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1 Introduction

BoolNet is an R package that provides tools for assembling, analyzing and visu-
alizing synchronous and asynchronous Boolean networks as well as probabilistic
Boolean networks. This document gives an introduction to the usage of the
software and includes examples for use cases.

BoolNet supports three types of networks:

Synchronous Boolean networks consist of a set of Boolean variables

X = {X1, . . . , Xn}

and a set of transition functions

F = {f1, . . . , fn} ,

one for each variable. These transition functions map an input of the
Boolean variables in X to a Boolean value (0 or 1). We call a Boolean
vector x(t) = (x1(t), . . . , xn(t)) the state of the network at time t. Then,
the next state of the network x(t+1) is calculated by applying all transition
functions fi(x(t)).

In a biological context, genes can be modeled as Boolean variables (ac-
tive/expressed or inactive/not expressed), and the transition functions model
the dependencies among these genes. In the synchronous model, the as-
sumption is that all genes are updated at the same time. This simplifica-
tion facilitates the analysis of the networks.

Asynchronous Boolean networks have the same structure as synchronous
Boolean networks. Yet, at each point of time t, only one of the transition
functions fi ∈ F is chosen at random, and the corresponding Boolean
variable is updated. This corresponds to the assumption that in a genetic
network, gene expression levels are likely to change at different points
of time. In the most common model, the gene to be updated is chosen
uniformly among all genes. Moreover, BoolNet supports specifying non-
uniform update probabilities for the genes.

Probabilistic Boolean networks (PBN) allow for specifying more than one
transition function per variable/gene. Each of these functions has a proba-
bility to be chosen, where the probabilities of all functions for one variable
sum up to 1. Formally

F = {{(f11, p11) , . . . , (f1k1 , p1k1)} , . . . , {(fn1, pn1) , . . . , (fnkn , pnkn)}}

where ki is the number of alternative transition functions for variable i,
and pij is the probability that function j is chosen for variable i. A state
transition is performed by selecting one function for each gene based on
the probabilities and applying the chosen functions synchronously.

In BoolNet, synchronous and asynchronous Boolean networks are modeled in
the data structure BooleanNetwork, and probabilistic networks are modeled in
the data structure ProbabilisticBooleanNetwork. The package provides several
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methods of constructing networks: Networks can be loaded from files in which
human experts describe the dependencies between the genes. Furthermore, they
can be reconstructed from time series of gene expression measurements. It is also
possible to generate random networks. This can be helpful for the identification
of distinct properties of biological networks by comparison to random structures.
The different methods of assembling networks are described in Section 2.

In Section 3, tools for the analysis and visualization of network properties are
introduced. For synchronous and asynchronous Boolean networks, the most im-
portant tool is the identification of attractors. Attractors are cycles of states
and are assumed to be associated with the stable states of cell function. Another
possibility of identifying relevant states is the included Markov chain simulation.
This method is particularly suited for probabilistic networks and calculates the
probability that a state is reached after a certain number of iterations. To test
the robustness of structural properties of the networks to noise and mismeasure-
ments, the software also includes extensive support for perturbing networks. In
this way, it is possible to test these properties in noisy copies of a biological
network.

In Section 4, the interaction of BoolNet with related software is described. The
necessary steps to import networks from BioTapestry and to export networks
to Pajek are outlined.

For the examples in the following sections, we assume that the BoolNet package
has been properly installed into the R environment. This can be done by typing

> install.packages("BoolNet")

into the R console or by the corresponding menu entries in an R GUI. For
some of the plots, the igraph package is required and must be installed in
your R environment as well. This is analogous to installing BoolNet. For
the BioTapestry import, the XML package must be installed. Additionally, the
BoolNet package must be loaded via

> library(BoolNet)

2 Assembling networks

2.1 Assembling a network from expert knowledge

A major advantage of Boolean networks is the fact that natural-language state-
ments can easily be transferred into this representation. This allows researchers
for building Boolean networks entirely from expert knowledge, for example by
collecting statements on gene dependencies from literature and expressing them
as Boolean rules.

