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CDVine-package Statistical inference of C- and D-vine copulas
Description
This package provides functions for statistical inference of canonical vine (C-vine) and D-vine
copulas. It contains tools for bivariate exploratory data analysis and for bivariate as well as vine
copula selection. Models can be estimated either sequentially or by joint maximum likelihood
estimation. Sampling algorithms and plotting methods are also included. Data is assumed to lie in
the unit hypercube (so-called copula data).
Details

Package: CDVine

Type: Package
Version: 1.1-8
Date: 2012-07-02

License: GPL (>=2)
Depends: R (> 2.11.0), MASS, mvtnorm, igraph
LazylLoad: yes

Bivariate copula families

In this package several bivariate copula families are included for bivariate analysis as well as for
multivariate analysis using vine copulas. It provides functionality of elliptical (Gaussian and Stu-
dent t) as well as Archimedean (Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7 and BB8) copulas
to cover a large bandwidth of possible dependence structures. For the Archimedean copula families
rotated versions are included to cover negative dependence too. The two parameter BB1, BB6, BB7
and BB8 copulas are however numerically instable for large parameters, in particular, if BB6, BB7
and BBS copulas are close to the Joe copula which is a boundary case of these three copula families.
In general, the user should be careful with extreme parameter choices.
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The following table shows the parameter ranges of bivariate copula families with parameters par
and par2:

Copula family

Gaussian

Student t

(Survival) Clayton

(Survival) Gumbel

Frank

(Survival) Joe

Rotated Clayton (90 and 270 degrees)
Rotated Gumbel (90 and 270 degrees)
Rotated Joe (90 and 270 degrees)
(Survival) Clayton-Gumbel (BB1)
(Survival) Joe-Gumbel (BB6)

(Survival) Joe-Clayton (BB7)

(Survival) Joe-Frank (BBS)

Rotated Clayton-Gumbel (90 and 270 degrees)
Rotated Joe-Gumbel (90 and 270 degrees)
Rotated Joe-Clayton (90 and 270 degrees)
Rotated Joe-Frank (90 and 270 degrees)
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C- and D-vine copula models

When specifying C- and D-vine copula models, one has to select an order of the variables. For a
D-vine the order of the variables in the first tree has to be chosen and for a C-vine the root nodes
for each tree need to be determined. Functions for inference of C- and D-vine copula models in
this package assume that the order of the variables in the data set under investigation exactly cor-
responds to this C- or D-vine order. E.g., in a C-vine the first column of a data set is the first root
node, the second column the second root node, etc. According to this order arguments have to
be provided to functions for C- and D-vine copula inference. After choosing the type of the vine
model, the copula families (family) and parameters (par and par2) have to be specified as vectors
of length d(d — 1)/2, where d is the number of variables. In a C-vine, the entries of this vector
correspond to the following pairs and associated pair-copula terms

(1,2),(1,3),(1,4),...,(1,d), (2,3]1),(2,4]1), ..., (2,d|1), (3,4]|1,2),(3,5]1,2), ..., (3,d|1,2), ...,
(d—1,d]1,....d —2).

Similarly, the pairs of a D-vine are denoted in the following order:

(1,2),(2,3),(3,4), ..., (d—1,d), (1,3]2),(2,4]3), ..., (d—2,d|d—1), (1,4]2, 3), (2,5]3,4), ..., (d—
3,dld—2,d—-1),...,(1,d]2,....,d —1).
Acknowledgment
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grateful to Harry Joe for his contributions to the implementation of the bivariate Archimedean cop-
ulas.
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BiCopCDF Distribution function of a bivariate copula

Description
This function evaluates the cumulative distribution function (CDF) of a given parametric bivariate
copula.

Usage

BiCopCDF (ul, u2, family, par, par2=0)


http://mediatum.ub.tum.de/doc/1079276/1079276.pdf
http://mediatum.ub.tum.de/doc/1079276/1079276.pdf
http://mediatum.ub.tum.de/doc/1079277/1079277.pdf
http://mediatum.ub.tum.de/doc/1079277/1079277.pdf
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Arguments

ul,u2 Numeric vectors of equal length with values in [0,1].

family An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 =BBI1 copula
8 = BB6 copula
9 = BB7 copula
10 = BBS8 copula
13 = rotated Clayton copula (180 degrees; “survival Clayton”)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 =rotated BB1 copula (90 degrees)
28 =rotated BB6 copula (90 degrees)
29 =rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 =rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)

par Copula parameter.

par2 Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7,
BBS; default: par2 = 0).

Value

A numeric vector of the bivariate copula distribution function evaluated at u1 and u2.

Author(s)

Eike Brechmann

See Also

BiCopPDF, BiCopHfunc, BiCopSim
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Examples

# simulate from a bivariate t-copula
simdata = BiCopSim(300,2,-0.7,par2=4)

# evaluate the distribution function of the bivariate t-copula
ul = simdatal,1]

u2 = simdatal,?2]

BiCopCDF (ul,u2,2,-0.7,par2=4)

BiCopChiPlot Chi-plot for bivariate copula data

Description

This function creates a chi-plot of given bivariate copula data.

Usage
BiCopChiPlot(ul, u2, PLOT=TRUE, mode="NULL", ...)
Arguments
ul,u? Data vectors of equal length with values in [0,1].
PLOT Logical; whether the results are plotted. If PLOT = FALSE, the values lambda,
chi and control.bounds are returned (see below; default: PLOT = TRUE).
mode Character; whether a general, lower or upper chi-plot is calculated. Possible
values are mode = "NULL", "upper"” and "lower".
"NULL" = general chi-plot (default)
"upper" = upper chi-plot
"lower" = lower chi-plot
Additional plot arguments.
Details

For observations u; j, ¢ = 1,..., N, j = 1,2, the chi-plot is based on the following two quantities:
the chi-statistics

C FUlUQ (ui,17 ui,2) - FUl (ull)FUQ (U’L,Q)
V Eu (i) (1 — By, (u3.1)) B, (.2) (1 — Fu (u;.2))
and the lambda-statistics

Ai = dsgn (FUl (uin), FUQ (Ui,2)) - max (FUI (Ui71)27FU2 (Ui72)2) )

X

)

where FUI, F’U2 and F’Ul v, are the empirical distribution functions of the uniform random variables
Uy and Us and of (U, Us), respectively. Further, Fy;, = Fyy, — 0.5 and Fy, = Fy, — 0.5.

These quantities only depend on the ranks of the data and are scaled to the interval [0, 1]. A;
measures a distance of a data point (u;1,u;2) to the center of the bivariate data set, while y;
corresponds to a correlation coefficient between dichotomized values of U; and Us. Under inde-
pendence it holds that x; ~ N(0, +7) and \; ~ U[—1,1] asymptotically, i.e., values of x; close to
zero indicate independence—corresponding to Fy,y, = Fu, F,.
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When plotting these quantities, the pairs of (\;, x;) will tend to be located above zero for positively
dependent margins and vice versa for negatively dependent margins. Control bounds around zero
indicate whether there is significant dependence present.

If mode = "lower" or "upper”, the above quantities are calculated only for those u; ;’s and u; 2’s
which are smaller/larger than the respective means of ul= (u1,1, ..., un,1) and u2= (uy 2, ..., un,2).

Value
lambda Lambda-statistics (x-axis).
chi Chi-statistics (y-axis).

control.bounds A 2-dimensional vector of bounds ((1.54/+/n, —1.54//n), where n is the length
of ul and where the chosen values correspond to an approximate significance
level of 10%.

Author(s)

Natalia Belgorodski, Ulf Schepsmeier

References

Abberger, K. (2004). A simple graphical method to explore tail-dependence in stock-return pairs.
Discussion Paper, University of Konstanz, Germany.

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling
but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

BiCopMetaContour, BiCopKPlot, BiCopLambda

Examples

# chi-plots for bivariate Gaussian copula data
n = 500
tau = 0.5

# simulate copula data

fam =1

theta = BiCopTau2Par(fam,tau)
dat = BiCopSim(n,fam,theta)

# create chi-plots

dev.new(width=16,height=5)

par(mfrow=c(1,3))

BiCopChiPlot(dat[,1],dat[,2],x1lim=c(-1,1),ylim=c(-1,1),
main="General chi-plot")

BiCopChiPlot(dat[,1],dat[,2],mode="1ower",xlim=c(-1,1),
ylim=c(-1,1),main="Lower chi-plot")

BiCopChiPlot(dat[,1],dat[,2],mode="upper”,xlim=c(-1,1),
ylim=c(-1,1),main="Upper chi-plot")
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BiCopEst

Parameter estimation for bivariate copula data using inversion of

Kendall’s tau or maximum likelihood estimation

Description

This function estimates the parameter(s) for a bivariate copula using either inversion of empirical
Kendall’s tau for single parameter copula families or maximum likelihood estimation for one and
two parameter copula families supported in this package.

Usage

BiCopEst(ul, u2, family, method="mle"”, se=FALSE, max.df=30,

Arguments

ul,u2

family

max.BB=1ist(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)))

Data vectors of equal length with values in [0,1].

An integer defining the bivariate copula family:
0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)
3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI copula

8 = BB6 copula

9 =BB7 copula

10 = BBS copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)

16 = rotated Joe copula (180 degrees; “survival Joe™)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 =rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BBS8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 =rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)
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method Character indicating the estimation method: either maximum likelihood estima-
tion (method = "mle"”; default) or inversion of Kendall’s tau (nethod = "itau").
For method = "itau"” only one parameter bivariate copula families can be used

(family = 1,3,4,5,6,13,14,16,23,24,26,33, 34 or 36).

se Logical; whether standard error(s) of parameter estimates is/are estimated (de-
fault: se = FALSE).

max.df Numeric; upper bound for the estimation of the degrees of freedom parameter
of the t-copula (default: max.df = 30).

max . BB List; upper bounds for the estimation of the two parameters (in absolute values)
of the BB1, BB6, BB7 and BB8 copulas
(default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).

Details

If method = "itau"”, the function computes the empirical Kendall’s tau of the given copula data
and exploits the one-to-one relationship of copula parameter and Kendall’s tau which is available
for many one parameter bivariate copula families (see BiCopPar2Tau and BiCopTau2Par). The
inversion of Kendall’s tau is however not available for all bivariate copula families (see above). If a
two parameter copula family is chosen and method = "itau”, a warning message is returned and
the MLE is calculated.

For method = "mle” copula parameters are estimated by maximum likelihood using starting values
obtained by method = "itau"”. If no starting values are available by inversion of Kendall’s tau,
starting values have to be provided given expert knowledge and the boundaries max.df and max.BB
respectively.

