> library("BSGW")

R> seed.no <- 0

R> set.seed(seed.no)

R> nsmp <- 10

R> reg1 <- bsgw(f1, dat[idx.train, ],

+ control = bsgw.control(iter = nsmp),
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+ ordweib = T, print.level = 0)

R> reg2 <- bsgw(f2, dat[idx.train, ],

+ control = bsgw.control(iter = nsmp),

+ ordweib = T, print.level = 0)

(In real-world problems, nsmp must be set to a larger number.) To perform CFC, we must take
two interconnected steps: 1) implement the cause-specific survival functions for this model,
2) prepare arguments feeding into these survival functions. In this example, since we use the
same model for both causes, we only need to implement one survival function:

R> survfunc <- function(t, args, n) {

+ nobs <- args$nobs; natt <- args$natt; nsmp <- args$nsmp

+ alpha <- args$alpha; beta <- args$beta; X <- args$X

+ idx.smp <- floor((n - 1) / nobs) + 1

+ idx.obs <- n - (idx.smp - 1) * nobs

+ return (exp(- t ^ alpha[idx.smp] *

+ exp(sum(X[idx.obs, ] *

+ beta[idx.smp, ]))));

+ }

R> f.list <- list(survfunc, survfunc)

R> X.pred <- as.matrix(cbind(1, bmt[idx.pred, c("platelet", "age", "tcell")]))

R> arg.1 <- list(nobs = nobs.pred, natt = 4, nsmp = nsmp,

+ X = X.pred, alpha = exp(reg1$smp$betas),

+ beta = reg1$smp$beta)

R> arg.2 <- list(nobs = nobs.pred, natt = 4, nsmp = nsmp,

+ X = X.pred, alpha = exp(reg2$smp$betas),

+ beta = reg2$smp$beta)

R> arg.list <- list(arg.1, arg.2)

The argument n is the single iterator that covers the joint space of observations (nsmp) and
samples (nobs). The function must therefore extract the sample and observation indexes
(idx.smp and idx.ob, respectively) from n. The same convention must be used while inter-
pretting the returned arrays from cfc.

R> rel.tol <- 1e-4

R> tout <- seq(from = 0.0, to = tmax, length.out = 10)

R> t.R <- proc.time()[3]

R> out.cfc.R <- cfc(f.list, arg.list, nobs.pred * nsmp, tout,

+ rel.tol = rel.tol)

R> t.R <- proc.time()[3] - t.R

R> cat("t.R:", t.R, "sec\n")

t.R: 25.095 sec

Summarizing and plotting: One advantage of Bayesian techniques is their consistent
representation and treatment of uncertainty. It is, therefore, useful for CFC to enable users
to quantify and visualize the uncertainty associated with outputs produced by cfc. This can
be done by calling summary.cfc.
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In Bayesian CFC, the cumulative incidence and survival arrays returned have three dimen-
sions: 1) time, 2) cause, 3) n iterator (described above). In summarizing the arrays, we should
not reduce/collapse the first two dimensions. The last dimension is often a flattened version
of two dimensions: observations and MCMC samples. How this 2D space is mapped to the
1D iterator is left to the users in their specification of the survival function. We have similarly
aimed for flexibility in designing the summary.cfc function, where the f.reduce argument is
required from the user in order to determine how each sub-array of the 3D arrays returned by
cfc must be processed/reduced, before being passed to the quantile function to determine
the median and credible bands for each combination of time and cause. For the example
provided in this section, a suitable reduction function can be defined as:

R> my.f.reduce <- function(x, nobs, nsmp) {

+ return (colMeans(array(x, dim = c(nobs, nsmp))))

+ }

This function calculates the population average (for each time, cause and MCMC sample). As
such, when supplied to summary.cfc, it produces the credible bands for population-average
values for cause-specific cumulative incidence and survival probabilities. The output of the
summary function can be passed to the plot function to produce Figure 4.