BoolNet is able to read in networks consisting of such rule sets in a standardized
text file format. In such a file, each line consists of a target gene and an update
rule, usually separated by a comma. Optionally, it is also possible to add a
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probability for the rule if the file describes a probabilistic network. The first
line of such a file is a header

targets, factors

or

targets, factors, probabilities

To illustrate the process of transforming natural-language statements into Boolean
rules, we take a look at the mammalian cell cycle network introduced by Fauré
et al. [5]. In Table 1 of this paper, the authors list natural-language statements
of gene dependencies and the corresponding Boolean expressions. The following
rules are taken from this table.

For gene CycD, Fauré et al. state:

CycD is an input, considered as constant.

Transforming this into a Boolean rule is rather simple: CycD does not change its
value, which means that its value after a transition only depends on its previous
value. Thus, the transition rule is

CycD, CycD

Gene Rb has a more complex description:

Rb is expressed in the absence of the cyclins, which inhibit it by
phosphorylation [...]; it can be expressed in the presence of CycE or
CycA if their inhibitory activity is blocked by p27.

As a general rule, inhibition can be represented by a Boolean negation. In the
BoolNet file format, a negation is expressed by the ! character. The referenced
cyclins comprise the genes CycA, CycB, CycD, and CycE. If all these genes
are absent, Rb is expressed – i.e. if CycA is not expressed and CycB is not
expressed and CycD is not expressed and CycE is not expressed. A logical AND
is embodied by the & character. Consequently, the first part of the rule is

! CycA & ! CycB & ! CycD & ! CycE

In combination with the above statement, the fact that Rb can be expressed in
the presence of CycE and CycA if p27 is active means that CycB and CycD
must not be active. Thus, the second part of the rule is

p27 & ! CycB & ! CycD

This statement is an exception (or alternative) to the first statement; this can
be expressed as a logical OR, for which the | character is used.

The complete rule for gene Rb is thus

Rb, (! CycA & ! CycB & ! CycD & ! CycE) | (p27 & ! CycB & ! CycD)
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After processing all genes in the table in this way, we get the following network
description:

targets, factors

CycD, CycD

Rb, (! CycA & ! CycB & ! CycD & ! CycE) | (p27 & ! CycB & ! CycD)

E2F, (! Rb & ! CycA & ! CycB) | (p27 & ! Rb & ! CycB)

CycE, (E2F & ! Rb)

CycA, (E2F & ! Rb & ! Cdc20 & ! (Cdh1 & UbcH10)) | (CycA & ! Rb & ! Cdc20 & ! (Cdh1 & UbcH10))

p27, (! CycD & ! CycE & ! CycA & ! CycB) | (p27 & ! (CycE & CycA) & ! CycB &! CycD)

Cdc20, CycB

Cdh1,(! CycA & ! CycB) | (Cdc20) | (p27 & ! CycB)

UbcH10, ! Cdh1 | (Cdh1 & UbcH10 & (Cdc20 | CycA | CycB))

CycB, ! Cdc20 & ! Cdh1

Now save this description to a file “cellcycle.txt” in your R working directory.
The network can be loaded via

> cellcycle <- loadNetwork("cellcycle.txt")

The same network is also included in BoolNet as an example and can be accessed
via

> data(cellcycle)

As the above example does not cover all possibilities of the network description
language, a full language specification is provided in Section 5.

2.2 Reconstructing a network from time series

An entirely different approach of assembling a network is to infer rules from
series of expression measurements of the involved genes over time. For example,
microarray experiments can be conducted at different points of time to cover
the expression levels of different cell states. To reconstruct networks from such
data, BoolNet includes two reconstruction algorithms, Best-Fit Extension [9]
and REVEAL [11]. REVEAL requires the inferred functions to match the input
time series perfectly, hence it is not always able to reconstruct networks in the
presence of noisy and inconsistent measurements. Best-Fit Extension retrieves
a set of functions with minimum error on the input and is thus suited for noisy
data.

In the following, we introduce a tool chain for the reconstruction of a Proba-
bilistic Boolean Network from time series using Best-Fit extension.

Microarray measurements are usually represented as matrices of real-valued
numbers which, for example, quantify the expression levels of genes. BoolNet

includes a real-valued time series of gene measurements from a project to analyze
the yeast cell cycle [14] which can be loaded using

> data(yeastTimeSeries)

This data contains four preselected genes and a series of 14 measurements for
each of these genes.

