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1 Introduction

Screening experiments are employed the at initial stages of investigation to discriminate, among many factors,
those with potential effect over the response under study. It is common in screening studies to use most of the
observations estimating different contrasts, leaving only a few or even no degrees of freedom at all to estimate
the experiment standard error. Under these conditions it is not possible to assess the statistical significance of
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the estimated contrast effects. Some procedures, for example, the analysis of the normal plot of the effects, have
been developed to overcome this situation.

BsMD package includes a set of functions useful for factor screening in unreplicated factorial experiments.
Some of the functions were written originally for S, then adapted for S-PLUS and now for R. Functions for
Bayesian screening and model discrimination follow-up designs are based on Daniel Meyer’s mdopt fortran
bundle (Meyer, 1996). The programs were modified and converted to subroutines to be called from R functions.

This document is organized in three sections: Screening Designs, Bayesian Screening, and Model Discrimina-
tion, with the references to the articles as subsections to indicate the sources of the examples presented. All the
examples in Box and Meyer (1986, 1993) and Meyer, Steinberg, and Box (1996) are worked out and the code
displayed in its totality to show the use of the functions in the BsMD package. The detailed discussion of the
examples and the theory behind them is left to the original papers. Details of the BsMD functions are contained
to their help pages.

2 Screening Designs

In screening experiments, factor sparsity is usually assumed. That is, from all factors considered in the experiment
only a few of these will actually affect the response. (See for example, Box and Meyer (1986), sec. 1.) Based
on this sparsity hypothesis various procedures have have been developed to identify such active factors. Some of
these procedures are included in the BsMD package: DanielPlot (Normal Plot of Effects), LenthPlot (based on
a robust estimation of the standard error of the contrasts), and BsProb for Bayesian screening. See the references
for details on the theory of the procedures. The data set used in the examples of this section is from Box and
Meyer (1986). They represent four different experiments: log drill advance, tensile strength, shrinkage and yield
of isatin with responses denoted by y1,. . . ,y4 and different design factors. The estimable contrasts are denoted
by X1,. . . ,X15. The design matrix and responses are presented next.

> options(width = 80)

> library(BsMD)

> data(BM86.data, package = "BsMD")

> print(BM86.data)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 y1 y2 y3 y4
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 0.23 43.7 14.0 0.08
2 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 0.30 40.2 16.8 0.04
3 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 0.52 42.4 15.0 0.53
4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 0.54 44.7 15.4 0.43
5 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 0.70 42.4 27.6 0.31
6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 0.76 45.9 24.0 0.09
7 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1.00 42.2 27.4 0.12
8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 0.96 40.6 22.6 0.36
9 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 0.32 42.4 22.3 0.79
10 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 0.39 45.5 17.1 0.68
11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 0.61 43.6 21.5 0.73
12 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 0.66 40.6 17.5 0.08
13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 0.89 44.0 15.9 0.77
14 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 0.97 40.2 21.9 0.38
15 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1.07 42.5 16.7 0.49
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.21 46.5 20.3 0.23

Saturated linear models for each of the responses are fitted and the estimated coefficients are presented in the
table below. The lm calls, not displayed here, produce the advance.lm, . . . , yield.lm objects used in the next
subsections.

advance shrinkage strength yield
(Intercept) 0.70 42.96 19.75 0.38
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X1 0.03 0.06 -0.30 -0.10
X2 0.13 -0.07 -0.20 -0.01
X3 -0.01 0.15 -0.30 0.00
X4 0.25 0.08 2.30 -0.04
X5 0.00 0.20 0.45 0.02
X6 -0.01 -0.01 -0.10 -0.03
X7 0.00 0.19 -0.15 0.07
X8 0.07 0.20 -0.60 0.14
X9 0.01 -0.03 0.35 -0.08
X10 0.00 0.21 0.05 -0.13
X11 0.01 0.06 0.15 -0.05
X12 0.02 0.06 -2.75 -0.01
X13 0.01 -0.19 1.90 0.00
X14 -0.01 1.07 0.05 0.06
X15 0.01 1.55 -0.30 0.01

For each of the experiments the 16 runs are used on the estimation of the 15 contrasts and the constant term.
Thus the need of graphical aims to determine which are likely active contrasts.

2.1 Daniel Plots

Daniel plots, known as normal plot of effects, arrange the estimated factor effects in a normal probability plot;
those factors “out of the straight line” are identified as potentially active factors. See for example, Daniel (1976)
for different applications and interpretations.

DanielPlot produces normal plot of effects. The main argument of the function is an lm object, say,
lm.obj. The function removes the constant term (Intercept) if it is in the model. Factor effects, assumed
as 2*coef(lm.obj) are displayed using the qqnorm function. See the help pages for details.

2.1.1 Box et al. 1986: Example 1

By default DanielPlot labels all the effects, as show in figure a). This example shows how to label only some
particular factors for clarity, as exhibited in figure b). The corresponding linear model advance.lm was already
fitted at the beginning of the section.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), xpd = TRUE, pty = "s", cex.axis = 0.7,

+ cex.lab = 0.8, cex.main = 0.9)

> DanielPlot(advance.lm, cex.pch = 0.8, main = "a) Default Daniel Plot")

> DanielPlot(advance.lm, cex.pch = 0.8, main = "b) Labelled Plot",

+ pch = 20, labels = list(pt = c(2, 4, 8), lab = c(" 2", " 4",

+ " 8")))
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2.1.2 Box et al. 1986: Example 3

Some people prefer the use of half-normal plots. These plots are similar to the normal plots but instead of the
signed effects absolute values of the effects are displayed. There are some advantages and disadvantages using
one or the other. See for example, Daniel (1976, chap. 7.6).