A warning message is returned if the estimate of the degrees of freedom parameter of the t-copula
is larger than max . df. For high degrees of freedom the t-copula is almost indistinguishable from the
Gaussian and it is advised to use the Gaussian copula in this case. As a rule of thumb max.df = 30
typically is a good choice. Moreover, standard errors of the degrees of freedom parameter estimate
cannot be estimated in this case.

Value

par, par2 Estimated copula parameter(s).

se,se2 Standard error(s) of the parameter estimate(s) (if se = TRUE).
Author(s)

UIf Schepsmeier, Eike Brechmann, Jakob Stoeber, Carlos Almeida

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

See Also

BiCopPar2Tau, BiCopTau2Par, CDVineSeqgEst, BiCopSelect
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Examples

## Example 1: bivariate Gaussian copula
dat = BiCopSim(500,1,0.7)

ul = dat[,1]

vl = dat[, 2]

# empirical Kendall’s tau
taul = cor(ul,vl,method="kendall")

# inversion of empirical Kendall’s tau
BiCopTau2Par(1, taul)
BiCopEst(ul,v1,family=1,method="itau")$par

# maximum likelihood estimate for comparison
BiCopEst(ul,v1,family=1,method="mle")$par

## Example 2: bivariate Clayton and survival Gumbel copulas
# simulate from a Clayton copula

dat = BiCopSim(500,3,2.5)

u2 = dat[,1]

v2 = dat[,2]

# empirical Kendall’s tau
tau2 = cor(u2,v2,method="kendall")

# inversion of empirical Kendall’s tau for the Clayton copula
BiCopTau2Par(3, tau2)
BiCopEst(u2,v2,family=3,method="itau",se=TRUE)

# inversion of empirical Kendall’s tau for the survival Gumbel copula
BiCopTau2Par (14, tau2)
BiCopEst(u2,v2,family=14 ,method="itau",se=TRUE)

# maximum likelihood estimates for comparison
BiCopEst(u2,v2,family=3,method="mle", se=TRUE)
BiCopEst(u2,v2,family=14,method="mle", se=TRUE)

## Example 3: fit of a t-copula to standardized residuals of

## S&P 500 and DAX returns

data(worldindices)
BiCopEst(worldindices[,1],worldindices[,4],family=2,method="mle", se=TRUE)

BiCopGofKendall Goodness-of-fit test based on Kendall’s process for bivariate copula
data

Description

This function performs the goodness-of-fit test based on Kendall’s process for bivariate copula data.
It computes the Cramer-von Mises and Kolmogorov-Smirnov test statistics, respectively, as well as
the according p-values using bootstrapping.
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Usage

BiCopGofKendall(ul, u2, family, B=100, level=0.05)

Arguments

ul,u2 Data vectors of equal length with values in [0,1].

family An integer defining the bivariate copula family for which the test is performed:
1 = Gaussian copula
2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI copula

8 = BB6 copula

9 =BB7 copula

10 = BBS copula

13 = rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 =rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BBS8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 =rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

B Integer; number of bootstrap samples (default: B = 100). For B = 0 only the
the test statistics are returned. WARNING: If B is chosen too large, computations
will take very long.

level Numeric; significance level of the goodness-of-fit test (default: 1level = 0.05).

Details

This copula goodness-of-fit test is based on Kendall’s process as investigated by Genest and Rivest
(1993) and Wang and Wells (2000). For rotated copulas the input arguments are transformed and
the goodness-of-fit procedure for the corresponding non-rotated copula is used.
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Value
p.value.CvM P-value of the goodness-of-fit test using the Cramer-von Mises statistic
(if B > 0).
p.value.KS P-value of the goodness-of-fit test using the Kolmogorov-Smirnov statistic
@ifB > 0).

statistic.CvM The observed Cramer-von Mises test statistic.

statistic.KS The observed Kolmogorov-Smirnov test statistic.

Author(s)

Jiying Luo, Eike Brechmann

References

Genest, C. and L.-P. Rivest (1993). Statistical inference procedures for bivariate Archimedean
copulas. Journal of the American Statistical Association, 88 (423), 1034-1043.

Luo J. (2011). Stepwise estimation of D-vines with arbitrary specified copula pairs and EDA Tools.
Diploma thesis, Technische Universitaect Muenchen.
http://mediatum.ub.tum.de/doc/1079291/1079291.pdf.

Wang, W. and M. T. Wells (2000). Model selection and semiparametric inference for bivariate
failure-time data. Journal of the American Statistical Association, 95 (449), 62-72.

See Also

BiCopIndTest, BiCopSelect, BiCopVuongClarke, BiCopKPlot, BiCopLambda

Examples

# sample from a Gaussian copula
parl =3
faml = 3
dat1 = BiCopSim(500,fam1,parl)

# perform the goodness-of-fit test for the true copula
gof = BiCopGofKendall(dat1[,1],dat1[,2],fam1)
gof$p.value.CvM

gof$p.value.KS

# perform the goodness-of-fit test for the Frank copula
gof = BiCopGofKendall(dat1[,1],dat1[,21,5)
gof$p.value.CvM

gof$p.value.KS

BiCopHfunc Conditional distribution function (h-function) of a bivariate copula

Description

This function evaluates the conditional distribution function (h-function) of a given parametric bi-
variate copula.


http://mediatum.ub.tum.de/doc/1079291/1079291.pdf
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Usage

BiCopHfunc(ul, u2, family, par, par2=0)

Arguments

ul,u? Numeric vectors of equal length with values in [0,1].

family An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 =BBI1 copula
8 = BB6 copula
9 =BB7 copula
10 = BBS8 copula
13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 =rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 =rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 =rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 =rotated BB1 copula (270 degrees)
38 =rotated BB6 copula (270 degrees)
39 =rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)

par Copula parameter.

par2 Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7,
BBS; default: par2 = 0).

Details

The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,

oC (u,v)

h(ulv, 0) ;= F(ulv) = I

where C'is a bivariate copula distribution function with parameter(s) 8. For more details see Aas et
al. (2009).
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Value
hfunc1 Numeric vector of the conditional distribution function (h-function) evaluated at
u2 given ul, i.e., h(u2|u1,8).
hfunc2 Numeric vector of the conditional distribution function (h-function) evaluated at
ul given u2, i.e., h(ul|u2,8).
Author(s)
Ulf Schepsmeier
References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple de-
pendence. Insurance: Mathematics and Economics 44 (2), 182-198.

See Also

BiCopPDF, BiCopCDF, CDVinelLogLik, CDVineSegEst

Examples

## Example 1: 4-dimensional C-vine model with mixed pair-copulas
data(worldindices)

Data = as.matrix(worldindices)[,1:4]

d = dim(Data)[2]

fam = ¢(5,1,3,14,3,2)

# sequential estimation
seqparl = CDVineSeqEst(Data,fam, type=1,method="itau")

# calculate the inputs of the second tree using h-functions
h1 = BiCopHfunc(Datal,1],Datal,2],fam[1],seqgpari$par[1])
h2 = BiCopHfunc(Datal,1],Datal,3],fam[2],seqpari$par[2])
h3 = BiCopHfunc(Datal,1],Datal,4],fam[3], seqgpari$par[3])

# compare estimated parameters
BiCopEst (h1$hfuncl,h2$hfunci1,fam[4],method="itau")
seqparis$par[4]

BiCopEst (h1$hfuncl,h3$hfunc1,fam[5],method="itau")
seqgparis$par[5]

## Example 2: 4-dimensional D-vine model with mixed pair-copulas

# sequential estimation
seqpar2 = CDVineSeqEst(Data, fam, type=2,method="itau")

# calculate the inputs of the second tree using h-functions
h1 = BiCopHfunc(Datal,1],Datal,2],fam[1],seqgpar2$par[1])
h2 = BiCopHfunc(Data[l,2],Datal,3],fam[2], seqpar2$par[2])
h3 = BiCopHfunc(Datal,3],Datal,4],fam[3], seqpar2$par[3])

# compare estimated parameters
BiCopEst(h1$hfunc2,h2$hfuncl,fam[4],method="itau")
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seqpar2s$par[4]

BiCopEst(h2$hfunc2,h3$hfuncl, fam[5],method="itau")
seqpar2s$par[5]

BiCopIndTest Independence test for bivariate copula data

Description

This function returns the p-value of a bivariate asymptotic independence test based on Kendall’s
tau.

Usage

BiCopIndTest(ul, u2)

Arguments

ul,u2 Data vectors of equal length with values in [0,1].

Details

The test exploits the asymptotic normality of the test statistic

IN(N — 1)

tatistic: =T =
statistic 22N 1 5)

x |7,

where IV is the number of observations (length of ul) and 7 the empirical Kendall’s tau of the
data vectors ul and u2. The p-value of the null hypothesis of bivariate independence hence is
asymptotically

p.value=2x (1 - (7)),

where ® is the standard normal distribution function.

Value
statistic Test statistic of the independence test.
p.value P-value of the independence test.
Author(s)

Jeffrey Dissmann

References
Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling
but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also
BiCopPar2Tau, BiCopTau2Par, BiCopSelect, CDVineCopSelect
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Examples

## Example 1: Gaussian copula with large dependence parameter
par1l = 0.7

faml =1

dat1 = BiCopSim(500,fam1,parl)

# perform the asymptotic independence test
BiCopIndTest(dat1[,1]1,dat1[,2])

## Example 2: Gaussian copula with small dependence parameter
par2 = 0.01

fam2 =1

dat2 = BiCopSim(500,fam2,par2)

# perform the asymptotic independence test
BiCopIndTest(dat2[,1],dat2[,2])

BiCopKPlot Kendall’s plot (K-plot) for bivariate copula data

Description

This function creates a Kendall’s plot (K-plot) of given bivariate copula data.

Usage
BiCopKPlot(ul, u2, PLOT=TRUE, ...)
Arguments
ul,u2 Data vectors of equal length with values in [0,1].
PLOT Logical; whether the results are plotted. If PLOT = FALSE, the values W. in and
Hi.sort are returned (see below; default: PLOT = TRUE).
Additional plot arguments.
Details

For observations u; ;, ¢ = 1, ..., N, j = 1,2, the K-plot considers two quantities: First, the ordered
values of the empirical bivariate distribution function H; := FUI U, (Ui.1, 4, 2) and, second, Wiy,
which are the expected values of the order statistics from a random sample of size IV of the random
variable W = C(Uy, Us) under the null hypothesis of independence between U and Us. W,y can
be calculated as follows

N -1

Wi:n:N<Z._1

) /wko(w)(Ko(w))Fl(l — Ko(w)N ldw,
0

where
Ko(w) = w — wlog(w),

and kq(+) is the corresponding density.
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K-plots can be seen as the bivariate copula equivalent to QQ-plots. If the points of a K-plot lie ap-
proximately on the diagonal y = z, then U; and U, are approximately independent. Any deviation
from the diagonal line points towards dependence. In case of positive dependence, the points of
the K-plot should be located above the diagonal line, and vice versa for negative dependence. The
larger the deviation from the diagonal, the stronger is the degree of dependency. There is a perfect
positive dependence if points (W;.n, H;) lie on the curve Ky(w) located above the main diagonal.
If points (W;., H;) however lie on the x-axis, this indicates a perfect negative dependence between
U1 and UQ.