In a first step, the real-valued dataset has to be converted to binary data as
required by the reconstruction algorithm. BoolNet offers several binarization
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algorithms in the function binarizeTimeSeries(). We here employ the de-
fault method which is based on k-means clustering (with k = 2 for active and
inactive):

> binSeries <- binarizeTimeSeries(yeastTimeSeries)

The returned structure in binSeries has an element $binarizedMeasurements
containing the binary time series, and, depending on the chosen binarization
method, some other elements describing parameters of the binarization.

To reconstruct the network from this data, we call the Best-Fit Extension algo-
rithm:

> net <- reconstructNetwork(binSeries$binarizedMeasurements,

+ method="bestfit", maxK=4)

Here, maxK is the maximum number of input genes for a gene examined by
the algorithm. The higher this number, the higher is the runtime and memory
consumption of the reconstruction.

We can now take a look at the network using

> net

Probabilistic Boolean network with 4 genes

Involved genes:

Fkh2 Swi5 Sic1 Clb1

Transition functions:

Alternative transition functions for gene Fkh2:

Fkh2 = <f(Clb1){01}> (probability: 0.5, error: 1)

Fkh2 = <f(Fkh2){01}> (probability: 0.5, error: 1)

Alternative transition functions for gene Swi5:

Swi5 = <f(Clb1){01}> (probability: 0.5, error: 1)

Swi5 = <f(Fkh2){01}> (probability: 0.5, error: 1)

Alternative transition functions for gene Sic1:

Sic1 = <f(Sic1,Clb1){0001}> (probability: 0.3333333, error: 1)

Sic1 = <f(Swi5,Sic1){0001}> (probability: 0.3333333, error: 1)

Sic1 = <f(Fkh2,Sic1){0001}> (probability: 0.3333333, error: 1)

Alternative transition functions for gene Clb1:

Clb1 = <f(Clb1){01}> (probability: 0.5, error: 1)

Clb1 = <f(Fkh2){01}> (probability: 0.5, error: 1)

The dependencies among the genes in the network can be visualized using the
plotNetworkWiring() function. In this graph, each gene corresponds to a ver-
tex, and the inputs of transition functions correspond to edges.

> plotNetworkWiring(net)
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Fkh2

Swi5

SIC1

Clb1

Figure 1: The wiring graph of the reconstructed network. Each node of the
graph represents one gene, and each arrow represents a gene dependency.

plots a graph similar to that in Figure 1. To use this function, you must install
the igraph package.

A network that involved the same genes was examined by Kim et al. [8]. When
comparing the wiring graph of our reconstructed network with the reference
network presented in Figure 2 of this paper, one observes a very high similarity
between the two networks.

When reconstructNetwork() discovers multiple functions for a gene with the
minimum error on the input data, it includes all of these functions as alter-
native functions with equal probability. Consequently, the function returns a
ProbabilisticBooleanNetwork structure.

If you would like to obtain a BooleanNetwork object with only one function per
gene from a probabilistic network, you can extract such a network by telling the
software which of the functions you would like to use. For example,

> singleNet <- chooseNetwork(net, c(1,2,3,2))

creates a Boolean network by extracting the first function of gene Fkh2, the
second function of genes Swi5 and Clb1, and the third function of gene Sic1
from the above probabilistic network:
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> singleNet

Boolean network with 4 genes

Involved genes:

Fkh2 Swi5 Sic1 Clb1

Transition functions:

Fkh2 = <f(Clb1){01}>

Swi5 = <f(Fkh2){01}>

Sic1 = <f(Fkh2,Sic1){0001}>

Clb1 = <f(Fkh2){01}>

2.3 Creating random networks

To study structural properties of Boolean networks and to determine the specific
properties of biological networks in comparison to arbitrary networks, it is often
desirable to generate artificial networks. BoolNet comprises a facility for the
generation of random N -K networks [6, 7]. In the standard N -K networks, N
is the total number of genes, and K is the number of input genes for each gene
transition function. Such a network can be generated using

> net <- generateRandomNKNetwork(n=10, k=3)

This creates a network with 10 genes, each of which has a transition function
that depends on 3 genes and whose output is generated uniformly at random.
Similarly, one can also specify different numbers of input genes for each gene:

> net <- generateRandomNKNetwork(n=10, k=c(1,2,3,1,3,2,3,2,1,1))

BoolNet does not only support this standard case, but allows for different me-
thods of choosing the numbers of input genes (parameter topology), the input
genes themselves (parameter linkage), and the transition functions (parameter
functionGeneration). In the following, some examples are presented.