Figure a) depicts the half-normal plot of the effects for the strength response (y3). DanielPlot has the option
to generate half-normal plots (half=TRUE). The corresponding normal plot of signed effects is presented in figure
b) below.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), xpd = TRUE, pty = "s", cex.axis = 0.7,

+ cex.lab = 0.8, cex.main = 0.9)

> DanielPlot(strength.lm, half = TRUE, cex.pch = 0.8, main = "a) Half-Normal Plot",

+ labels = list(pt = c(4, 12, 13), lab = c(" x4", " x12", " x13")))

> DanielPlot(strength.lm, main = "b) Normal Plot", labels = list(pt = c(4,

+ 12, 13), lab = c(" 4", " 12", " 13")))
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2.2 Lenth Plots

Lenth’s method for factor effects assessment is based on factor sparsity too. For and unreplicated factorial design
Let c1, . . . , cm the estimated contrasts and approximate the standard error by s0 = 1.5 ×median |ci|. Then the
author defines the pseudo standard error by

PSE = 1.5× median
|cj |<2.5s0

|cj |

and the 95% margin of error by
ME = t0.975,d × PSE

where t0.975,d is the .975th quantile of the t distribution with d = m/3 degrees of freedom. The 95% simultaneous
margin of error (SME) is defined for simultaneous inference on all the contrast and is given by

SME = tγ,d × PSE

where γ = (1 + 0.951/m)/2. See Lenth (1989), for details.
The LenthPlot function displays the factor effects and the SE and SME limits. Spikes instead of the barplot

used originally by Lenth are employed to represent the factor effects. As in DanielPlot, the main argument for
the function is a lm object, and 2*coef(lm.obj) is displayed.

2.2.1 Box et al. 1986: Example 2

Figure a) below shows the default plot produced by LenthPlot. The SE and MSE limits at a 95% confidence
level (α = 0.05) are displayed by default. Figure b) shows Lenth’s plot for the same experiment using α = 0.01,
locating the labels of SME and ME close to the vertical axis and labelling the contrast effects X14 and X15 as
P and −M , for period and material respectively and accordingly to Lenth’s paper. Note that the effects are
considered as 2 times the coefficients b.
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> par(mfrow = c(1, 2), mar = c(4, 4, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), xpd = TRUE, pty = "s", cex.axis = 0.7,

+ cex.lab = 0.8, cex.main = 0.9)

> LenthPlot(shrinkage.lm)

alpha ME SME
0.0500000 0.5783809 1.1741965

> title("a) Default Lenth Plot")

> b <- coef(shrinkage.lm)[-1]

> LenthPlot(shrinkage.lm, alpha = 0.01, adj = 0.2)

alpha ME SME
0.0100000 0.9072322 1.6855749

> title(substitute("b) Lenth Plot (" * a * ")", list(a = quote(alpha ==

+ 0.01))))

> text(14, 2 * b[14], "P ", adj = 1, cex = 0.7)

> text(15, 2 * b[15], " -M", adj = 0, cex = 0.7)
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2.2.2 Box et al. 1986: Example 4

This example exhibits the Daniel and Lenth plots for the isatin data, originally presented by Davis and co-authors
in 1954 and discussed in the Box and Meyer paper (p. 16–17). As can be seen in the figures below, it is not clear
which contrasts may be active. For example, in Lenth’s plot none of the effects goes beyond the margin of error
ME, thus the SME limits are not displayed. The corresponding Bayes plot is presented in the next section.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)
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> DanielPlot(yield.lm, cex.pch = 0.6, main = "a) Daniel Plot")

> LenthPlot(yield.lm, alpha = 0.05, xlab = "factors", adj = 0.9,

+ main = "b) Lenth Plot")
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3 Bayesian Screening

Box and Meyer Bayesian screening is also based on the factor sparsity hypothesis. For the linear model y = Xβ+ε,
the procedure assigns to each of the βi independent prior normal distributions N(0, γ2σ2), where σ2 is the variance
of the error and γ2 is the magnitude of the effect relative to the experimental noise. The factor sparsity assumption
is brought into the procedure assigning a prior probability π to any factor of being active, and 1−π to the factor
of being inert. Models Ml for all-subsets of factors (main effects and interactions) are constructed and their
posterior probabilities calculated. Marginal factor posterior probabilities pi are computed and displayed. Those
contrasts or factor effects with higher probabilities are identified as potentially active. See Box and Meyer (1986,
1993) for explanation and details of the procedure.

The BsProb function computes the posterior probabilities for Bayesian screening. The function calls the bs
fortran subroutine, a modification of the mbcqpi5.f program included in the mdopt bundle. The complete
output of the program is saved in the working directory as BsPrint.out. The file is overwritten if it already
exists. Thus, rename the BsPrint.out file after each call to BsProb if you want to keep the complete output.
Note however, that most of the output is included in the BsProb’s output list. This is a list of class BsProb with
methods functions for print, plot and summary.