Value
W.in We-statistics (x-axis).
Hi.sort H-statistics (y-axis).
Author(s)

Natalia Belgorodski, Ulf Schepsmeier

References

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling
but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

BiCopMetaContour, BiCopChiPlot, BiCoplLambda, BiCopGofKendall

Examples

# Gaussian and Clayton copulas
n = 500
tau = 0.5

# simulate from Gaussian copula
faml =1

thetal = BiCopTau2Par(fami,tau)
dat1 = BiCopSim(n,faml,thetal)

# simulate from Clayton copula
fam2 = 3

theta2 = BiCopTau2Par(fam2,tau)
dat2 = BiCopSim(n,fam2, theta2)

# create K-plots

dev.new(width=10,height=5)

par(mfrow=c(1,2))
BiCopKPlot(dat1[,1],dat1[,2],main="Gaussian copula”)
BiCopKPlot(dat2[,1],dat2[,2],main="Clayton copula”)
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BiCopLambda

Lambda-function (plot) for bivariate copula data

Description

This function plots the lambda-function of given bivariate copula data.

Usage

BiCopLambda(u1=NULL, u2=NULL, family="emp", par=0, par2=0,

Arguments

ul,u2

family

par

par2

PLOT

Value

empLambda

theolLambda

PLOT=TRUE, ...)

Data vectors of equal length with values in [0,1] (default: u1 and u2 = NULL).

An integer defining the bivariate copula family or indicating the empirical lambda-
function:

"emp” = empirical lambda-function (default)

1 = Gaussian copula; the theoretical lambda-function is simulated (no closed
formula available)

2 = Student t copula (t-copula); the theoretical lambda-function is simulated (no
closed formula available)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI copula

8 = BB6 copula

9 =BB7 copula

10 = BBS copula

Copula parameter; if the empirical lambda-function is chosen, par = NULL or 0
(default).

Second copula parameter for t-, BB1, BB6, BB7 and BB8 copulas (default:
par2 = 0).

Logical; whether the results are plotted. If PLOT = FALSE, the values
empLambda and/or theolLambda are returned (see below; default: PLOT = TRUE).

Additional plot arguments.

If the empirical lambda-function is chosen and PLOT=FALSE, a vector of the
empirical lambda’s is returned.

If the theoretical lambda-function is chosen and PLOT=FALSE, a vector of the
theoretical lambda’s is returned.
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Note

The A-function is characteristic for each bivariate copula family and defined by Kendall’s distribu-
tion function K:
A(v,0) :=v—K(v,0)

with
K(U,@) = P(Cg(Ul,UQ) < U), ORS [0, 1}.

For Archimedean copulas one has the following closed form expression in terms of the generator
function ¢ of the copula Cy:

)\('U,@) = SD(/U) ,

where ¢’ is the derivative of . For more details see Genest and Rivest (1993) or Schepsmeier
(2010).

For the bivariate Gaussian and t-copula no closed form expression for the theoretical A-function
exists. Therefore it is simulated based on samples of size 1000. For all other implemented copula
families there are closed form expressions available.

The plot of the theoretical A-function also shows the limits of the A-function corresponding to
Kendall’s tau = 0 and Kendall’s tau = 1 (A = 0).

For rotated bivariate copulas one has to transform the input arguments u1 and/or u2. In particular,
for copulas rotated by 90 degrees u1 has to be set to 1-ul, for 270 degrees u2 to 1-u2 and for
survival copulas ul and u2 to 1-ul and 1-u2, respectively. Then A-functions for the corresponding
non-rotated copula families can be considered.

Author(s)

Ulf Schepsmeier

References

Genest, C. and L.-P. Rivest (1993). Statistical inference procedures for bivariate Archimedean
copulas. Journal of the American Statistical Association, 88 (423), 1034-1043.

Schepsmeier, U. (2010). Maximum likelihood estimation of C-vine pair-copula constructions based
on bivariate copulas from different families. Diploma thesis, Technische Universitaet Muenchen.
http://mediatum.ub.tum.de/doc/1079296/1079296.pdf.

See Also

BiCopMetaContour, BiCopKPlot, BiCopChiPlot

Examples

# Clayton and rotated Clayton copulas
n = 1000
tau = 0.5

# simulate from Clayton copula
fam = 3

theta = BiCopTau2Par(fam, tau)
dat = BiCopSim(n,fam,theta)

# create lambda-function plots
dev.new(width=16,height=5)


http://mediatum.ub.tum.de/doc/1079296/1079296.pdf

20 BiCopMetaContour
par(mfrow=c(1,3))
BiCopLambda(dat[,1],dat[,2]) # empirical lambda-function
BiCopLambda(family=fam,par=theta) # theoretical lambda-function
BiCopLambda(dat[,1],dat[,2], family=fam,par=theta) # both
# simulate from rotated Clayton copula (90 degrees)
fam = 23
theta = BiCopTau2Par(fam,-tau)
dat = BiCopSim(n,fam,theta)
# rotate the data to standard Clayton copula data
rot_dat = 1-dat[,1]
dev.new(width=16,height=5)
par(mfrow=c(1,3))
BiCopLambda(rot_dat,dat[,2]) # empirical lambda-function
BiCopLambda(family=3,par=-theta) # theoretical lambda-function
BiCopLambda(rot_dat,dat[,2],family=3,par=-theta) # both
BiCopMetaContour Contour plot of bivariate meta distribution with different margins and

copula (theoretical and empirical)

Description

This function plots a bivariate contour plot corresponding to a bivariate meta distribution with differ-
ent margins and specified bivariate copula and parameter values or creates corresponding empirical
contour plots based on bivariate copula data.

Usage

BiCopMetaContour (u1=NULL, u2=NULL, bw=1, size=100,
levels=c(0.01,0.05,0.1,0.15,0.2),
family="emp", par=0, par2=0, PLOT=TRUE,

margins="norm"”, margins.par=0, xylim=NA, ...)
Arguments
utl,u2 Data vectors of equal length with values in [0,1] (default: u1 and u2 = NULL).
bw Bandwidth (smoothing factor; default: bw = 1).
size Number of grid points; default: size = 100.
levels Vector of contour levels. For Gaussian, Student t or exponential margins the
default value (levels = ¢(0.01,0.05,0.1,0.15,0.2)) typically is a good
choice. For uniform margins we recommend
levels = ¢(0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5)
and for Gamma margins
levels = ¢(0.005,0.01,0.03,0.05,0.07,0.09).
family An integer defining the bivariate copula family or indicating an empirical con-

tour plot:
"emp” = empirical contour plot (default; margins can be specified by margins)
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0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BBS8 copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 =rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 =rotated BB6 copula (270 degrees)

39 =rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

par Copula parameter; if empirical contour plot, par = NULL or 0 (default).

par2 Second copula parameter for t-, BB1, BB6, BB7 and BB8 copulas (default:
par2 = 0).

PLOT Logical; whether the results are plotted. If PLOT = FALSE, the values x, y and z
are returned (see below; default: PLOT = TRUE).

margins Character; margins for the bivariate copula contour plot. Possible margins are:

"norm” = standard normal margins (default)
"t" = Student t margins with degrees of freedom as specified by margins.par
"gamma" = Gamma margins with shape and scale as specified by margins.par
"exp” = Exponential margins with rate as specified by margins.par
"unif” = uniform margins
margins.par Parameter(s) of the distribution of the margins if necessary (default: margins.par = 0),
ie.,
* a positive real number for the degrees of freedom of Student t margins (see
dt),
* a 2-dimensional vector of positive real numbers for the shape and scale
parameters of Gamma margins (see dgamma),
* a positive real number for the rate parameter of exponential margins (see
dexp).
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xylim A 2-dimensional vector of the x- and y-limits. By default (xylim = NA) stan-
dard limits for the selected margins are used.
Additional plot arguments.

Value

X A vector of length size with the x-values of the kernel density estimator with
Gaussian kernel if the empirical contour plot is chosen and a sequence of values
in xylim if the theoretical contour plot is chosen.

y A vector of length size with the y-values of the kernel density estimator with
Gaussian kernel if the empirical contour plot is chosen and a sequence of values
in xylim if the theoretical contour plot is chosen.

z A matrix of dimension size with the values of the density of the meta distribu-
tion with chosen margins (see margins and margins.par) evaluated at the grid
points given by x and y.

Note
Warning: The combination family = 0 (independence copula) and margins = "unif” (uniform

margins) is not possible because all z-values are equal.

Author(s)

UIf Schepsmeier, Alexander Bauer

See Also

BiCopChiPlot, BiCopKPlot, BiCopLambda

Examples

## Example 1: contour plot of meta Gaussian copula distribution
## with Gaussian margins

tau = 0.5

fam =
theta

1

BiCopTau2Par(fam, tau)

BiCopMetaContour (u1=NULL,u2=NULL,bw=1,size=100,

levels=c(0.01,0.05,0.1,0.15,0.2),
family=fam,par=theta,main="tau=0.5")

## Example 2: empirical contour plot with standard normal margins
dat = BiCopSim(N=1000, fam, theta)
BiCopMetaContour(dat[,1],dat[,2],bw=2,size=100,

levels=c(0.01,0.05,0.1,0.15,0.2),
par=0,family="emp"”,main="N=1000")

# empirical contour plot with exponential margins
BiCopMetaContour(dat[,1],dat[,2],bw=2,size=100,

levels=c(0.01,0.05,0.1,0.15,0.2),
par=0,family="emp",main="n=500",
margins="exp",margins.par=1)
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BiCopName Bivariate copula family names

Description

This function transforms the bivariate copula family number into its character expression and vice
versa.

Usage
BiCopName (family, short=TRUE)

Arguments
family Bivariate copula family, either its number or its character expression (see table
below).