R> my.cfc.summ <- summary(

+ out.cfc.R, f.reduce = my.f.reduce

+ , nobs = nobs.pred, nsmp = nsmp)

R> oldpar <- par(mfrow = c(2, 2))

R> plot(my.cfc.summ)

R> par(oldpar)

Parallelization: We saw that running CFC in R takes nearly 25 seconds on our test server.
(See Section B for session information.) This is for a small data set (nobs.pred=123), a
handful of samples (nsmp=10) and a lenient error tolerance (rel.tol=1e-4). By extrapolation,
to perform CFC for a data set of size 1000, with 1000 samples, a somewhat more realistic
scenario, we would need nearly 4.5 hours. (Note that execution time is nearly independent
of the length of tout, since the latter only affects the last – interpolation – step, which is
computationally cheap.) An easy way to improve performance is by using multi-threaded
parallelization on a multicore machine. This can be done via the ncore parameter:

R> ncores <- 2

R> tout <- seq(from = 0.0, to = tmax, length.out = 10)

R> t.R.par <- proc.time()[3]

R> out.cfc.R.par <- cfc(f.list, arg.list, nobs.pred * nsmp, tout,

+ rel.tol = rel.tol, ncores = ncores)

R> t.R.par <- proc.time()[3] - t.R.par

R> cat("t.R.par:", t.R.par, "sec\n")

The speedup is close to linear, which is expected given the low amount of coordination needed
among threads:

R> cat("parallelization speedup - R:", t.R / t.R.par, "\n")
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Figure 4: Median and 95% credible bands for population-averaged cause-specific cumulative-
incidence and survival probabilities, corresponding to Example 2.
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parallelization speedup - R: 1.916088

A more powerful to improve performance is by using the C++ interface of CFC, which is
illustrated next.

4.3. Example 3: High-performance Bayesian CFC (in C++)

The first step is to implement the data structure needed by the survival model. For Bayesian
Weibull regression, we have:

struct weib {

int nobs; // number of observations

int natt; // number of attributes

int nsmp; // number of MCMC samples

mat X; // nobs-by-natt

vec alpha; // nsmp

mat beta; // natt-by-nsmp

};

The initializer function is responsible for converting the incoming List from R to the weib

structure:

void* weib_init(List arg) {

weib* myweib = new weib;

myweib->nobs = arg[0];

myweib->natt = arg[1];

myweib->nsmp = arg[2];

myweib->X = mat(REAL(arg[3]), myweib->nobs, myweib->natt, true, true);

myweib->alpha = vec(REAL(arg[4]), myweib->nsmp, true, true);

myweib->beta = mat(REAL(arg[5]), myweib->natt, myweib->nsmp, true, true);

return (void*)myweib;

}

By implementing the data structure in terms of Armadillo classes vec and mat, we isolate
the dependence on R data structures to the initializer, which allows for easier porting of
the survival model to other environments. We must also create an external pointer to the
initializer, which will be supplied to cfc. This can be accomplished by calling the following
function from R, as we will demonstrate later:

// [[Rcpp::export]]

XPtr<initfunc> weib_getPtr_init() {

XPtr<initfunc> p(new initfunc(&weib_init), true);

return p;

}

Recall that the initfunc function pointer has been typedef’ed before. Since the initializer
creates a new weib data structure on the heap, it is best practice to release this memory once
we are finished. We do so by implementing a freefunc, as well as a companion function for
creating an external pointer to it:
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void weib_free(void *arg) {

delete (weib*)arg;

}

// [[Rcpp::export]]

XPtr<freefunc> weib_getPtr_free() {

XPtr<freefunc> p(new freefunc(&weib_free), true);

return p;

}

Finally, the survival function itself must be implemented, which we do here by using Rcp-
pArmadillo linear algebra methods. Note a similar approach to the R implementation for
extracting the observation and sample indexes (zero-based here) from the flat iterator n:

vec weib_sfunc(vec t, void *arg, int n) {

weib *argc = (weib*)arg;

int nsmp = argc->nsmp, nobs = argc->nobs, natt = argc->natt;

int idx_smp = n / nobs;

int idx_obs = n - idx_smp * nobs;

mat X = argc->X;

mat beta = argc->beta;

vec alpha = argc->alpha;

mat exbeta = exp(X.row(idx_obs) * beta.col(idx_smp));

return exp(- pow(t, alpha(idx_smp)) * exbeta(0,0));

}

// [[Rcpp::export]]

XPtr<func> weib_getPtr_func() {

XPtr<func> p(new func(&weib_sfunc), true);

return p;

}

We can compile the entire C++ code for this model by running Rcpp::sourceCpp, inside an
R session, against the source file (weib.cpp). We are now ready to apply cfc to this C++
implementation. The call looks similar to the R version, except for the first parameter f.list,
which must now be a list of pointers to the survival function, the initializer function, and the
free function:

R> tout <- seq(from = 0.0, to = tmax, length.out = 10)

R> library("Rcpp")

R> Rcpp::sourceCpp("weib.cpp")

R> f.list.Cpp.1 <- list(weib_getPtr_func(), weib_getPtr_init(),

+ weib_getPtr_free())

R> f.list.Cpp <- list(f.list.Cpp.1, f.list.Cpp.1)