3.1 Fractional Factorial Designs

Bayesian screening was presented by Box and Meyer in their 1986 and 1993 papers. The former refers to 2-level
orthogonal designs while the latter refer to general designs. The distinction is important since in the case of
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2-level orthogonal designs some factorization is possible that allows the calculation of the marginal probabilities
without summing over all-subsets models’ probabilities. This situation is explained in the 1986 paper, where α
and k are used instead of the π and γ described at the beginning of the section. Their correspondence is α = π,
and k2 = nγ2 + 1, where n is the number of runs in the design. The function is written for the general case and
arguments p and g (for π and γ) should be provided. In the mentioned paper the authors estimated α and k for
a number of published examples. They found .13 ≤ α̂ ≤ .27, and 2.7 ≤ k̂ ≤ 27. Average values of α = 0.20 (= π)
and k = 10 (γ = 2.49) are used in the examples.

3.1.1 Box et al. 1986: Example 1

This example exhibits most of the output of the BsProb function. The design matrix and response vector, the 15
contrasts and 5 models posterior probabilities are printed. As mentioned before, g=2.49 corresponds to k = 10
used in the paper. Note that all possible 215 factor combinations were used to construct the totMod=32768
estimated models. Only the top nMod=5 are displayed. See the BsProb help pages for details. Figures below show
the Bayes plot (a) and Daniel plot (b) for the estimated effects. In this case both procedures clearly identify x2,
x4, and x8 as active contrasts.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> X <- as.matrix(BM86.data[, 1:15])

> y <- BM86.data[, 16]

> advance.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,

+ p = 0.2, g = 2.49, ng = 1, nMod = 10)

> print(advance.BsProb, X = FALSE, resp = FALSE, nMod = 5)

Calculations:
nRun nFac nBlk mFac mInt p g totMod
16.00 15.00 0.00 15.00 1.00 0.20 2.49 32768.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.000
2 X1 x1 0.240
3 X2 x2 1.000
4 X3 x3 0.028
5 X4 x4 1.000
6 X5 x5 0.025
7 X6 x6 0.034
8 X7 x7 0.025
9 X8 x8 0.983
10 X9 x9 0.046
11 X10 x10 0.025
12 X11 x11 0.037
13 X12 x12 0.091
14 X13 x13 0.034
15 X14 x14 0.028
16 X15 x15 0.030

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.504 0.003 3 2,4,8
M2 0.148 0.002 4 1,2,4,8
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M3 0.043 0.003 4 2,4,8,12
M4 0.022 0.003 4 2,4,8,9
M5 0.022 0.002 5 1,2,4,8,12

> plot(advance.BsProb, main = "a) Bayes Plot")

> DanielPlot(advance.lm, cex.pch = 0.6, main = "b) Daniel Plot",

+ labels = list(pt = c(2, 4, 8), lab = c(" x2", " x4", " x8")))

a) Bayes Plot

factors

po
st

er
io

r 
pr

ob
ab

ili
ty

none x3 x6 x9 x12 x15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
1

0
1

b) Daniel Plot

effects

no
rm

al
 s

co
re

 x2

 x4

 x8

3.1.2 Box et al. 1986: Example 4

As mentioned in section 2.2.2, in the isatin data example active contrasts, if present, are not easily identified
by Daniel or Lenth’s plot. This situation is reflected in the sensitivity of the Bayes procedure to the value of γ.
Different values for k (γ) can be provided to the BsProb function and the respective factor posterior probabilities
computed. The range of such probabilities is plotted as stacked spikes. This feature is useful in data analysis. See
next subsection for further explanation. In the call of the function BsProb, g=c(1.22,3.74) and ng=10 indicate
that the calculation of the marginal posterior probabilities is done for 10 equally spaced values of γ in the range
(1.22, 3.74) corresponding to the range of k between 5 and 15 used in the paper. The sensitivity of the posterior
probabilities to various values of γ is exhibited in figure a) below. The large ranges displayed by some of the
contrasts is an indication that no reliable inference is possible to draw from the data.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> X <- as.matrix(BM86.data[, 1:15])

> y <- BM86.data[, 19]

> yield.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,

+ p = 0.2, g = c(1.22, 3.74), ng = 10, nMod = 10)

> summary(yield.BsProb)
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Calculations:
nRun nFac nBlk mFac mInt p g[1] g[10]
16.00 15.00 0.00 15.00 1.00 0.20 1.22 3.74
totMod

32768.00

Posterior probabilities for each gamma value:
1 2 3 4 5 6 7 8 9 10

gamma 1.220 1.500 1.780 2.060 2.340 2.620 2.900 3.180 3.460 3.740
none 0.120 0.167 0.218 0.268 0.316 0.360 0.400 0.436 0.469 0.498
x1 0.314 0.271 0.228 0.190 0.159 0.134 0.115 0.099 0.086 0.076
x2 0.049 0.041 0.035 0.030 0.027 0.024 0.022 0.020 0.018 0.017
x3 0.048 0.039 0.034 0.029 0.026 0.023 0.021 0.019 0.018 0.016
x4 0.074 0.066 0.059 0.053 0.048 0.042 0.037 0.032 0.028 0.025
x5 0.051 0.043 0.037 0.032 0.028 0.026 0.023 0.021 0.019 0.018
x6 0.066 0.057 0.051 0.047 0.042 0.038 0.034 0.030 0.027 0.024
x7 0.196 0.170 0.143 0.119 0.099 0.083 0.070 0.060 0.052 0.045
x8 0.588 0.531 0.473 0.420 0.374 0.335 0.302 0.274 0.250 0.230
x9 0.228 0.197 0.164 0.136 0.113 0.095 0.080 0.069 0.060 0.052
x10 0.513 0.456 0.399 0.348 0.304 0.267 0.237 0.212 0.191 0.173
x11 0.104 0.093 0.082 0.071 0.061 0.052 0.045 0.039 0.034 0.030
x12 0.050 0.041 0.035 0.031 0.027 0.024 0.022 0.020 0.019 0.017
x13 0.048 0.040 0.034 0.029 0.026 0.023 0.021 0.019 0.018 0.016
x14 0.142 0.125 0.107 0.091 0.076 0.064 0.055 0.047 0.041 0.035
x15 0.049 0.040 0.034 0.030 0.026 0.024 0.021 0.020 0.018 0.017