No. Shortname Long name
o "1" "Independence”
1 "N "Gaussian”
2 "t "t
3 "¢t "Clayton”
4 "G" "Gumbel”
5 "F" "Frank"
6 "J" "Joe"
7 "BB1" "Clayton-Gumbel”
8 "BB6" "Joe-Gumbel”
9 "BB7" "Joe-Clayton”
10 "BB8" "Frank-Joe"
13 "sc” "Survival Clayton”
14 "SG" "Survival Gumbel”
16 "SJ" "Survival Joe”
17 "sSBB1" "Survival Clayton-Gumbel”
18 "SBB6" "Survival Joe-Gumbel”
19 "SBB7" "Survival Joe-Clayton”
20 "SBB8" "Survival Joe-Frank”
23 "C90" "Rotated Clayton 90 degrees”
24 "G90" "Rotated Gumbel 90 degrees”
26 "J90" "Rotated Joe 90 degrees”
27  "BB1_90" "Rotated Clayton-Gumbel 90 degrees”
28 "BB6_90" "Rotated Joe-Gumbel 90 degrees”
29 "BB7_90" "Rotated Joe-Clayton 90 degrees”
30 "BB8_90" "Rotated Frank-Joe 90 degrees”
33 "C270" "Rotated Clayton 270 degrees”
34 "G270" "Rotated Gumbel 270 degrees”
36 "J270" "Rotated Joe 270 degrees”
37 "BB1_270" "Rotated Clayton-Gumbel 270 degrees”
38 "BB6_270" "Rotated Joe-Gumbel 270 degrees”
39 "BB7_270" "Rotated Joe-Clayton 270 degrees”
40 "BB8_270" "Rotated Frank-Joe 270 degrees”
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short Logical; if the number of a bivariate copula family is used and short = TRUE
(default), a short version of the corresponding character expression is returned,
otherwise the long version.

Value

The transformed bivariate copula family (see table above).

Author(s)

Ulf Schepsmeier

See Also

CDVineTreePlot

Examples

# family as number

family =1

BiCopName(family, short=TRUE) # short version
BiCopName(family, short=FALSE) # long version

# family as character expression (short version)
family = "C"
BiCopName(family) # as number

# long version
family = "Clayton”
BiCopName(family) # as number

BiCopPar2TailDep Tail dependence coefficients of a bivariate copula

Description

This function computes the theoretical tail dependence coefficients of a bivariate copula for given
parameter values.

Usage

BiCopPar2TailDep(family, par, par2=0)

Arguments

family An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
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7 =BBI copula

8 = BB6 copula

9 =BB7 copula

10 = BBS copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BBS8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 =rotated BB6 copula (270 degrees)

39 =rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

par Copula parameter.

par2 Second parameter for the two parameter t-, BB1, BB6, BB7 and BBS8 copulas
(default: par2 = 0).

Value
lower Lower tail dependence coefficient of the given bivariate copula family C":
A = lim Z04
u™N\0 u
upper Upper tail dependence coefficient of the given bivariate copula family C"
1-2 c
Ay = lim L2t Gy
u 1 1—wu

Lower and upper tail dependence coefficients for bivariate copula families and parameters (6 for
one parameter families and the first parameter of the t-copula with v degrees of freedom, 6 and ¢
for the two parameter BB1, BB6, BB7 and BBS copulas) are given in the following table.

No. Lower tail dependence Upper tail dependence

1 - -

2 2tw+1(—w/u-+1,/%§g) 2tw+1(—w/u-+1,/%i§)
3 9-1/6 -

4 - 2 —21/0

5 - -

6 - 2 —21/0
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7 2—1/(95) 9 _ 21/6

8 - 9 _ 91/(69)
9 2—1/5 2 21/0
10 - 2 — 219 if § = 1 otherwise 0
13 - 2-1/0

14 2 —21/0 -

16 2 —21/0 -

17 9 21/6 2—1/(95)
18 9 _ 91/(69) R

19 2 —21/¢ 2-1/0

20 2 — 21/9if § = 1 otherwise 0 -

23, 33 - -

24, 34 - -

26, 36 - -

27, 37 - -

28, 38 - -

29, 39 - -

30, 40 - -

Author(s)

Eike Brechmann

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

See Also

BiCopPar2Tau

Examples

## Example 1: Gaussian copula
BiCopPar2TailDep(1,0.7)

## Example 2: t copula
BiCopPar2TailDep(2,0.7,4)

BiCopPar2Tau Kendall’s tau value of a bivariate copula

Description
This function computes the theoretical Kendall’s tau value of a bivariate copula for given parameter
values.

Usage

BiCopPar2Tau(family, par, par2=0)
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Arguments

family An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 =BBI1 copula
8 = BB6 copula
9 = BB7 copula
10 = BBS8 copula
13 = rotated Clayton copula (180 degrees; “survival Clayton”)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 =rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 =rotated BB1 copula (90 degrees)
28 =rotated BB6 copula (90 degrees)
29 =rotated BB7 copula (90 degrees)
30 =rotated BB8 copula (90 degrees)
33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 =rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)

par Copula parameter.

par2 Second parameter for the two parameter BB1, BB6, BB7 and BBS8 copulas (de-
fault: par2 = 0). Note that the degrees of freedom parameter of the t-copula
does not need to be set, because the theoretical Kendall’s tau value of the t-
copula is independent of this choice.

Value

Theoretical value of Kendall’s tau corresponding to the bivariate copula family and parameter(s) (6
for one parameter families and the first parameter of the t-copula, 6 and § for the two parameter
BB1, BB6, BB7 and BB8 copulas).

No. Kendall’s tau
1, 2 2 arcsin(6)
"9
3, 13 ;%
4,14 1-1
4 D1 (0)
5 1—5+4=
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with D1(9) ) kb~ dz (Debye function)
6, 16 1+ fo zlog(z)(1 — z)2(=0/0dy
7, 11 1— 5(9+2)
8, 18 1+ 4[0 log(—(1 =) + 1)1 —t — (1 =)=+ (1 —)=%)/(56)dt
9, 19 1+4f0 (1—(1=1)9)72=)/(=05(1 — )71 (1 — (1 — t)?)=°~1)at
10, 20 1+4 [ —log ((( 1—t5 —1)/((1-6)? = 1))
# (1 —t5 — (1 —t6)~% + (1 — t6)~9t5)/(66)dt
23, 33 L
24, 3¢ -1—3
26, 36 —1— 4 fol xlog(x)(1 — )~ 20+0)/0qy
27, 37 —1-— ﬁ
28, 38 —1-— 4]01 —log(—(1— t) + 1)1 —t— (1 —1)% + (1 —1)%)/(60)dt
29, 39 —1-— 4[0 (1—(1—1t)=%)?° )/( 05(1 —t)=0=1(1 — (1 —t)=9)°1)at
30, 40 —1—4 [ —log ((1+t8)~% —1)/(1+6)~ —1))
#(1+t5 — (1 t5) (1 +t6)9t6)/(95)dt
Author(s)
Ulf Schepsmeier
References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines

with application to exchange rates. Statistical Modelling, 12(3), 229-255.

See Also

CDVinePar2Tau, BiCopTau2Par

Examples

## Example 1: Gaussian copula
tt1 = BiCopPar2Tau(1,0.7)

# transform back
BiCopTau2Par(1,tt1)

## Example 2: Clayton copula
BiCopPar2Tau(3,1.3)

BiCopPDF Density of a bivariate copula

Description

This function evaluates the probability density function (PDF) of a given parametric bivariate cop-

ula.
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BiCopPDF (ul, u2, family, par, par2=0)

Arguments

ul,u2

family

par

par2

Value

Numeric vectors of equal length with values in [0,1].

An integer defining the bivariate copula family:

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BBS8 copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 =rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BBS8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 =rotated BB7 copula (90 degrees)

30 = rotated BBS8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 = rotated BB7 copula (270 degrees)

40 = rotated BBS8 copula (270 degrees)

Copula parameter.

Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7,
BBS; default: par2 = 0).

A numeric vector of the bivariate copula density evaluated at u1 and u2.

Author(s)

Eike Brechmann
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See Also

BiCopSelect

BiCopCDF, BiCopHfunc, BiCopSim

Examples

# simulate from a bivariate t-copula
simdata = BiCopSim(300,2,-0.7,par2=4)

# evaluate the density of the bivariate t-copula

ul = simdatal,1]
u2 = simdatal, 2]

BiCopPDF (u1,u2,2,-0.7,par2=4)

BiCopSelect

Selection and maximum likelihood estimation of bivariate copula fam-
ilies

Description

This function selects an appropriate bivariate copula family for given bivariate copula data using one
of a range of methods. The corresponding parameter estimates are obtained by maximum likelihood

estimation.

Usage

BiCopSelect(ul, u2, familyset=NA, selectioncrit="AIC",

Arguments

ul,u2

familyset

indeptest=FALSE, level=0.05)

Data vectors of equal length with values in [0,1].

Vector of bivariate copula families to select from (the independence copula
MUST NOT be specified in this vector, otherwise it will be selected). The vector
has to include at least one bivariate copula family that allows for positive and
one that allows for negative dependence. If familyset = NA (default), selection
among all possible families is performed. Coding of bivariate copula families:

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI copula

8 = BB6 copula

9 =BB7 copula

10 = BBS copula

13 = rotated Clayton copula (180 degrees; “survival Clayton”)

14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)

16 = rotated Joe copula (180 degrees; “survival Joe™)

17 = rotated BB1 copula (180 degrees; “survival BB1”)

18 = rotated BB6 copula (180 degrees; “survival BB6”)
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19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 =rotated BB1 copula (90 degrees)
28 =rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 =rotated BB1 copula (270 degrees)
38 =rotated BB6 copula (270 degrees)
39 =rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
selectioncrit Character indicating the criterion for bivariate copula selection. Possible choices:
selectioncrit = "AIC" (default) or "BIC".
indeptest Logical; whether a hypothesis test for the independence of ul and u2 is per-
formed before bivariate copula selection (default: indeptest = FALSE;cp. BiCopIndTest).
The independence copula is chosen if the null hypothesis of independence can-
not be rejected.

level Numeric; significance level of the independence test (default: level = 0.05).

Details

Copulas can be selected according to the Akaike and Bayesian Information Criteria (AIC and BIC,
respectively). First all available copulas are fitted using maximum likelihood estimation. Then the
criteria are computed for all available copula families (e.g., if u1 and u2 are negatively dependent,
Clayton, Gumbel, Joe, BB1, BB6, BB7 and BBS8 and their survival copulas are not considered) and
the family with the minimum value is chosen. For observations u; ;, ¢ = 1,..., N, j = 1,2, the
AIC of a bivariate copula family ¢ with parameter(s) 6 is defined as

N
AIC = -2 Z Infe(u; 1, u;2|0)] + 2k,
i=1
where k = 1 for one parameter copulas and k& = 2 for the two parameter t-, BB1, BB6, BB7 and
BBS copulas. Similarly, the BIC is given by

N
BIC := =2 In[c(u;i 1, u; 2]60)] + In(N)k.

i=1

Evidently, if the BIC is chosen, the penalty for two parameter families is stronger than when using
the AIC.

Additionally a test for independence can be performed beforehand.