The command

> net <- generateRandomNKNetwork(n=20, k=20, topology="scale_free")

determines the numbers of input genes by drawing values from the scale-free
Zeta distribution [1]. According to this distribution, most transition functions
will have a small number of input genes, but a few transition functions may
depend on a high number of genes. The shape of the Zeta distribution can be
customized using an additional parameter gamma, which potentially increases
the number of input genes when chosen small and vice versa.

> net <- generateRandomNKNetwork(n=10, k=3, linkage="lattice")

creates a network in which the transition functions of the genes depend on a
choice of genes with adjacent indices [2]. This leads to networks with highly
interdependent genes.

It is also possible to influence the truth tables of the functions by changing the
ratio of 1 and 0 returned by the functions:
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> net <- generateRandomNKNetwork(n=10, k=3,

+ functionGeneration="biased", zeroBias=0.75)

generates a network in which the outcome of a transition function is 0 for around
75% of the inputs.

By default, generateRandomNKNetwork() creates functions that cannot be sim-
plified, i.e. that do not contain any genes that are irrelevant for the out-
come of the function. If desired, this behaviour can be changed by setting
noIrrelevantGenes to FALSE.

The presented parameters can be combined, and there are further options and
parameters, so that a broad variety of networks with different structural pro-
perties can be generated. For a full reference of the possible parameters, please
refer to the manual.

2.4 Knock-out and overexpression of genes

BoolNet allows for temporarily knocking out and overexpressing genes in a net-
work without touching the transition functions. This means that genes can be
set to a fixed value, and in any calculation on the network, this fixed value is
taken instead of the value of the corresponding transition function. Knocked-out
and overexpressed genes speed up the analysis of the network, as they can be ig-
nored in many calculations. For example, to knock out CycD in the mammalian
cell cycle network, we call

> data(cellcycle)

> knockedOut <- fixGenes(cellcycle, "cycd", 0)

or alternatively use the gene index

> knockedOut <- fixGenes(cellcycle, 1, 0)

This sets the gene constantly to 0. To over-express the gene (i.e. to fix it to 1),
the corresponding call is

> overExpressed <- fixGenes(cellcycle, "cycd", 1)

The command

> originalNet <- fixGenes(knockedOut, "cycd", -1)

reactivates the gene (for both knock and overexpression) and resets the network
to its original state.

The function also accepts multiple genes in a single call, such as

> newNet <- fixGenes(cellcycle, c("cycd","cyce"), c(0,1))

which knocks out CycD and overexpresses CycE.
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3 Network analysis

3.1 Simulation of state transitions

To simulate a state transition and identify successor states of a given state,
BoolNet includes the function stateTransition(). The function supports
transitions for all three types of networks.

The following code performs a synchronous state transition for the state in which
all genes are set to 1 on the mammalian cell cycle network:

> data(cellcycle)

> stateTransition(cellcycle, rep(1,10))

[1] 1 0 0 0 0 0 1 1 1 0

To calculate all state transitions in a synchronous network until an attractor is
reached, you can call

> getPathToAttractor(cellcycle,rep(0,10))

cycd rb e2f cyce cyca p27 cdc20 cdh1 ubch10 cycb

1 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 1 0 1 1 1

3 0 0 0 0 0 0 1 0 1 0

4 0 1 1 0 0 1 0 1 1 0

5 0 1 0 0 0 1 0 1 0 0

The returned matrix consists of the subsequent states, where the last state is
the first state of the corresponding attractor.