> plot(yield.BsProb, main = "a) Bayes Plot")

> title(substitute("( " * g * " )", list(g = quote(1.2 <= gamma <=

+ 3.7))), line = -1)

> DanielPlot(yield.lm, cex.pch = 0.6, main = "b) Daniel Plot",

+ labels = list(pt = c(1, 7, 8, 9, 10, 14), lab = paste(" ",

+ c(1, 7, 8, 9, 10, 14), sep = "")))



Bayesian Screening and Model Discrimination 11
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3.2 Plackett-Burman Designs

Simulation studies have shown Bayes screening to be robust to reasonable values of π (α). The method however is
more sensitive to variation of γ values. Box and Meyer suggest the use of the γ value that minimize the posterior
probability of the null model (no active factors). The rationale of this recommendation is because this value of γ
also maximizes the likelihood function of γ since

p(γ|y) ∝ 1
p(M0|y, γ)

where M0 denotes the null model with no factors. See Box and Meyer (1993) and references therein.

3.2.1 Box et al. 1993: Example 1

This example considers a factorial design where 5 factors are allocated in a 12-run Plackett-Burman. The runs
were extracted from the 25 factorial design in of the reactor experiment introduced by Box et al. (1978) and
presented in section 4.1.2. Posterior probabilities are obtained and 3 factors are identified as potentially active,
as shown in figure a) below. Then, the complete saturated design (11 orthogonal columns) is considered and
marginal probabilities are calculated and displayed in figure b). None of the other contrasts x6–x11 seem to be
active.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> data(BM93.e1.data, package = "BsMD")

> X <- as.matrix(BM93.e1.data[, 2:6])

> y <- BM93.e1.data[, 7]

> prob <- 0.25

> gamma <- 1.6

> reactor5.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 5, mInt = 3,
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+ p = prob, g = gamma, ng = 1, nMod = 10)

> summary(reactor5.BsProb)

Calculations:
nRun nFac nBlk mFac mInt p g totMod
12.00 5.00 0.00 5.00 3.00 0.25 1.60 32.00

Factor probabilities:
Factor Code Prob

1 none none 0.025
2 A x1 0.011
3 B x2 0.964
4 C x3 0.009
5 D x4 0.899
6 E x5 0.577

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.563 8.67 3 2,4,5
M2 0.324 39.51 2 2,4
M3 0.062 122.11 1 2
M4 0.025 240.45 0 none
M5 0.004 89.75 2 2,5
M6 0.003 211.33 1 5
M7 0.003 22.91 3 1,2,4
M8 0.002 226.88 1 4
M9 0.002 5.96 4 2,3,4,5
M10 0.002 5.99 4 1,2,4,5

> plot(reactor5.BsProb, main = "a) Main Effects")

> data(PB12Des, package = "BsMD")

> X <- as.matrix(PB12Des)

> reactor11.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 11,

+ mInt = 3, p = prob, g = gamma, ng = 1, nMod = 10)

> print(reactor11.BsProb, models = FALSE)

Design Matrix:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 1 -1 1 -1 -1 -1 1 1 1 -1 1
2 1 1 -1 1 -1 -1 -1 1 1 1 -1
3 -1 1 1 -1 1 -1 -1 -1 1 1 1
4 1 -1 1 1 -1 1 -1 -1 -1 1 1
5 1 1 -1 1 1 -1 1 -1 -1 -1 1
6 1 1 1 -1 1 1 -1 1 -1 -1 -1
7 -1 1 1 1 -1 1 1 -1 1 -1 -1
8 -1 -1 1 1 1 -1 1 1 -1 1 -1
9 -1 -1 -1 1 1 1 -1 1 1 -1 1
10 1 -1 -1 -1 1 1 1 -1 1 1 -1
11 -1 1 -1 -1 -1 1 1 1 -1 1 1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Response vector:
56 93 67 60 77 65 95 49 44 63 63 61

Calculations:
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nRun nFac nBlk mFac mInt p g totMod
12.00 11.00 0.00 11.00 3.00 0.25 1.60 2048.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.019
2 x1 x1 0.056
3 x2 x2 0.881
4 x3 x3 0.053
5 x4 x4 0.823
6 x5 x5 0.531
7 x6 x6 0.065
8 x7 x7 0.052
9 x8 x8 0.067
10 x9 x9 0.110
11 x10 x10 0.052
12 x11 x11 0.090

> plot(reactor11.BsProb, main = "b) All Contrasts")
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3.2.2 Box et al. 1993: Example 2