Value
family The selected bivariate copula family.
par, par2 The estimated bivariate copula parameter(s).

p.value.indeptest
P-value of the independence test if performed.
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Note

When the bivariate t-copula is considered and the degrees of freedom are estimated to be larger than
30, then the bivariate Gaussian copula is taken into account instead. Similarly, when BB1 (Clayton-
Gumbel), BB6 (Joe-Gumbel), BB7 (Joe-Clayton) or BB8 (Joe-Frank) copulas are considered and
the parameters are estimated to be very close to one of their boundary cases, the respective one
parameter copula is taken into account instead.

Author(s)

Eike Brechmann, Jeffrey Dissmann

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.
N. Petrov and F. Csaki (Eds.), Proceedings of the Second International Symposium on Information
Theory Budapest, Akademiai Kiado, pp. 267-281.

Brechmann, E. C. (2010). Truncated and simplified regular vines and their applications. Diploma
thesis, Technische Universitaet Muenchen.
http://mediatum.ub.tum.de/doc/1079285/1079285.pdf.

Manner, H. (2007). Estimation and model selection of copulas with an application to exchange
rates. METEOR research memorandum 07/056, Maastricht University.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics 6 (2), 461-464.

See Also

CDVineCopSelect, BiCopIndTest

Examples

## Example 1: Gaussian copula with large dependence parameter
parl = 0.7

faml =1

dat1 = BiCopSim(500,fam1,parl)

# select the bivariate copula family and estimate the parameter(s)

copl = BiCopSelect(dat1[,1],datl1[,2],familyset=c(1:10),indeptest=FALSE,level=0.05)
copl$family

copl$par

copl$par2

## Example 2: Gaussian copula with small dependence parameter

par2 = 0.01
fam2 = 1
dat2 = BiCopSim(500,fam2,par2)

# select the bivariate copula family and estimate the parameter(s)

cop2 = BiCopSelect(dat2[,1],dat2[,2],familyset=c(1:10),indeptest=TRUE, level=0.05)
cop2$family

cop2$par

cop2$par?

## Example 3: empirical data


http://mediatum.ub.tum.de/doc/1079285/1079285.pdf
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data(worldindices)

cop3 = BiCopSelect(worldindices[,1],worldindices[,4],familyset=c(1:10,13,14,16,23,24,26))
cop3$family

cop3$par

cop3$par2

BiCopSim Simulation from a bivariate copula

Description

This function simulates from a given parametric bivariate copula.

Usage

BiCopSim(N, family, par, par2=0)

Arguments
N Number of bivariate observations simulated.
family An integer defining the bivariate copula family:

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BBS8 copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 =rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 =rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 =rotated BB6 copula (270 degrees)
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39 = rotated BB7 copula (270 degrees)
40 = rotated BBS8 copula (270 degrees)

par Copula parameter.

par2 Second parameter for bivariate copulas with two parameters (t, BB1,BB6, BB7,
BBS; default: par2 = 0).

Value

An N x 2 matrix of data simulated from the bivariate copula.

Author(s)

Ulf Schepsmeier

See Also

BiCopCDF, BiCopPDF, CDVineSim

Examples

# simulate from a bivariate t-copula
simdata = BiCopSim(300,2,-0.7,par2=4)

BiCopTau2Par Parameter of a bivariate copula for a given Kendall’s tau value

Description

This function computes the parameter of a one parameter bivariate copula for a given value of
Kendall’s tau.

Usage

BiCopTau2Par(family, tau)

Arguments
tau Kendall’s tau value (numeric in [-1,1]).
family An integer defining the bivariate copula family:

0 = independence copula

1 = Gaussian copula

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)

23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)
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33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)

Note that two parameter bivariate copula families cannot be used.

Value

Parameter corresponding to the bivariate copula family and the value of Kendall’s tau (7).

No.

1, 2

3, 13
4, 14
5

6, 16
23, 33
24, 34
26, 36

Author(s)

Parameter

sin(7%)

max(0,277)

max(1, ﬁ)

no closed form expression (numerical inversion)
no closed form expression (numerical inversion)

max(0,277)
. i
min(—1, —3)

no closed form expression (numerical inversion)

Jakob Stoeber, Eike Brechmann

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines

with application to exchange rates. Statistical Modelling, 12(3), 229-255.

See Also

BiCopTau2Par

Examples

## Example 1: Gaussian copula
tt1 = BiCopTau2Par(1,0.5)

# transform back
BiCopPar2Tau(1,tt1)

## Example 2: Clayton copula

BiCopTau2Par(3,0.4)

BiCopVuongClarke

Scoring goodness-of-fit test based on Vuong and Clarke tests for bi-

variate copula data
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Description

Based on the Vuong and Clarke tests this function computes a goodness-of-fit score for each bivari-
ate copula family under consideration. For each possible pair of copula families the Vuong and the
Clarke tests decides which of the two families fits the given data best and assigns a score—pro or
contra a copula family—according to this decision.

Usage

BiCopVuongClarke(ul, u2, familyset=NA,
correction=FALSE, level=0.05)

Arguments
ul,u2 Data vectors of equal length with values in [0,1].
familyset An integer vector of bivariate copula families under consideration, i.e., which are

compared in the goodness-of-fit test. If familyset = NA (default), all possible
families are compared. Possible families are:

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BB8 copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 =rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BBS8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 =rotated BB7 copula (90 degrees)

30 = rotated BBS8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 =rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

correction Correction for the number of parameters. Possible choices: correction = FALSE
(no correction; default), "Akaike" and "Schwarz".

level Numerical; significance level of the tests (default: level = 0.05).
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Details

The Vuong as well as the Clarke test compare two models against each other and based on their
null hypothesis, allow for a statistically significant decision among the two models (see the docu-
mentations of CDVineVuongTest and CDVineClarkeTest for descriptions of the two tests). In the
goodness-of-fit test proposed by Belgorodski (2010) this is used for bivariate copula selection. It
compares a model O to all other possible models under consideration. If model O is favored over
another model, a score of "+1" is assigned and similarly a score of "-1" if the other model is de-
termined to be superior. No score is assigned, if the respective test cannot discriminate between
two models. Both tests can be corrected for the numbers of parameters used in the copulas. FEi-
ther no correction (correction = FALSE), the Akaike correction (correction = "Akaike") or
the parsimonious Schwarz correction (correction = "Schwarz") can be used.

The models compared here are bivariate parametric copulas and we would like to determine which
family fits the data better than the other families. E.g., if we would like to test the hypothesis that the
bivariate Gaussian copula fits the data best, then we compare the Gaussian copula against all other
copulas under consideration. In doing so, we investigate the null hypothesis "The Gaussian copula
fits the data better than all other copulas under consideration", which corresponds to k — 1 times the
hypothesis "The Gaussian copula C} fits the data better than copula C;" forall ¢ = 1, ..., k,7 # j,
where k is the number of bivariate copula families under consideration (length of familyset). This
procedure is done not only for one family but for all families under consideration, i.e., two scores,
one based on the Vuong and one based on the Clarke test, are returned for each bivariate copula
family. If used as a goodness-of-fit procedure, the family with the highest score should be selected.

For more and detailed information about the goodness-of-fit test see Belgorodski (2010).

Value

A matrix with Vuong test scores in the first and Clarke test scores in the second row. Column names
correspond to bivariate copula families (see above).

Author(s)

Ulf Schepsmeier, Eike Brechmann, Natalia Belgorodski

References

Belgorodski, N. (2010) Selecting pair-copula families for regular vines with application to the
multivariate analysis of European stock market indices Diploma thesis, Technische Universitaet
Muenchen. http://mediatum.ub.tum.de/doc/1079284/1079284 . pdf.

Clarke, K. A. (2007). A Simple Distribution-Free Test for Nonnested Model Selection. Political
Analysis, 15, 347-363.

Vuong, Q. H. (1989). Ratio tests for model selection and non-nested hypotheses. Econometrica 57
(2), 307-333.

See Also
BiCopGofKendall, CDVineVuongTest, CDVineClarkeTest,

BiCopSelect

Examples

# simulate from a t-copula
dat = BiCopSim(500,2,0.7,5)


http://mediatum.ub.tum.de/doc/1079284/1079284.pdf
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# apply the test for families 1-10
vcgof = BiCopVuongClarke(dat[,1],dat[,2],familyset=c(1:10))

# display the Vuong test scores
vegof[1,]

CDVineAIC-BIC AIC and BIC of C- and D-vine copula models

Description

These functions calculate the Akaike and Bayesian Information criteria of d-dimensional C- and
D-vine copula models for a given copula data set.

Usage

CDVineAIC(data, family, par,
par2=rep(0,dim(data)[2]*(dim(data)[2]1-1)/2), type)

CDVineBIC(data, family, par,
par2=rep(0,dim(data)[2]*(dim(data)[2]1-1)/2), type)

Arguments
data An N x d data matrix (with uniform margins).
family A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI copula

8 = BB6 copula

9 = BB7 copula

10 = BBS copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BBS8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)

30 =rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)
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34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 =rotated BB6 copula (270 degrees)

39 = rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

par A d*(d-1)/2 vector of pair-copula parameters.

par2 A d*(d-1)/2 vector of second parameters for two parameter pair-copula families
(default: par2 = rep(0,dim(data)[2]*(dim(data)[2]1-1)/2)).

type Type of the vine model:
1 or "CVine" = C-vine
2 or "DVine" = D-vine
Details

If k£ denotes the number of parameters of a C-vine copula model with log-likelihood oy, and
parameter set 6, then the Akaike Information Criterion (AIC) by Akaike (1973) is defined as

AIC = 2lcvine (9|u) + 2k,

for observations u = (uf, ..., u)y)’.

Similarly, the Bayesian Information Criterion (BIC) by Schwarz (1978) is given by

BIC = _2lCVine (0|'u,) + lOg(N)k'
The AIC and BIC expressions for D-vine copula models are defined accordingly.

Value

AIC, BIC The computed AIC or BIC value, respectively.

pair.AIC, pair.BIC
An array of individual contributions to the AIC or BIC value for each pair-
copula, respectively. Note: AIC = sum(pair.AIC) and similarly BIC = sum(pair.BIC).

Author(s)

Eike Brechmann

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.
N. Petrov and F. Csaki (Eds.), Proceedings of the Second International Symposium on Information
Theory Budapest, Akademiai Kiado, pp. 267-281.

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics 6 (2), 461-464.