A random asynchronous transition is performed using

> stateTransition(cellcycle, rep(1,10), type="asynchronous")

[1] 1 1 1 1 0 1 1 1 1 1

In this case, the fifth gene, CycA, was chosen at uniformly at random and up-
dated. We can also specify non-uniform probabilities for the genes, for example

> stateTransition(cellcycle, rep(1,10), type="asynchronous",

+ geneProbabilities=c(0.05,0.05,0.2,0.3,0.05,0.05,0.05,0.05,0.1,0.1))

[1] 1 1 1 0 1 1 1 1 1 1

This obviously increases probabilities for the genes 3 and 4 (E2F and CycE) to
be chosen. In this case, CycE was chosen for the update.

Sometimes you do not want a random update at all, but would like to specify
which gene should be chosen for the update. This is possible via

> stateTransition(cellcycle, rep(1,10), type="asynchronous",

+ chosenGene="cyce")

[1] 1 1 1 0 1 1 1 1 1 1
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In probabilistic Boolean networks, a state transition is performed by choosing
one of the alternative functions for each gene and applying this set of functions
to the current state. The following performs a state transition with a randomly
chosen set of functions on the artificial probabilistic Boolean network taken from
[13] with 3 genes, starting from state (0,1,1):

> data(examplePBN)

> stateTransition(examplePBN, c(0,1,1), type="probabilistic")

[1] 1 0 0

You may get a different result, as the functions are chosen randomly according
to the probabilities stored in the network. If you would like to execute a specific
set of transition functions, you can supply this in an additional parameter:

> stateTransition(examplePBN, c(0,1,1), type="probabilistic",

+ chosenFunctions=c(2,1,2))

[1] 0 0 0

This call uses the second function for gene x1 and x3 and the first function for
gene x2.

3.2 Identification of attractors

Attractors are stable cycles of states in a Boolean network. As they comprise
the states in which the network resides most of the time, attractors in models
of gene-regulatory networks are expected to be linked to phenotypes [7, 10].
Transitions from all states in a Boolean network eventually lead to an attractor,
as the number of states in a network is finite. All states that lead to a certain
attractor form its basin of attraction.

BoolNet is able to identify attractors in synchronous and asynchronous Boolean
networks. There are three types of attractors in these networks:

Simple attractors occur in synchronous Boolean networks and consist of a
set of states whose synchronous transitions form a cycle.

Complex or loose attractors are the counterpart of simple attractors in asyn-
chronous networks. As there is usually more than one possible transition
for each state in an asynchronous network, a complex attractor is formed
by two or more overlapping loops. Precisely, a complex attractor is a set
of states in which all asynchronous state transitions lead to another state
in the set, and a state in the set can be reached from all other states in
the set.

Steady-state attractors are attractors that consist of only one state. All
transitions from this state result in the state itself. These attractors are
the same both for synchronous and asynchronous update of a network.
Steady states are a special case of both simple attractors and complex
attractors.
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The getAttractors() function incorporates several methods for the identifi-
cation of attractors. We present these methods using the included mammalian
cell cycle network as an example. This network has one steady-state attrac-
tor, one simple synchronous attractor consisting of 7 states, and one complex
asynchronous attractor with 112 states (see [5]).

We first demonstrate the use of exhaustive synchronous search. This means
that the software starts from all possible states of the network and performs
synchronous state transitions until a simple or steady-state attractor is reached.

> data(cellcycle)

> attr <- getAttractors(cellcycle)

> attr

Attractor 1 is a simple attractor consisting of 1 state(s)

and has a basin of 512 state(s):

|--<---------|

V |

0100010100 |

| |

V |

|-->---------|

Genes are encoded in the following order: cycd rb e2f cyce

cyca p27 cdc20 cdh1 ubch10 cycb

Attractor 2 is a simple attractor consisting of 7 state(s)

and has a basin of 512 state(s):

|--<---------|

V |

1001100000 |

| |

1000100011 |

| |

1000101011 |

| |

1000001110 |

| |

1010000110 |

| |

1011000100 |

| |

1011100100 |

| |

V |

|-->---------|
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Genes are encoded in the following order: cycd rb e2f cyce

cyca p27 cdc20 cdh1 ubch10 cycb

Typing attr calls a special print method that presents the attractor in a human-
readable way. Here, a state in an attractor is represented by a binary vector,
where each entry of the vector codes for one gene. An alternative is to print only
the names of the active genes (i.e., the genes that are set to 1) instead of the
full vector by calling the print() method explicitly with a changed parameter:

> print(attr, activeOnly=TRUE)

Attractor 1 is a simple attractor consisting of 1 state(s)

and has a basin of 512 state(s).