In this example again a 12-run Plackett-Burman design is analyzed. The effect of 8 factors (A, . . . , G), on the
fatigue life of weld repaired castings is studied. As mentioned before, Box and Meyer suggest the use of values of
γ that maximizes its likelihood (minimizes the probability of the null model). Figure a) below displays P{γ|y}
(≡ 1/P{M0|y}) as function of γ. It can be seen that the likelihood P{γ|y} is maximum around γ = 1.5. In this
example the maximization is carried out by calculating the marginal posterior probabilities for 1 ≤ γ ≤ 2 and
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plotting the reciprocal of the probabilities of the null model. These probabilities are allocated in the first row of
the probabilities matrix (fatigueG.BsProb$prob), where fatigueG.BsProb is the output of BsProb. A Bayes
plot based on this γ = 1.5 is exhibited in figure b). Factors F (X6) and G(X7) clearly stick out from the rest.
Alternatively, the unscaled γ likelihood (P{γ|y}) could be used since it has been already calculated by BsProb
and assigned to fatigueG.BsProb$pgam element.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 1, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> data(BM93.e2.data, package = "BsMD")

> X <- as.matrix(BM93.e2.data[, 1:7])

> y <- BM93.e2.data[, 8]

> prob <- 0.25

> gamma <- c(1, 2)

> ng <- 20

> fatigueG.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 7, mInt = 2,

+ p = prob, g = gamma, ng = ng, nMod = 10)

> plot(fatigueG.BsProb$GAMMA, 1/fatigueG.BsProb$prob[1, ], type = "o",

+ xlab = expression(gamma), ylab = substitute("P{" * g * "|y}",

+ list(g = quote(gamma))))

> title(substitute("a) P{" * g * "|y}" %prop% "1/P{Null|y, " *

+ g * "}", list(g = quote(gamma))), line = +0.5, cex.main = 0.8)

> gamma <- 1.5

> fatigue.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 7, mInt = 2,

+ p = prob, g = gamma, ng = 1, nMod = 10)

> plot(fatigue.BsProb, main = "b) Bayes Plot", code = FALSE)

> title(substitute("( " * g * " )", list(g = quote(gamma == 1.5))),

+ line = -1)
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3.3 Extra Runs

3.3.1 Box et al. 1993: Example 3

This the injection molding example from Box et al. (1978), where the analysis of the design is discussed in detail.
In Box and Meyer (1993) the design is reanalyzed from the Bayesian approach. Firstly, a 16-run fractional
factorial design is analyzed and the marginal posterior probabilities are calculated and displayed in figure a)
below. Factors A, C, E and H are identified as potential active factors. The 28−4 factorial design collapses to a
replicated 24−1 design in these factors. Thus, estimates of the main effects and interactions are not all possible.
Then, it is assumed that 4 extra runs are available and the full 20-run design is analyzed considering the blocking
factor as another design factor. Their posterior probabilities are computed and exhibited in figure b). It is noted
in the paper that the conclusions arrived there differ from those in Box et al. (1978), because the order of the
interactions considered in the analysis, 3 and 2 respectively. In the BsProb function, the maximum interaction
order to consider is declared with the argument mInt. For a detailed of the analysis see the source paper and
reference therein.

> par(mfrow = c(1, 2), mar = c(4, 4, 1, 1), mgp = c(2, 0.5, 0),

+ oma = c(0, 0, 1, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> data(BM93.e3.data, package = "BsMD")

> print(BM93.e3.data)

blk A B C D E F G H y
1 -1 -1 -1 -1 1 1 1 -1 1 14.0
2 -1 1 -1 -1 -1 -1 1 1 1 16.8
3 -1 -1 1 -1 -1 1 -1 1 1 15.0
4 -1 1 1 -1 1 -1 -1 -1 1 15.4
5 -1 -1 -1 1 1 -1 -1 1 1 27.6
6 -1 1 -1 1 -1 1 -1 -1 1 24.0
7 -1 -1 1 1 -1 -1 1 -1 1 27.4
8 -1 1 1 1 1 1 1 1 1 22.6
9 -1 1 1 1 -1 -1 -1 1 -1 22.3
10 -1 -1 1 1 1 1 -1 -1 -1 17.1
11 -1 1 -1 1 1 -1 1 -1 -1 21.5
12 -1 -1 -1 1 -1 1 1 1 -1 17.5
13 -1 1 1 -1 -1 1 1 -1 -1 15.9
14 -1 -1 1 -1 1 -1 1 1 -1 21.9
15 -1 1 -1 -1 1 1 -1 1 -1 16.7
16 -1 -1 -1 -1 -1 -1 -1 -1 -1 20.3
17 1 -1 1 1 1 -1 -1 -1 1 29.4
18 1 -1 1 -1 -1 -1 1 1 1 19.7
19 1 1 1 -1 -1 1 -1 -1 1 13.6
20 1 1 1 1 1 1 1 1 1 24.7

> X <- as.matrix(BM93.e3.data[1:16, 2:9])

> y <- BM93.e3.data[1:16, 10]

> prob <- 0.25

> gamma <- 2

> plot(BsProb(X = X, y = y, blk = 0, mFac = 8, mInt = 3, p = prob,

+ g = gamma, ng = 1, nMod = 10), code = FALSE, main = "a) Fractional Factorial (FF)")

> X <- as.matrix(BM93.e3.data[, c(2:9, 1)])

> y <- BM93.e3.data[, 10]

> plot(BsProb(X = X, y = y, blk = 0, mFac = 9, mInt = 3, p = prob,

+ g = gamma, ng = 1, nMod = 5), code = FALSE, main = "b) FF with Extra Runs",

+ prt = TRUE, )
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Calculations:
nRun nFac nBlk mFac mInt p g totMod
20.00 9.00 0.00 9.00 3.00 0.25 2.00 512.00

Factor probabilities:
Factor Code Prob

1 none none 0.000
2 A x1 0.781
3 B x2 0.000
4 C x3 1.000
5 D x4 0.000
6 E x5 0.987
7 F x6 0.000
8 G x7 0.000
9 H x8 0.318
10 blk x9 0.045