See Also

CDVinelLogLik, CDVineVuongTest, CDVineClarkeTest
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Examples

## Example 1: 3-dimensional D-vine model with Gaussian pair-copulas
data(worldindices)

Data = as.matrix(worldindices)[,1:3]

faml = c(1,1,1)

parl = ¢(0.2,0.3,0.4)

# calculate AIC and BIC
CDVineAIC(Data, fam1,parl,type=2)
CDVineBIC(Data,faml,pari, type=2)

## Example 2: 6-dimensional C-vine model with Student t pair-copulas
## with 5 degrees of freedom

data(worldindices)

Data = as.matrix(worldindices)

dd = dim(Data)[2]x(dim(Data)[2]1-1)/2

fam2 = rep(2,dd)

par2 = rep(0.5,dd)

nu2 = rep(5,dd)

# calculate AIC and BIC
CDVineAIC(Data,fam2,par2,nu2,type=1)
CDVineBIC(Data,fam2,par2,nu2,type=1)

## Example 3: 4-dimensional C-vine model with mixed pair-copulas
fam3 = c(5,1,3,14,3,2)

par3 = ¢(0.9,0.3,0.2,1.1,0.2,0.7)

nu3 = ¢(0,0,0,0,0,7)

# calculate AIC and BIC
CDVineAIC(Datal[,1:4],fam3,par3,nu3, type=1)
CDVineBIC(Datal,1:4],fam3,par3,nu3, type=1)

CDVineClarkeTest Clarke test comparing two vine copula models

Description

This function performs a Clarke test between two d-dimensional C- or D-vine copula models, re-
spectively.

Usage

CDVineClarkeTest(data, Modell.order=1:dim(data)[2],
Model2.order=1:dim(data)[2], Modell.family,
Model2.family, Modell.par, Model2.par,
Modell.par2=rep(0,dim(data)[2]*x(dim(data)[2]-1)/2),
Model2.par2=rep(0,dim(data)[2]*x(dim(data)[2]-1)/2),
Modell.type, Model2.type)
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Arguments

data An N x d data matrix (with uniform margins).
Modell.order, Model2.order
Two numeric vectors giving the order of the variables in the first D-vine trees
or of the C-vine root nodes in models 1 and 2 (default: Modell.order and
Model2.order = 1:dim(data)[2], i.e., standard order).
Modell.family, Model2.family
Two d*(d-1)/2 numeric vectors of the pair-copula families of models 1 and 2,
respectively, with values
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 =BBI1 copula
8 = BB6 copula
9 = BB7 copula
10 = BBS8 copula
13 = rotated Clayton copula (180 degrees; “survival Clayton”)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 = rotated BB1 copula (180 degrees; “survival BB1”’)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)
24 =rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 =rotated BB1 copula (90 degrees)
28 =rotated BB6 copula (90 degrees)
29 =rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 =rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
Modell.par, Model2.par
Two d*(d-1)/2 numeric vectors of the (first) copula parameters of models 1 and
2, respectively.
Modell.par2, Model2.par2
Two d*(d-1)/2 numeric vectors of the second copula parameters of models 1 and
2, respectively; necessary for t, BB1, BB6, BB7 and BB8 copulas. If no such
families are included in Model1.family/Model2. family, these arguments do
not need to be specified (default: Model1.par2 andModel2.par2 = rep(0,dim(data)[2]*(dim(dz

Modell.type, Model2.type
Type of the respective vine model:
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1 or "CVine" = C-vine
2 or "DVine" = D-vine

Details

The test proposed by Clarke (2007) allows to compare non-nested models. For this let ¢; and c; be
two competing vine copulas in terms of their densities and with estimated parameter sets 67 and 0.
The null hypothesis of statistical indistinguishability of the two models is

Hy:P(m; >0)=05Vi=1,.. N,

C1 (u1|é1)

where m; := log [ (. |6
c2(ui|02

} for observations u;, ¢ =1, ..., N.

Since under statistical equivalence of the two models the log likelihood ratios of the single obser-
vations are uniformly distributed around zero and in expectation 50% of the log likelihood ratios
greater than zero, the tets statistic

N

statistic:= B = Z 1(0,00) (1),
i=1

where 1 is the indicator function, is distributed Binomial with parameters N and p = 0.5, and

critical values can easily be obtained. Model 1 is interpreted as statistically equivalent to model 2 if

B is not significantly different from the expected value Np = %

Like AIC and BIC, the Clarke test statistic may be corrected for the number of parameters used

in the models. There are two possible corrections; the Akaike and the Schwarz corrections, which
correspond to the penalty terms in the AIC and the BIC, respectively.

Value

statistic, statistic.Akaike, statistic.Schwarz
Test statistics without correction, with Akaike correction and with Schwarz cor-
rection.

p.value, p.value.Akaike, p.value.Schwarz
P-values of tests without correction, with Akaike correction and with Schwarz
correction.

Author(s)

Jeffrey Dissmann, Ulf Schepsmeier, Eike Brechmann

References

Clarke, K. A. (2007). A Simple Distribution-Free Test for Nonnested Model Selection. Political
Analysis, 15, 347-363.

See Also

CDVineVuongTest, CDVineAIC, CDVineBIC
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Examples

# compare 6-dimensional C-vine copula models

# with Gaussian and with Student t pair-copulas

d=6

dd = dx(d-1)/2

faml = rep(1,dd)

par1 = ¢(0.2,0.69,0.73,0.22,-0.09,0.51,0.32,0.01,0.82,0.01,
-0.2,-0.32,-0.19,-0.17,-0.06)

fam2 = rep(2,dd)
par2 = parl
nu2 = rep(4,dd)

# simulate a sample of size 300 from the first C-vine copula model
simdata = CDVineSim(300,fam1,parl, type=1)

# compare the two models based on this sample

clarke = CDVineClarkeTest(simdata,1:d,1:d,fam1,fam2,par1,par2,
Model2.par2=nu2,Modell.type=1,Model2. type=1)

clarke$statistic

clarke$statistic.Schwarz

clarke$p.value

clarke$p.value.Schwarz

CDVineCopSelect Sequential copula selection and estimation of C- and D-vine copula
models

Description
This function fits either a C- or a D-vine copula model to a d-dimensional copula data set. Appro-
priate pair-copula families are selected using BiCopSelect and estimated sequentially.

Usage

CDVineCopSelect(data, familyset=NA, type, selectioncrit="AIC",
indeptest=FALSE, level=0.05)

Arguments

data An N x d data matrix (with uniform margins).

familyset An integer vector of pair-copula families to select from (the independence cop-
ula MUST NOT be specified in this vector unless one wants to fit an indepen-
dence vine!). The vector has to include at least one pair-copula family that al-
lows for positive and one that allows for negative dependence. If familyset = NA
(default), selection among all possible families is performed. The coding of pair-
copula families is shown below.

type Type of the vine model:

1 or "CVine" = C-vine
2 or "DVine" = D-vine

selectioncrit Character indicating the criterion for pair-copula selection. Possible choices:
selectioncrit = "AIC"” (default) or "BIC" (see BiCopSelect).
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indeptest Logical; whether a hypothesis test for the independence of ul and u2 is per-
formed before bivariate copula selection (default: indeptest = FALSE;cp. BiCopIndTest).
The independence copula is chosen for a (conditional) pair if the null hypothesis
of independence cannot be rejected.

level Numeric; significance level of the independence test (default: level = 0.05).
Value
family A d*(d-1)/2 vector of pair-copula families with values

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BBS8 copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 =rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 = rotated BB6 copula (90 degrees)

29 =rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 =rotated BB6 copula (270 degrees)

39 =rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

par A d*(d-1)/2 vector of pair-copula parameters.

par2 A d*(d-1)/2 vector of second pair-copula parameters for the t-, BB1, BB6, BB7
and BBS copulas.

Author(s)

Eike Brechmann

See Also

BiCopSelect, CDVineSeqgEst
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Examples

# simulate from a 4-dimensional D-vine copula with mixed pair-copulas
d=14

dd = dx(d-1)/2

family = ¢(1,2,3,4,7,3)

par = ¢(0.5,0.4,2,1.5,1.2,1.5)

par2 = ¢(0,5,0,0,2,0)

type = 2

simdata = CDVineSim(1000,family,par,par2, type)

# determine appropriate pair-copula families and parameters
# of a D-vine structure
CDVineCopSelect(simdata, type=2,familyset=c(1:10,13,14,23,24))

CDVineLoglLik Log-likelihood of C- and D-vine copula models

Description

This function calculates the log-likelihood of d-dimensional C- and D-vine copula models for a
given copula data set.

Usage

CDVinelLogLik(data, family, par,
par2=rep(0,dim(data)[2]*(dim(data)[2]1-1)/2), type)

Arguments
data An N x d data matrix (with uniform margins).
family A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BB8 copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)

17 =rotated BB1 copula (180 degrees; “survival BB1”)

18 = rotated BB6 copula (180 degrees; “survival BB6”)

19 = rotated BB7 copula (180 degrees; “survival BB7”)

20 = rotated BBS8 copula (180 degrees; “survival BB8”)

23 =rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)
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26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 =rotated BB7 copula (90 degrees)

30 =rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 = rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

par A d*(d-1)/2 vector of pair-copula parameters.

par2 A d*(d-1)/2 vector of second parameters for two parameter pair-copula families
(default: par2 = rep(0,dim(data)[2]*(dim(data)[2]1-1)/2)).

type Type of the vine model:

1 or "CVine" = C-vine
2 or "DVine" = D-vine
Details

Let u = (u},...,uly)" be d-dimensional observations with w; = (u;1,...,u;q4) € [0,1]¢, i =
1, ..., N. Then the log-likelihood of a C-vine copula is given by

N d—j
loglik := lovine (Blu) = Z Zln Cjj+kl1, m}j,l} ,
i=1 j=1 k=1

d—1

where

CjjtklL—1 = Cjgakft:(—1) (F (Wi 1w 15 ooy Wi 1)y F(Wi gk |t 1y ooy i j—1)105 k01, j—1)

denote pair-copulas with parameter(s) 0 ;  x|1,... j—1-

Similarly, the log-likelihood of a d-dimensional D-vine copula is

SH
SH

-1

N
loglik := Ipvine (Blu) = Z I [Chtor e 1, ht—1] 5
1

<.

E
I
-

=137
again with pair-copula densities denoted by
Ck k+j|k+1,... k+j—1 ‘=
Cho kg [t 1, kg — 1 (CF (W | Wi o 1y ooy Wi ki — 1) F (Ui et | Wi ke 15 ooy Wikt — 1) [ Ok o |1 =1 ) -
Conditional distribution functions in both expressions are obtained recursively using the relationship

8Cqu|fu, ( (u‘v—j)7F(Uj|v—j))
OF (vjlv—;) ’

h(ulv,8) := F(ulv) =

where Cl,;|,_; 18 a bivariate copula distribution function with parameter(s) 6 and v_; denotes a
vector with the j-th component v; removed. The notation of h-functions is introduced for conve-
nience. For more details see Aas et al. (2009).

d(d 1)/2 1,

Note that both log-likelihoods can also be written as loglik = where I}, are the

individual contributions to the log-likelihood of each pair-copula.
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Value
loglik The calculated log-likelihood value of the C- or D-vine copula model.
11 An array of individual contributions to the log-likelihood for each pair-copula.
Note: loglik = sum(1l).
Y The stored transformations (h-functions) which may be used for posterior up-
dates.
Author(s)

Carlos Almeida, Ulf Schepsmeier

References
Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple de-
pendence. Insurance: Mathematics and Economics 44 (2), 182-198.