R> t.Cpp <- proc.time()[3]

R> out.cfc.Cpp <- cfc(f.list.Cpp, arg.list, nobs.pred * nsmp, tout,

+ rel.tol = rel.tol)

R> t.Cpp <- proc.time()[3] - t.Cpp

R> cat("t.Cpp:", t.Cpp, "sec\n")
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t.Cpp: 0.183 sec

We can verify that the C++ results are identical to the R results:

R> all.equal(out.cfc.R, out.cfc.Cpp)

[1] TRUE

Note the impressive speedup achieved by the C++ implementation:

R> cat("C++-vs-R speedup:", t.R / t.Cpp, "\n")

C++-vs-R speedup: 137.1311

This performance level makes it feasible to use more realistic parameters, e.g., nsmp = 1000:

R> nsmp <- 1000

R> reg1 <- bsgw(f1, dat[idx.train, ],

+ control = bsgw.control(iter = nsmp),

+ ordweib = T, print.level = 0)

R> reg2 <- bsgw(f2, dat[idx.train, ],

+ control = bsgw.control(iter = nsmp),

+ ordweib = T, print.level = 0)

R> arg.1 <- list(nobs = nobs.pred, natt = 4, nsmp = nsmp,

+ X = X.pred, alpha = exp(reg1$smp$betas),

+ beta = reg1$smp$beta)

R> arg.2 <- list(nobs = nobs.pred, natt = 4, nsmp = nsmp,

+ X = X.pred, alpha = exp(reg2$smp$betas),

+ beta = reg2$smp$beta)

R> arg.list <- list(arg.1, arg.2)

R> t.Cpp.1000 <- proc.time()[3]

R> out.cfc.Cpp.1000 <- cfc(f.list.Cpp, arg.list, nobs.pred * nsmp, tout,

+ rel.tol = rel.tol)

R> t.Cpp.1000 <- proc.time()[3] - t.Cpp.1000

R> cat("t.Cpp - 1000 samples", t.Cpp.1000, "sec\n")

t.Cpp - 1000 samples 37.016 sec

Further speedup can be achieved by multi-threading, using the ncores parameter:

R> ncores <- 2

R> t.Cpp.1000.par <- proc.time()[3]

R> out.cfc.Cpp.1000.par <- cfc(f.list.Cpp, arg.list, nobs.pred * nsmp, tout,

+ rel.tol = rel.tol, ncores = ncores)

R> t.Cpp.par.1000.par <- proc.time()[3] - t.Cpp.1000.par

R> cat("t.Cpp.par - 1000 samples:", t.Cpp.1000.par, "sec\n")
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t.Cpp.par - 1000 samples: 19.605 sec

The speedup for nsmp=1000 remains quite acceptable:

R> cat("parallelization speedup - C++:", t.Cpp.1000 / t.Cpp.1000.par, "\n")

parallelization speedup - C++: 1.88809

4.4. Example 4: Combining parametric and non-parametric survival models
in CFC

The logical separation of survival models and competing-risk analysis in CFC offers the flex-
ibility to use entirely different type of models for different causes. We saw an example of
this in Section 4.1, where we used Weibull and exponential distributions in the cfc.survreg

function. It is even possible to combine parametric and non-parametric survival models in
CFC, as we illustrate next.

The random forest survival model in randomForestSRC package produces discretized survival
curves. When survival curves for all causes are discrete, combining them does not require
integration, and the survfit function in survival package offers this functionality. However, if
at least one cause has a continuous survival function, we can use CFC to produce continuous
output. The key step is to write a wrapper function around the discrete survival functions
that uses interpolation to create a continuous interface.

As before, we begin by using the utility function cfc.prepdata to prepare the data for cause-
specific survival analysis:

R> prep <- cfc.prepdata(Surv(time, cause) ~ platelet + age + tcell, bmt)

R> f1 <- prep$formula.list[[1]]

R> f2 <- prep$formula.list[[2]]

R> dat <- prep$dat

R> tmax <- prep$tmax

We choose a parametric Weibull regression for the first cause, taking care to keep x for
prediction:

R> library("survival")

R> reg1 <- survreg(f1, dat, x = TRUE)

For the second cause, we build a random forest survival model. This is followed by implement-
ing a function to provide a continuous-output interface to the prediction function provided
by the package:

R> library("randomForestSRC")

R> reg2 <- rfsrc(f2, dat)

R> rfsrc.survfunc <- function(t, args, n) {

+ which.zero <- which(t < .Machine$double.eps)