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.672 1.012 3 1,3,5
M2 0.194 1.154 3 3,5,8
M3 0.086 0.593 4 1,3,5,8
M4 0.024 0.473 4 3,5,8,9
M5 0.010 0.519 4 1,3,5,9

> mtext(side = 1, "(Blocking factor blk)", cex = 0.7, line = 2.5)
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4 Model Discrimination

Follow-up experiments for model discrimination (MD) are discussed by Meyer, Steinberg, and Box (1996). They
introduce the design of follow-up experiments based on the MD criterion:

MD =
∑
i 6=j

P (Mi|Y )P (Mj |Y )I(pi, pj)

where pi denotes the predictive density of a new observation(s) conditional on the observed data Y and on model
Mi being the correct model, and I(pi, pj)=

∫
pi ln(pi/pj) is the Kullback-Leibler information, measuring the mean

information for discriminating in favor of Mi against Mj when Mi is true. Under this criterion designs with larger
MD are preferred.

The criterion combines the ideas for discrimination among models presented by Box and Hill (1967) and the
Bayesian factor screening by Box and Meyer. The authors present examples for 4-run follow-up experiments but
the criterion can be applied to any number of runs. In the next subsections we present the 4-run examples in
the Meyer et al. (1996) paper and revisit the last of the examples from the one-run-at-a-time experimentation
strategy.

The MD function is available for MD optimal follow-up designs. The function calls the md fortran subroutine,
a modification of the MD.f program included in the mdopt bundle. The output of the MD program is saved at the
working directory in MDPrint.out file. The output of the MD function is a list of class MD with print and summary
method functions.

For a given number of factors and a number of follow-up sets of runs, models are built and their MD calculated.
The method employs the exchange search algorithm. See Meyer et al. (1996) and references therein. The MD
function uses factor probabilities provided by BsProb. See the help pages for details.

4.1 4-run Follow-Up Experiments

4.1.1 Meyer et al. 1996: Example 1

The example presents the 5 best MD 4-run follow-up experiments for injection molding example, presented in
section 3.3.1. In the code below note the call to the BsProb function before calling MD. The procedure selects
the follow-up runs from a set of candidate runs Xcand (the original 28−4 design), including the blocking factor
blk. The best 4-run follow-up experiment, runs (9, 9, 12, 15), has a MD of 85.72, followed by (9,12,14,15) with
MD = 84.89. Note that these runs are different from the 4 extra runs in section 3.3.1.

> par(mfrow = c(1, 2), mar = c(3, 4, 1, 1), mgp = c(2, 0.5, 0),

+ oma = c(0, 0, 1, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> data(BM93.e3.data, package = "BsMD")

> X <- as.matrix(BM93.e3.data[1:16, c(1, 2, 4, 6, 9)])

> y <- BM93.e3.data[1:16, 10]

> injection16.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 4,

+ mInt = 3, p = 0.25, g = 2, ng = 1, nMod = 5)

> X <- as.matrix(BM93.e3.data[1:16, c(1, 2, 4, 6, 9)])

> p <- injection16.BsProb$ptop

> s2 <- injection16.BsProb$sigtop

> nf <- injection16.BsProb$nftop

> facs <- injection16.BsProb$jtop

> nFDes <- 4

> Xcand <- matrix(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

+ 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1,

+ -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1,

+ 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,

+ 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1), nrow = 16,

+ dimnames = list(1:16, c("blk", "A", "C", "E", "H")))



Bayesian Screening and Model Discrimination 18

> print(MD(X = X, y = y, nFac = 4, nBlk = 1, mInt = 3, g = 2, nMod = 5,

+ p = p, s2 = s2, nf = nf, facs = facs, nFDes = 4, Xcand = Xcand,

+ mIter = 20, nStart = 25, top = 5))

Base:
nRuns nFac nBlk maxInt gMain gInter nMod

16 4 1 3 2 2 5

Follow up:
nCand nRuns maxIter nStart

16 4 20 25

Competing Models:
Prob Sigma2 NumFac Factors

M1 0.236 0.582 3 1,2,3
M2 0.236 0.582 3 2,3,4
M3 0.236 0.582 3 1,3,4
M4 0.236 0.582 3 1,2,4
M5 0.057 0.441 4 1,2,3,4

Candidate runs:
blk A C E H

1 1 -1 -1 -1 -1
2 1 -1 -1 1 1
3 1 -1 1 -1 1
4 1 -1 1 1 -1
5 1 1 -1 -1 1
6 1 1 -1 1 -1
7 1 1 1 -1 -1
8 1 1 1 1 1
9 1 -1 -1 -1 1
10 1 -1 -1 1 -1
11 1 -1 1 -1 -1
12 1 -1 1 1 1
13 1 1 -1 -1 -1
14 1 1 -1 1 1
15 1 1 1 -1 1
16 1 1 1 1 -1

Search trace output file: MDPrint.out

Top 5 runs:
D r1 r2 r3 r4

1 85.726 9 9 12 15
2 84.893 9 12 14 15
3 83.684 9 11 12 15
4 77.136 9 11 12 14
5 77.111 9 9 11 12

4.1.2 Meyer et al. 1996: Example 2

This example is based on the 25 factorial reactor experiment presented initially in Box et al. (1978, chap. 12) and
revisited from the MD criterion perspective in Box et al. (2004, chap. 7). The full design matrix and response is:
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> data(Reactor.data, package = "BsMD")

> print(Reactor.data)