See Also

BiCopHfunc, CDVineMLE, CDVineAIC, CDVineBIC

Examples

## Example 1: 3-dimensional D-vine model with Gaussian pair-copulas

data(worldindices)

Data = as.matrix(worldindices)[,1:3]
faml = c(1,1,1)

parl = ¢(0.2,0.3,0.4)

# calculate the log-likelihood
loglLik1 = CDVinelLogLik(Data,faml,parl,type=2)

# check the above formula
sum(loglLik1$11)
loglLik1$loglik

## Example 2: 6-dimensional C-vine model with Student t pair-copulas
## with 5 degrees of freedom

data(worldindices)

Data = as.matrix(worldindices)

dd = dim(Data)[2]*(dim(Data)[2]-1)/2

fam2 = rep(2,dd)

par2 = rep(0.5,dd)

nu2 = rep(5,dd)

# calculate the log-likelihood
loglik2 = CDVinelLoglLik(Data,fam2,par2,nu2, type=1)
loglLik2%$loglik

## Example 3: 4-dimensional C-vine model with mixed pair-copulas
fam3 = c(5,1,3,14,3,2)

par3 = ¢(0.9,0.3,0.2,1.1,0.2,0.7)

nu3 = ¢(0,0,0,0,0,7)
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# calculate the log-likelihood
loglik3 = CDVinelLoglLik(Datal,1:4],fam3,par3,nu3, type=2)

loglik3$loglik

CDVineMLE

Maximum likelihood estimation of C- and D-vine copula models

Description

This function calculates the MLE of C- or D-vine copula model parameters using sequential esti-
mates as initial values (if not provided).

Usage

CDVineMLE (data, family, start=NULL, start2=NULL, type, maxit=200,

Arguments

data
family

max.df=30, max.BB=1list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)),

An N x d data matrix (with uniform margins).

A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values
0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BBS8 copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 =rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 =rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 =rotated BB6 copula (270 degrees)
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39 = rotated BB7 copula (270 degrees)
40 = rotated BBS8 copula (270 degrees)

start A d*(d-1)/2 numeric vector of starting values for C-/D-vine pair-copula pa-
rameters (optional; otherwise they are calculated via CDVineSeqEst; default:
start = NULL).

start2 A d*(d-1)/2 numeric vector of starting values for second C-/D-vine pair-copula
parameters (optional; otherwise they are calculated via CDVineSeqgEst; default:
start2 = NULL).

type Type of the vine model:
1 or "CVine" = C-vine
2 or "DVine" = D-vine

maxit The maximum number of iteration steps (optional; default: maxit = 200).

max . df Numeric; upper bound for the estimation of the degrees of freedom parameter
of the t-copula (default: max.df = 30; for more details see BiCopEst).

max . BB List; upper bounds for the estimation of the two parameters (in absolute values)
of the BB1, BB6, BB7 and BB8 copulas
(default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).

Additional control parameters for optim.

Value
par Estimated (first) C-/D-vine pair-copula parameters.
par2 Estimated second C-/D-vine pair-copula parameters for families with two pa-
rameters (t, BB1,BB6, BB7, BBS8). All other entries are zero.
loglik Optimized log-likelihood value corresponding to the estimated pair-copula pa-
rameters.
convergence An integer code indicating either successful convergence (convergence = 0) or
an error (cp. optim; the CDVineMLE-function uses the "L-BFGS-B" method):
1 = the iteration limit maxit has been reached
51 = a warning from the "L-BFGS-B" method; see component message for
further details
52 = an error from the "L-BFGS-B" method; see component message for further
details
message A character string giving any additional information returned by optim, or NULL.
Author(s)

Carlos Almeida, Ulf Schepsmeier

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple de-
pendence. Insurance: Mathematics and Economics 44 (2), 182-198.

See Also

CDVinelLoglLik, CDVineSeqEst
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Examples

## Example 1: 4-dimensional D-vine model with Gaussian pair-copulas

data(worldindices)
Data = as.matrix(worldindices)[,1:4]

fam = rep(1,6)

# maximum likelihood estimation
CDVineMLE (Data, family=fam, type=2,maxit=100)

## Example 2: 4-dimensional D-vine model with mixed pair-copulas

fam2 = c(5,1,3,14,3,2)

# sequential estimation
m = CDVineSeqEst(Data, family=fam2, type=2)

m

# calculate the log-likelihood
LoglLik0 = CDVinelLogLik(Data,fam2,m$par,m$par2, type=2)

LoglLik0$loglik

# maximum likelihood estimation

CDVineMLE (Data, family=fam2, type=2,maxit=5) # 5 iterations
CDVineMLE (Data, family=fam2, type=2) # default: 200 iterations

CDVinePar2Tau

CDVinePar2Tau

Kendall’s tau values of a vine copula model

Description

This function computes the values of Kendall’s tau corresponding to the parameters of a C- or
D-vine copula model.

Usage

CDVinePar2Tau(family, par, par2=rep(0,length(family)))

Arguments

family

A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values

0 = independence copula
1 = Gaussian copula

2 = Student t copula (t-copula)
3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 = BB7 copula

10 = BBS8 copula

13 = rotated Clayton copula (180 degrees; “survival Clayton”)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
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par

par2

Value

51

16 = rotated Joe copula (180 degrees; “survival Joe™)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 =rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BBS8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 =rotated BB7 copula (90 degrees)

30 = rotated BBS8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 = rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

A d*(d-1)/2 vector of pair-copula parameters.

A d*(d-1)/2 vector of second parameters for pair-copula families with two pa-
rameters (t, BB1, BB6, BB7, BB8; default: par2 = rep(0,length(family))).

A d*(d-1)/2 vector of theoretical Kendall’s tau values corresponding to the given pair-copula fami-
lies and parameters.

Author(s)

Eike Brechmann

See Also

BiCopPar2Tau

Examples

# specify the vine

fam3 = c(5,1,3,14,3,2)

par3 = ¢(0.9,0.3,0.2,1.1,0.2,0.7)
nu3 = ¢(0,0,0,0,0,7)

# compute the corresponding Kendall’s tau values
tau = CDVinePar2Tau(fam3,par3,nu3)
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CDVineSegEst Sequential estimation of C- and D-vine copula models

Description

This function sequentially estimates the pair-copula parameters of d-dimensional C- or D-vine cop-
ula models.

Usage

CDVineSeqEst(data, family, type, method="mle"”, se=FALSE, max.df=30,
max.BB=1ist(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)),
progress=FALSE)

Arguments
data An N x d data matrix (with uniform margins).
family A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI copula

8 = BB6 copula

9 =BB7 copula

10 = BBS copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 =rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BBS8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 =rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)
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type Type of the vine model:
1 or "CVine"” = C-vine
2 or "DVine" = D-vine

method Character indicating the estimation method: either pairwise maximum likeli-
hood estimation (method = "mle"; default) or inversion of Kendall’s tau (method = "itau";
see BiCopEst). For method = "itau” only one parameter pair-copula families
can be used (family = 1, 3, 4,5, 6,13, 14, 16, 23, 24, 26, 33, 34 or 36).

se Logical; whether standard errors are estimated (default: se=FALSE).

max . df Numeric; upper bound for the estimation of the degrees of freedom parameter

of the t-copula (default: max.df = 30; for more details see BiCopEst).

max . BB List; upper bounds for the estimation of the two parameters (in absolute values)
of the BB1, BB6, BB7 and BB8 copulas
(default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).

progress Logical; whether the pairwise estimation progress is printed (default: progress = FALSE).

Details

The pair-copula parameter estimation is performed tree-wise, i.e., for each C-/D-vine tree the results
from the previous tree(s) are used to calculate the new copula parameters using BiCopEst.

Value
par Estimated (first) C-/D-vine pair-copula parameters.
par2 Estimated second C-/D-vine pair-copula parameters for families with two pa-
rameters (t, BB1, BB6, BB7, BB8). All other entries are zero.
se Estimated standard errors of the (first) pair-copula parameter estimates
(if se = TRUE).
se2 Estimated standard errors of the second pair-copula parameter estimates
(if se = TRUE).
Author(s)

Carlos Almeida, Ulf Schepsmeier

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple de-
pendence. Insurance: Mathematics and Economics 44 (2), 182-198.

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines
with application to exchange rates. Statistical Modelling, 12(3), 229-255.

See Also

BiCopEst, BiCopHfunc, CDVinelLoglLik, CDVineMLE

Examples

## Example 1: 4-dimensional D-vine model with Gaussian pair-copulas
data(worldindices)

Data = as.matrix(worldindices)[,1:4]

d = dim(Data)[2]
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fam = rep(1,d*(d-1)/2)

# sequential estimation
CDVineSeqEst(Data, fam, type=2,method="itau")$par
CDVineSeqgEst(Data, fam, type=2,method="mle") $par

## Example 2: 4-dimensional D-vine model with mixed pair-copulas
fam2 = c(5,1,3,14,3,2)

# sequential estimation
CDVineSegEst(Data, fam2, type=2,method="mle", se=TRUE, progress=TRUE)

CDVineSim Simulation from C- and D-vine copula models

Description

This function simulates from given C- and D-vine copula models.

Usage
CDVineSim(N, family, par, par2=rep(0,length(family)), type)

Arguments
N Number of d-dimensional observations simulated.
family A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BBS8 copula

13 = rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 =rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 =rotated BB1 copula (90 degrees)

28 =rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)
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30 = rotated BBS8 copula (90 degrees)

33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)

37 =rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 =rotated BB7 copula (270 degrees)

40 = rotated BBS8 copula (270 degrees)

par A d*(d-1)/2 vector of pair-copula parameters.

par2 A d*(d-1)/2 vector of second parameters for pair-copula families with two pa-
rameters (t, BB1, BB6, BB7, BB8; default: par2 = rep(0,length(family))).

type Type of the vine model:

1 or "CVine" = C-vine
2 or "DVine" = D-vine
Value

An N x d matrix of data simulated from the given C- or D-vine copula model.

Author(s)

Carlos Almeida, Ulf Schepsmeier, Eike Brechmann, Jakob Stoeber

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple de-
pendence. Insurance: Mathematics and Economics 44 (2), 182-198.