+ ret <- approx(args$time.interest, args$survival[n, ], t, rule = 2)$y

+ ret[which.zero] <- 1.0

+ return (ret)

+ }
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Finally, we construct the function and argument lists for cfc and call the function:

R> f.list <- list(cfc.survreg.survprob, rfsrc.survfunc)

R> arg.list <- list(reg1, reg2)

R> tout <- seq(0.0, tmax, length.out = 10)

R> cfc.out <- cfc(f.list, arg.list, nrow(bmt), tout, rel.tol = 1e-3)

5. Discussion

Summary: Bayesian techniques offer many, well-recognized methodological advantages –
particularly in survival analysis – including a general estimation framework, consistent treat-
ment and propagation of uncertainty, validity for small (and large) samples, ability to incor-
porate prior information, ease of model comparison and validation, and natural handling of
missing data (Ibrahim, Chen, and Sinha 2005). Translating this broad appeal into widespread
adoption of Bayesian techniques is critically dependent on the availability of software for their
easy and efficient estimation and prediction. Most effort in developing high-performance
Bayesian software, however, has been focused on the estimation side, with research covering
areas such as efficient (Girolami and Calderhead 2011; Mahani, Hasan, Jiang, and Sharabiani
2015), self-tuning (Homan and Gelman 2014), and parallel (Mahani and Sharabiani 2015b;
Gonzalez, Low, Gretton, and Guestrin 2011) MCMC sampling, among others. In contrast,
relatively little attention has been paid to providing techniques and tools for full Bayesian pre-
diction, leaving many practitioners with no choice but to use premature, point summaries of
model parameters to produce approximate, mean values for predicted entities. (See, however,
?.)

We presented the R package CFC for Bayesian, and non-Bayesian, cause-specific competing-
risk analysis of parametric and non-parametric surviva models with an arbitrary number of
causes. Three usage modes available in CFC offer a combination of ease-of-use and extensibil-
ity: While a single-line call to cfc.survreg performs parametric survival regression followed
by competing-risk analysis, the core function cfc allows users to include other survival models,
including non-parametric ones, in cause-specific competing-risk analysis. The R interface can
be used for small data sets and/or non-Bayesian models, where the computational workload
is modest. It can also serve as a reference for implementing the C++ version of the sur-
vival functions in order to significantly improve peformance for computationally-demanding
problems. The quadrature algorithm used in CFC can be considered an implicit variable
transformation method that circumvents potential end-point singularities, and also enhances
usability by removing the need to supply the cause-specific hazard functions. In addition to
the C++ API, other performance optimization techniques in CFC such as cross-cause work-
sharing and OpenMP parallelization have combined to put a full Bayesian approach to survival
and competing-risk analysis within the reach of practitioners.

Potential future work: According to Equations 3 and 4, we must have:∑
k

∆Fk = −∆E = −∆
∏
k

Sk, (15)

where ∆ refers to the change in a quantity during an integration time step. However, the
generalized Simpson step (Equations 13a and 13b), when applied to all causes, does not
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mathematically satisfy this condition. In other words, the sum of event-free probability and
all cumulative incidence functions does not mathematically add up to 1 after discrete time
evolutions. Similarly, the generalized trapezoidal rule of Equation 14, when applied to each
cause in isolation, does not satisfy this property in general (but it does for K = 2). It is
possible to extend the trapezoidal step to satisfy this property, but without an equivalent
extension of the Simpson rule, we would need to develop an alternative approach to error
analysis. This is because, absent the Simpson rule as the main method, the trapezoidal step
would change role from reference to main method to become the return value of the integral.
Developing a coherent framework that satisfies Equation 15 and includes proper error analysis
is an interesting potential area of research.

In terms of software development, current implementation of cfc.survreg is R based. This
is partially justified since the underlying models, from survival package, are non-Bayesian.
Therefore, as long as data sizes are small, computational workloads in cfc.survreg remain
manageable without porting to C++. However, for large data sets this will be inadequate,
and therefore a high-performance implementation is warranted to cover the emerging, big-data
use-cases.