A B C D E y
1 -1 -1 -1 -1 -1 61
2 1 -1 -1 -1 -1 53
3 -1 1 -1 -1 -1 63
4 1 1 -1 -1 -1 61
5 -1 -1 1 -1 -1 53
6 1 -1 1 -1 -1 56
7 -1 1 1 -1 -1 54
8 1 1 1 -1 -1 61
9 -1 -1 -1 1 -1 69
10 1 -1 -1 1 -1 61
11 -1 1 -1 1 -1 94
12 1 1 -1 1 -1 93
13 -1 -1 1 1 -1 66
14 1 -1 1 1 -1 60
15 -1 1 1 1 -1 95
16 1 1 1 1 -1 98
17 -1 -1 -1 -1 1 56
18 1 -1 -1 -1 1 63
19 -1 1 -1 -1 1 70
20 1 1 -1 -1 1 65
21 -1 -1 1 -1 1 59
22 1 -1 1 -1 1 55
23 -1 1 1 -1 1 67
24 1 1 1 -1 1 65
25 -1 -1 -1 1 1 44
26 1 -1 -1 1 1 45
27 -1 1 -1 1 1 78
28 1 1 -1 1 1 77
29 -1 -1 1 1 1 49
30 1 -1 1 1 1 42
31 -1 1 1 1 1 81
32 1 1 1 1 1 82

First, it is assumed that only 8 runs (25, 2, . . . , 32), from a 25−2 were run. The runs are displayed in the
output as Fraction. Bayesian screening is applied and posterior marginal probabilities are calculated and shown
in figure a) below. These probabilities are used to find the MD optimal 4-run follow-up designs choosing the
possible factor level combinations from the full 25 design. Since in this example responses for all the 32 runs are
available, they are used as if the follow-up experiment was actually run and the posterior factor probabilities for
the 12-run experiment determined and displayed in figure b). It is apparent how the extra runs clean up the
activity of factors B, D and E. Note that the output of the BsProb function is used in the the call of MD. The
complete output of both functions is sent to the files BsPrint.out and MDPrint.out respectively. Also, remember
that method functions print and summary are available to control the amount of displayed output.

> par(mfrow = c(1, 2), mar = c(3, 4, 1, 1), mgp = c(2, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> fraction <- c(25, 2, 19, 12, 13, 22, 7, 32)

> cat("Fraction: ", fraction)

Fraction: 25 2 19 12 13 22 7 32
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> X <- as.matrix(cbind(blk = rep(-1, 8), Reactor.data[fraction,

+ 1:5]))

> y <- Reactor.data[fraction, 6]

> print(reactor8.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5,

+ mInt = 3, p = 0.25, g = 0.4, ng = 1, nMod = 32), X = FALSE,

+ resp = FALSE, factors = TRUE, models = FALSE)

Calculations:
nRun nFac nBlk mFac mInt p g totMod
8.00 5.00 1.00 5.00 3.00 0.25 0.40 32.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.230
2 A x1 0.271
3 B x2 0.375
4 C x3 0.172
5 D x4 0.291
6 E x5 0.170

> plot(reactor8.BsProb, code = FALSE, main = "a) Initial Design\n(8 runs)")

> p <- reactor8.BsProb$ptop

> s2 <- reactor8.BsProb$sigtop

> nf <- reactor8.BsProb$nftop

> facs <- reactor8.BsProb$jtop

> nFDes <- 4

> Xcand <- as.matrix(cbind(blk = rep(+1, 32), Reactor.data[, 1:5]))

> print(MD(X = X, y = y, nFac = 5, nBlk = 1, mInt = 3, g = 0.4,

+ nMod = 32, p = p, s2 = s2, nf = nf, facs = facs, nFDes = 4,

+ Xcand = Xcand, mIter = 20, nStart = 25, top = 5), Xcand = FALSE,

+ models = FALSE)

Base:
nRuns nFac nBlk maxInt gMain gInter nMod
8.0 5.0 1.0 3.0 0.4 0.4 32.0

Follow up:
nCand nRuns maxIter nStart

32 4 20 25

Search trace output file: MDPrint.out

Top 5 runs:
D r1 r2 r3 r4

1 0.615 4 10 11 26
2 0.610 4 10 11 28
3 0.608 4 10 26 27
4 0.606 4 10 12 27
5 0.603 4 11 12 26

> new.runs <- c(4, 10, 11, 26)

> cat("Follow-up:", new.runs)

Follow-up: 4 10 11 26
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> X <- rbind(X, Xcand[new.runs, ])

> y <- c(y, Reactor.data[new.runs, 6])

> print(reactor12.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5,

+ mInt = 3, p = 0.25, g = 1.2, ng = 1, nMod = 5))

Design Matrix:
blk A B C D E

25 -1 -1 -1 -1 1 1
2 -1 1 -1 -1 -1 -1
19 -1 -1 1 -1 -1 1
12 -1 1 1 -1 1 -1
13 -1 -1 -1 1 1 -1
22 -1 1 -1 1 -1 1
7 -1 -1 1 1 -1 -1
32 -1 1 1 1 1 1
4 1 1 1 -1 -1 -1
10 1 1 -1 -1 1 -1
11 1 -1 1 -1 1 -1
26 1 1 -1 -1 1 1

Response vector:
44 53 70 93 66 55 54 82 61 61 94 45

Calculations:
nRun nFac nBlk mFac mInt p g totMod
12.00 5.00 1.00 5.00 3.00 0.25 1.20 32.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.041
2 A x1 0.012
3 B x2 0.938
4 C x3 0.199
5 D x4 0.873
6 E x5 0.647