Active genes in the attractor state(s):

State 1: rb, p27, cdh1

Attractor 2 is a simple attractor consisting of 7 state(s)

and has a basin of 512 state(s).

Active genes in the attractor state(s):

State 1: cycd, cyce, cyca

State 2: cycd, cyca, ubch10, cycb

State 3: cycd, cyca, cdc20, ubch10, cycb

State 4: cycd, cdc20, cdh1, ubch10

State 5: cycd, e2f, cdh1, ubch10

State 6: cycd, e2f, cyce, cdh1

State 7: cycd, e2f, cyce, cyca, cdh1

We can see that the search identified both synchronous attractors. The advan-
tage of the exhaustive search method is that the complete transition table is
calculated and stored in the return value. This table stores information that is
used by a number of analysis methods described below.

You can extract the transition table in a data frame and print it out using

> tt <- getTransitionTable(attr)

> tt

State Next state Attr. basin # trans. to attr.

0000000000 => 0110010111 1 4

[...]

1111111111 => 1000001110 2 1

Genes are encoded in the following order: cycd rb e2f cyce

cyca p27 cdc20 cdh1 ubch10 cycb

In the printed table, the first column denotes the initial state, the second column
contains the state after the transition, the first column contains the number of
the attractor that is finally reached from this state, and the fourth column lists
the number of state transitions required to attain this attractor.

A table of the same structure is returned by

> getBasinOfAttraction(attr, 1)
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which extracts all states from the transition table that belong to the basin of
attraction of attractor one (i.e., whose attractor number in column 3 is 1).

If you are interested in information on a single state (here: the state with all
genes set to 1), you can type

> getStateSummary(attr, c(1,1,1,1,1,1,1,1,1,1))

State Next state Attr. basin # trans. to attr.

1111111111 => 1000001110 2 1

Genes are encoded in the following order: cycd rb e2f cyce

cyca p27 cdc20 cdh1 ubch10 cycb

The visualization function getStateGraph() makes use of the transition table
as well: It plots a transition graph in which the basins of attraction are drawn
in different colors, and the attractors are highlighted. The result of

> plotStateGraph(attr)

is depicted in Figure 2. The blue basin belongs to attractor 1, and the green
basin belongs to attractor 2.
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Figure 2: The state graph of the mammalian cell cycle network. Each node
represents a state of the network, and each arrow is a state transition. The
colors mark different basins of attraction. Attractors are highlighted using bold
lines.

Exhaustive search consumes a high amount of time and memory with increasing
size of the network, which makes it intractable for large networks (BoolNet
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currently supports networks with up to 29 genes for exhaustive search due to
memory restrictions in R). Therefore, BoolNet also allows for heuristic search
of attractors, which works for larger networks as well. Heuristic synchronous
search starts from a predefined small set of states and identifies the attractors
to which state transitions from these states lead. The start states can either be
supplied, or they can be calculated randomly.

> attr <- getAttractors(cellcycle, method="chosen",

+ startStates=list(rep(0,10),rep(1,10)))

starts from the states (0,0,0,0,0,0,0,0,0,0) and (1,1,1,1,1,1,1,1,1,1)

and again identifies both synchronous attractors.

> attr <- getAttractors(cellcycle, method="random", startStates=100)

chooses 100 random start states for the heuristic search and usually identifies
both attractors as well.

For these two calls, only the subset of the transition table traversed by
the heuristic is returned. This means that there is no guarantee that, e.g.
getBasinOfAttraction() returns the complete basin of attraction of an at-
tractor in heuristic mode.

Synchronous attractors can be visualized by plotting a table of changes of gene
values in the states of the attractor:

> plotAttractors(attr,subset=2)

plots the state changes of the simple attractor with 7 states, as depicted in
Figure 3. Similarly,

> attractorsToLaTeX(attr,subset=2,file="attractors.tex")

exports the same state table to a LATEX document.