OpenMP parallelization of cfc provides an immediate and significant performance gain, but
there are other, more advanced opportunities for performance optimization. For example,
Single-Instruction, Multiple-Data (SIMD) parallelization has recently been successfully ap-
plied to Bayesian problems (Mahani and Sharabiani 2015b). Given the increasing width of
vector registers in modern CPUs (Jeffers and Reinders 2013), taking advantage of SIMD par-
allelization offers an opportunity for meaningful performance improvements. A second area
of investigation, especially for large data sets with memory-bound performance ceilings, is
reducing data movement throughout the memory hierarchy. Techniques such as improving
data layout to permit unit-stride access, and NUMA-aware memory allocation to minimize
cross-socket data transfer over slower bus interconnects (Mahani and Sharabiani 2015b) can
help minimize data movement and improve cache and memory bandwidth utilization.
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A. Proof of generalized Simpson rule

Our objective is to derive an approximation for
∫ b
a f(t) dg(t), using a second-order Taylor-

series expansion of f(t) in terms of g(t) over the interval [a, b]:

f(t) = fa + α (g(t)− ga) +
1

2
β (g(t)− ga)2 (16)

where fa ≡ f(t = a) and similarly for fb, ga and gb. To find α and β, we require that
this quadratic function passes through (fa, ga), (fb, gb), and (fm, gm), where fm ≡ f(m =
(a+ b)/2), and similarly for gm. Th first of three conditions, at t = a, is already satisfied in
Equation 16. The next two conditions lead to

fb = fa + α (gb − ga) +
1

2
β (gb − ga)2, (17a)

fm = fa + α (gm − ga) +
1

2
β (gm − ga)2. (17b)

Solving for α and β leads to:

α =
(fm − fa)(gb − ga)2 − (fb − fa)(gm − ga)2

(gm − ga)(gb − gm)(gb − ga)
, (18a)

β =
2{(fb − fa)(gm − ga)− (fm − fa)(gb − ga)}

(gm − ga)(gb − gm)(gb − ga)
. (18b)

Integrating Equation 16 over [a, b] leads to the following approximation:∫ b

a
f(t) dg(t) ∼= Igs(f, g; a, b) = fa(gb − ga) +

1

2
α (gb − ga)2 +

1

6
β (gb − ga)2. (19)

Substituting α and β from Equations 18a and 18b into Equation 19, while defining g1 ≡ gm−ga
and g2 ≡ gb − gm, and some algebraic manipulation, leads to:

Igs =
g1 + g2
6 g1 g2

{
fa (2 g1 g2 − g22) + fm (g1 + g2)

2 + fb (2 g1 g2 − g21)
}
. (20)

A second change of variable, using h ≡ g1+g2 = gb−ga and δ ≡ g1−g2 = 2gm−(ga+gb) allows
us to re-express the above in the following form, after some further algebraic manipulations:

Igs =
1

6

h

h2 − δ2
{
fa(h

2 + 2hδ − 3δ2) + 4fmh
2 + fb(h

2 − 2hδ − 3δ2)
}
. (21)

A final symbol definition, r ≡ h/δ, readily leads to Equation 13a.

B. Setup

Below is the R session information used in producing R output in Section 4.

R> sessionInfo()
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R version 3.3.3 (2017-03-06)

Platform: x86_64-redhat-linux-gnu (64-bit)

Running under: Amazon Linux AMI 2017.03

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets base

other attached packages:

[1] randomForestSRC_2.4.2 Rcpp_0.12.11 CFC_1.1.0

[4] Hmisc_4.0-3 ggplot2_2.2.1 Formula_1.2-1

[7] survival_2.41-3 lattice_0.20-34 BSGW_0.9.2

loaded via a namespace (and not attached):

[1] compiler_3.3.3 MfUSampler_1.0.4

[3] RColorBrewer_1.1-2 plyr_1.8.4

[5] methods_3.3.3 base64enc_0.1-3

[7] iterators_1.0.8 tools_3.3.3

[9] rpart_4.1-10 digest_0.6.12

[11] tibble_1.3.3 gtable_0.2.0

[13] htmlTable_1.9 checkmate_1.8.2

[15] rlang_0.1.1 Matrix_1.2-8

[17] foreach_1.4.3 parallel_3.3.3

[19] RcppArmadillo_0.7.900.2.0 gridExtra_2.2.1

[21] coda_0.19-1 stringr_1.2.0

[23] cluster_2.0.5 knitr_1.16

[25] htmlwidgets_0.8 grid_3.3.3

[27] nnet_7.3-12 data.table_1.10.4

[29] HI_0.4 foreign_0.8-67

[31] latticeExtra_0.6-28 magrittr_1.5

[33] scales_0.4.1 backports_1.1.0

[35] codetools_0.2-15 htmltools_0.3.6

[37] ars_0.5 splines_3.3.3

[39] abind_1.4-5 colorspace_1.3-2

[41] stringi_1.1.5 acepack_1.4.1

[43] lazyeval_0.2.0 doParallel_1.0.10

[45] munsell_0.4.3
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