See Also

CDVinelLoglik, BiCopSim

Examples

## Example 1: simulate from a 6-dimensional C-vine model

## with Gaussian pair-copulas

d=6

dd = dx(d-1)/2

faml = rep(1,dd)

par1l = ¢(0.2,0.69,0.73,0.22,-0.09,0.51,0.32,0.01,0.82,0.01,
-0.2,-0.32,-0.19,-0.17,-0.06)

N =100
Ul = CDVineSim(N, fam1,parl, type=1)
head(U1)

# calculate the log-likelihood
loglik = CDVinelLoglLik(U1,fam1,parl, type=1)
loglLik$loglik

## Example 2: simulate from a 6-dimensional C-vine model

## with Student t pair-copulas each with three degrees of freedom
fam2 = rep(2,dd)

par2 = rep(0.5,dd)
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nu2 = rep(3,dd)
U2 = CDVineSim(N, fam2,par2,nu2,type=1)

# calculate the log-likelihood
loglik2 = CDVinelLogLik(U2,fam2,par2,nu2,type=1)
loglik2%$loglik

## Example 3: simulate from a 6-dimensional D-vine model

## with Student t pair-copulas each with five degrees of freedom
fam3 = rep(2,dd)

par3 = rep(0.4,dd)

nu3 = rep(5,dd)

U3 = CDVineSim(N, fam3,par3,nu3, type=2)

# calculate the log-likelihood
loglik3 = CDVinelLogLik (U3, fam3,par3,nu3, type=2)
loglik3$loglik

CDVineTreePlot Plot function for C- or D-vine trees

Description

This function plots one or all trees of a given C- and D-vine copula model.

Usage

CDVineTreePlot(data=NULL, family,
par=rep(0,length(family)), par2=rep(0,length(family)),
names=NULL, type, method="mle"”, max.df=30,
max.BB=1ist(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)),

tree="ALL", edge.labels=c("family"), P=NULL, ...)
Arguments
data An N x d data matrix (with uniform margins); default: data = NULL.
family A d*(d-1)/2 vector of pair-copula families with values

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 =BBI1 copula

8 = BB6 copula

9 =BB7 copula

10 = BBS8 copula

13 =rotated Clayton copula (180 degrees; “survival Clayton™)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
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17 = rotated BB1 copula (180 degrees; “survival BB1”’)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 =rotated BB1 copula (90 degrees)
28 =rotated BB6 copula (90 degrees)
29 =rotated BB7 copula (90 degrees)
30 =rotated BB8 copula (90 degrees)
33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 =rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BBS8 copula (270 degrees)
par A d*(d-1)/2 vector of pair-copula parameters
(optional; default: par = rep(0,length(family)).
par2 A d*(d-1)/2 vector of second parameters for pair-copula families with two pa-
rameters (optional; default: par2 = rep(0,length(family)).
names A vector of names for the d variables. If names = NULL (default), column names
of data (if available) or simply numbers are used.
type Type of the vine model:
1 or "CVine"” = C-vine
2 or "DVine" = D-vine

method Character indicating the estimation method: either maximum likelihood estima-
tion (method = "mle"; default) or inversion of Kendall’s tau (method = "itau").
max.df Numeric; upper bound for the estimation of the degrees of freedom parameter

of the t-copula (default: max.df = 30; for more details see BiCopEst).

max . BB List; upper bounds for the estimation of the two parameters (in absolute values)

of the BB1, BB6, BB7 and BB8 copulas

(default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).
tree Number of the tree to be plotted or tree = "ALL" (default) to plot all trees.

edge.labels Vector of edge labels. Possible choices:
FALSE: no edge labels
"family": pair-copula families (default)
"par”: pair-copula parameters
"par2": second pair-copula parameters
"theotau": theoretical Kendall’s tau values corresponding to pair-copula fami-
lies and parameters (see BiCopPar2Tau)
"emptau”: empirical Kendall’s tau values (only if data is provided!)
P A list of matrices with two columns for the x-y-coordinates of the nodes in the
plot(s) (optional; default: P = NULL).
further graphical parameters

Note

The function computes the positions of the nodes automatically with the Fruchterman-Reingold
algorithm (see plot.igraph for a detailed description). If one would like to set the positions
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manually, one has to specify a list of matrices P in the argument list. A good starting point may be
to run the function CDVineTreePlot and manipulate the returning matrix P.

The user can set the copula parameters par and par2. If not set and data is provided, the parameters
of the C- or D-vine copula model are estimated sequentially using CDVineSeqEst/BiCopEst. Then
the edge width is chosen according to the empirical Kendall’s tau values. Otherwise theoretical
values are used.

Author(s)

Ulf Schepsmeier

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple de-
pendence. Insurance: Mathematics and Economics 44 (2), 182-198.

See Also

CDVineMLE

Examples

# simulate from a 6-dimensional C-vine model with Gaussian pair-copulas

d=6

dd = dx(d-1)/2

parl = ¢(0.2,0.69,0.73,0.22,-0.09,0.51,0.32,0.01,0.82,0.01,-0.2,
-0.32,-0.19,-0.17,-0.06);

faml = rep(1,dd)

N = 100

U = CDVineSim(N, fam1,pari, type=1)

# plot the first tree with pair-copula families and
# empirical Kendall’s tau values as edge labels
CDVineTreePlot (U, faml, type=1,tree=1,edge.labels=c("family"”, "emptau”))

# plot all trees without edge labels and without sequential estimation
CDVineTreePlot(data=NULL, family=fam1,par=paril,type=1, edge.labels=FALSE)

CDVineVuongTest Vuong test comparing two vine copula models

Description

This function performs a Vuong test between two d-dimensional C- or D-vine copula models, re-
spectively.

Usage

CDVineVuongTest(data, Modell.order=1:dim(data)[2],
Model2.order=1:dim(data)[2], Modell.family,
Model2.family, Modell.par, Model2.par,
Modell.par2=rep(0,dim(data)[2]*x(dim(data)[2]-1)/2),
Model2.par2=rep(0,dim(data) [2]*(dim(data)[2]-1)/2),
Modell.type, Model2.type)



CDVineVuongTest 59

Arguments

data An N x d data matrix (with uniform margins).
Modell.order, Model2.order
Two numeric vectors giving the order of the variables in the first D-vine trees
or of the C-vine root nodes in models 1 and 2 (default: Modell.order and
Model2.order = 1:dim(data)[2], i.e., standard order).
Modell.family, Model2.family
Two d*(d-1)/2 numeric vectors of the pair-copula families of models 1 and 2,
respectively, with values
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 =BBI1 copula
8 = BB6 copula
9 = BB7 copula
10 = BBS8 copula
13 = rotated Clayton copula (180 degrees; “survival Clayton”)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe™)
17 = rotated BB1 copula (180 degrees; “survival BB1”’)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 =rotated Clayton copula (90 degrees)
24 =rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 =rotated BB1 copula (90 degrees)
28 =rotated BB6 copula (90 degrees)
29 =rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 =rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 =rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
Modell.par, Model2.par
Two d*(d-1)/2 numeric vectors of the (first) copula parameters of models 1 and
2, respectively.
Modell.par2, Model2.par2
Two d*(d-1)/2 numeric vectors of the second copula parameters of models 1 and
2, respectively; necessary for t, BB1, BB6, BB7 and BB8 copulas. If no such
families are included in Model1.family/Model2. family, these arguments do
not need to be specified (default: Model1.par2 andModel2.par2 = rep(0,dim(data)[2]*(dim(dz

Modell.type, Model2.type
Type of the respective vine model:
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1 or "CVine" = C-vine
2 or "DVine" = D-vine

Details

The likelihood-ratio based test proposed by Vuong (1989) can be used for comparing non-nested
models. For this let ¢; and c2 be two competing vine copulas in terms of their densities and with
estimated parameter sets 8; and 8>. We then compute the standardized sum, v, of the log differences
C1 (ul ‘él )

of their pointwise likelihoods m; := log [ (uil0s)
c2(u;|U2

] for observations u; € [0,1], i = 1,..., N, ie.,

N
%Zi:l m;

Zz]'V:1 (m; — m)z'

statistic:=v =

Vuong (1989) shows that v is asymptotically standard normal. According to the null-hypothesis
HO : E[ml} =0Vi= 1, ...,N,
we hence prefer vine model 1 to vine model 2 at level « if

(67
><I>‘1(1——),
v 2

where ® ! denotes the inverse of the standard normal distribution function. If v < —®~1 (1 — %)
we choose model 2. If, however, |v| < d-1 (1 — %), no decision among the models is possible.

Like AIC and BIC, the Vuong test statistic may be corrected for the number of parameters used
in the models. There are two possible corrections; the Akaike and the Schwarz corrections, which
correspond to the penalty terms in the AIC and the BIC, respectively.

Value

statistic, statistic.Akaike, statistic.Schwarz

Test statistics without correction, with Akaike correction and with Schwarz cor-
rection.

p.value, p.value.Akaike, p.value.Schwarz

P-values of tests without correction, with Akaike correction and with Schwarz
correction.

Author(s)

Jeffrey Dissmann, Ulf Schepsmeier

References
Vuong, Q. H. (1989). Ratio tests for model selection and non-nested hypotheses. Econometrica 57
(2), 307-333.

See Also

CDVineClarkeTest, CDVineAIC, CDVineBIC
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Examples

# compare 6-dimensional C-vine copula models

# with Gaussian and with Student t pair-copulas

d=6

dd = dx(d-1)/2

faml = rep(1,dd)

par1 = ¢(0.2,0.69,0.73,0.22,-0.09,0.51,0.32,0.01,0.82,0.01,
-0.2,-0.32,-0.19,-0.17,-0.06)

fam2 = rep(2,dd)
par2 = parl
nu2 = rep(4,dd)

# simulate a sample of size 300 from the first C-vine copula model
simdata = CDVineSim(300,fam1,parl, type=1)

# compare the two models based on this sample

vuong = CDVineVuongTest(simdata,1:d,1:d,fam1,fam2,par1,par2,
Model?2.par2=nu2,Modell. type=1,Model2. type=1)

vuong$statistic

vuong$statistic.Schwarz

vuong$p.value

vuong$p.value.Schwarz

worldindices Major World Indices

Description

This data set contains transformed standardized residuals of daily log returns of major world stock
indices in 2009 and 2010. The considered indices are the leading stock exchanges of the six largest
economies in the world: the US American S&P 500, the Japanese Nikkei 225, the Chinese SSE
Composite Index, the German DAX, the French CAC 40 and the British FTSE 100 Index. Each
time series is filtered using an ARMA(1,1)-GARCH(1,1) model with Student t innovations.

Format
A data frame with 396 observations on 6 variables. Column names correspond to ticker symbols of
the indices.

Source

Yahoo! Finance

Examples

# load the data set
data(worldindices)

# compute the empirical Kendall’s tau matrix
cor(worldindices,method="kendall")
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