To identify asynchronous attractors, another special heuristic algorithm is in-
cluded. This algorithm again starts from a small subset of states and makes a
number of random transitions to reach an attractor with a high probability. Af-
ter that, a validation step is performed to analyze whether a complex attractor
has been identified.

The command

> attr <- getAttractors(cellcycle, type="asynchronous",

+ method="random", startStates=500)

conducts an asynchronous search with 500 random start states on the mam-
malian cell cycle network. In this case, the algorithm has identified both the
steady-state attractor and the complex attractor:
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Attractors with 7 state(s)

cycd

rb

e2f

cyce

cyca

p27

cdc20

cdh1

ubch10

cycb

50%50%50%50%50%50%50%

active inactive

Figure 3: Visualization of the state changes in an attractor. The columns of
the table represent consecutive states of the attractor. On top, the percentage
of states leading to the attractor is supplied.

> attr

Attractor 1 is a simple attractor consisting of 1 state(s):

|--<---------|

V |

0100010100 |

| |

V |

|-->---------|

Genes are encoded in the following order: cycd rb e2f cyce

cyca p27 cdc20 cdh1 ubch10 cycb

Attractor 2 is a complex/loose attractor consisting of 112 state(s)

and 338 transition(s):

1011101111 => 1011101110

[...]

1000000000 => 1010000000

Genes are encoded in the following order: cycd rb e2f cyce

cyca p27 cdc20 cdh1 ubch10 cycb
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For the complex attractor, the involved transitions are printed out. By default,
the algorithm tries to avoid self-loops, i.e. transitions that lead to the same
state again. This means that self-loop transitions are only allowed if there is no
other transition that leads to a different state. If you would like to allow the
algorithm to enter self-loops even if transitions to different states are possible,
you can call

> attr <- getAttractors(cellcycle, type="asynchronous",

+ method="random", startStates=500, avoidSelfLoops=FALSE)

In the resulting complex attractor with 112 states, there are 450 transitions
instead of 338 transitions, which is due to the additional self-loops.

The asynchronous heuristic search does not return a transition table, such that
the above analysis methods cannot be applied here.

As there are multiple possible transitions for each state, complex attractors
cannot be visualized as in Figure 3. For this reason, plotAttractors() supports
a graph mode that visualizes the transitions among the states in the attractor:

> plotAttractors(attr,subset=2,mode="graph",drawLabels=FALSE)

plots the 112-state attractor as depicted in Figure 4. We omit the state labels
(i.e. the gene values) due to the high number of states. This plot again requires
the igraph package.
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Figure 4: Graph representation of the complex attractor in the mammalian cell
cycle network. Each node represents a state of the complex attractor, and each
arrow represents a state transition.
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3.3 Markov chain simulations

Another way of identifying relevant states in Boolean networks are Markov chain
simulations. Instead of identifying cycles explicitly, these simulations calculate
the probability that a certain state is reached after a predefined number of iter-
ations. Of course, states in an attractor have a high probability of being reached
if the number of iterations is chosen large enough. Markov chain simulations for
probabilistic Boolean networks were introduced by Shmulevich et al. [13]. As a
special case of probabilistic Boolean networks, these simulations are also suited
for synchronous Boolean networks.

The following performs a Markov experiment with the predefined number of
1000 iterations on the example PBN described in [13]:

> data(examplePBN)

> sim <- markovSimulation(examplePBN)

> sim

States reached at the end of the simulation:

x1 x2 x3 Probability

1 0 0 0 0.15

2 1 1 1 0.85

Probabilities of state transitions in the network:

State Next state Probability

000 => 000 1.0

001 => 110 1.0

010 => 110 1.0

011 => 000 0.2

011 => 100 0.3

011 => 001 0.2

011 => 101 0.3

100 => 010 1.0

101 => 110 0.5

101 => 111 0.5

110 => 100 0.5

110 => 101 0.5

111 => 111 1.0

Only states with a non-zero probability are listed in the two tables. The first
table shows the states that are reached after 1000 iterations. The second table
is a transition table annotated with transition probabilities. This table can
be suppressed by the parameter returnTable=FALSE. The results correspond
exactly to those in [13].