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.462 17.11 3 2,4,5
M2 0.209 66.63 2 2,4
M3 0.172 7.51 4 2,3,4,5
M4 0.064 167.76 1 2
M5 0.041 288.79 0 none

> plot(reactor12.BsProb, code = FALSE, main = "b) Complete Design\n(12 runs)")
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4.2 One-run-at-a-time Experiments

4.2.1 Meyer et al. 1996: Example 2

Example 4.1.2 is considered again in this subsection. In this exercise we assume that the follow-up experimentation
is in one-run-at-a-time fashion instead of the 4-run experiment discussed before. At each stage marginal posterior
probabilities are computed and MD is determined, using γ = 0.4, 0.7, 1.0, 1.3. Once again, candidate runs are
chosen from the 25 design. It can be seen there that at run 11, factors B, D and possibly E too, are cleared from
the other factors. Note also that the final set of runs under the one-at-a-time approach (10, 4, 11, 15) ended being
different from (4, 10, 11, 26) suggested by the 4-run follow-up strategy based on γ = 0.4. Bayes plots for each step
are displayed in the figure below. See Box et al. (2004, chap. 7) for discussion of this approach. The code used in
this section is included as appendix.

Design Matrix:
blk A B C D E

25 -1 -1 -1 -1 1 1
2 -1 1 -1 -1 -1 -1
19 -1 -1 1 -1 -1 1
12 -1 1 1 -1 1 -1
13 -1 -1 -1 1 1 -1
22 -1 1 -1 1 -1 1
7 -1 -1 1 1 -1 -1
32 -1 1 1 1 1 1
10 1 1 -1 -1 1 -1
4 1 1 1 -1 -1 -1
11 1 -1 1 -1 1 -1
15 1 -1 1 1 1 -1

Response vector:
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44 53 70 93 66 55 54 82 61 61 94 95

Calculations:
nRun nFac nBlk mFac mInt p g totMod
12.00 5.00 1.00 5.00 3.00 0.25 1.30 32.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.035
2 A x1 0.026
3 B x2 0.944
4 C x3 0.021
5 D x4 0.917
6 E x5 0.469

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.441 15.24 3 2,4,5
M2 0.428 52.45 2 2,4
M3 0.036 173.18 1 2
M4 0.036 277.34 0 none
M5 0.016 8.95 4 1,2,4,5
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b) 9 runs
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c) 10 runs
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d) 11 runs
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e) 12 runs

One−at−a−time Experiments

5 Summary

Various techniques are available for factor screening of unreplicated experiments. In this document we presented
the functions of the BsMD package for Bayesian Screening and Model Discrimination. A number of examples
were worked to show some of the features of such functions. We refer the reader to the original papers for detailed
discussion of the examples and the theory behind the procedures.
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Appendix

Code used in section 4.2.1.

data(Reactor.data,package="BsMD")

#cat("Initial Design:\n")
X <- as.matrix(cbind(blk=rep(-1,8),Reactor.data[fraction,1:5]))
y <- Reactor.data[fraction,6]
lst <- reactor8.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=0.40,ng=1,nMod=32)

#cat("Follow-Up: run 1\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor8.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=0.40,nMod=32,p=p,s2=s2,nf=nf,facs=facs,

nFDes=1,Xcand=Xcand,mIter=20,nStart=25,top=3)
new.run <- 10
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run
y <- c(y,Reactor.data[new.run,6])
lst <- reactor9.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=0.7,ng=1,nMod=32)

#cat("Follow-Up: run 2\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor9.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=0.7,nMod=32,p=p,s2=s2,nf=nf,facs=facs,

nFDes=1,Xcand=Xcand,mIter=20,nStart=25,top=3)
new.run <- 4
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run
y <- c(y,Reactor.data[new.run,6])
lst <- reactor10.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.0,ng=1,nMod=32)

#cat("Follow-Up: run 3\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor10.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=1.0,nMod=32,p=p,s2=s2,nf=nf,facs=facs,

nFDes=1,Xcand=Xcand,mIter=20,nStart=25,top=3)
new.run <- 11
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run
y <- c(y,Reactor.data[new.run,6])
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lst <- reactor11.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.3,ng=1,nMod=32)

#cat("Follow-Up: run 4\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor10.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=1.3,nMod=32,p=p,s2=s2,nf=nf,facs=facs,

nFDes=1,Xcand=Xcand,mIter=20,nStart=25,top=3)
new.run <- 15
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run
y <- c(y,Reactor.data[new.run,6])
reactor12 <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.30,ng=1,nMod=10)

print(reactor12,nMod=5,models=TRUE,plt=FALSE)

par(mfrow=c(2,2),mar=c(3,4,1,1),mgp=c(2,.5,0),oma=c(1,0,1,0),
pty="s",cex.axis=0.7,cex.lab=0.8,cex.main=0.9)

plot(reactor9.BsProb,code=FALSE)
mtext(side=1,"b) 9 runs",line=3,cex=0.7)
plot(reactor10.BsProb,code=FALSE)
mtext(side=1,"c) 10 runs",line=3,cex=0.7)
plot(reactor11.BsProb,code=FALSE)
mtext(side=1,"d) 11 runs",line=3,cex=0.7)
plot(reactor12.BsProb,code=FALSE)
mtext(side=1,"e) 12 runs",line=3,cex=0.7)
title("One-at-a-time Experiments",outer=TRUE)