If the transition table is included in the simulation results, we can plot a graph
of the network:

> plotPBNTransitions(sim)

This graph is displayed in Figure 5. The vertices are the states of the graph. The
edges represent transitions and are annotated with the corresponding transition
probabilities. For this plot, the igraph package must be installed.
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Figure 5: State transition graph of the example probabilistic Boolean network
included in BoolNet. Each node represents a state of the network, and each
arrow is a possible state transition, annotated by the transition probability.

We can also use Markov chain simulations to identify the attractor states in the
mammalian cell cycle network:

> data(cellcycle)

> sim <- markovSimulation(cellcycle, numIterations=1024,

+ returnTable=FALSE)

> sim

States reached at the end of the simulation:

cycd rb e2f cyce cyca p27 cdc20 cdh1 ubch10 cycb Probability

1 1 0 0 1 1 0 0 0 0 0 0.00781250

2 1 0 1 1 0 0 0 1 0 0 0.17187500

3 1 0 1 1 1 0 0 1 0 0 0.02343750

4 0 1 0 0 0 1 0 1 0 0 0.50000000

5 1 0 1 0 0 0 0 1 1 0 0.15625000

6 1 0 0 0 0 0 1 1 1 0 0.10937500

7 1 0 0 0 1 0 0 0 1 1 0.00390625

8 1 0 0 0 1 0 1 0 1 1 0.02734375

We set the maximum number of iterations to 1024, which is the number of states
in the network. In a deterministic network, this guarantees that all states are
found.
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The fourth state in the returned table is the steady-state attractor identified
previously. It has a probability of 0.5, as the basin of attraction is exactly half
of the states. The other 7 states belong to the simple synchronous attractor.

It is also possible to restrict the simulation to a certain set of input states instead
of using all possible input states. In the following example, we only consider the
state with all genes set to 1, and identify the state belonging to the steady-state
attractor again:

> sim <- markovSimulation(cellcycle, numIterations=1024,

+ returnTable=FALSE, startStates=list(rep(1,10)))

> sim

States reached at the end of the simulation:

cycd rb e2f cyce cyca p27 cdc20 cdh1 ubch10 cycb Probability

1 1 0 1 0 0 0 0 1 1 0 1

3.4 Perturbation experiments

The generation of perturbed copies of a network is a way to test the robustness
of structural properties of the networks to noise and mismeasurements. For
example, you could assess the relevance of an attractor by checking whether
the same attractor is still found when small random changes are applied to the
network. If this is the case, it is less likely that the attractor is an artifact of
mismeasurements.

BoolNet includes a set of different perturbation options that can be combined.
For example,

> data(cellcycle)

> perturbedNet <- perturbNetwork(cellcycle, perturb="functions",

+ method="bitflip")

chooses a function of the network at random and flips a single bit in this function.
By setting the parameter maxNumBits, you can also flip more than one bit at a
time.

Instead of flipping bits,

> perturbedNet <- perturbNetwork(cellcycle, perturb="functions",

+ method="shuffle")

randomly permutes the output values of the chosen transition functions. This
preserves the numbers of 0s and 1s, but may change the Boolean function com-
pletely. These kinds of perturbations are supported for synchronous and asyn-
chronous networks as well as for probabilistic networks.

For synchronous networks, a further perturbation mode is available:

> perturbedNet <- perturbNetwork(cellcycle, perturb="states",

+ method="bitflip", numStates=10)

Here, BoolNet calculates the complete transition table of the network and then
flips a single bit in 10 states of the transition table. From this modified ta-
ble, a network is reconstructed. Changes of this type only affect a few states
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(which might not be the case when perturbing the functions directly as above),
but possibly several of the transition functions. As in the previous examples,
it is also possible to modify the number of bits to be flipped or to choose
method="shuffle".

A detailed listing of perturbation experiments is shown on page 22. In this
experiment, 1000 perturbed copies of the cell cycle network are created, and the
occurrences of the original synchronous attractors are counted in the perturbed
copies.

The results of such an experiment could look like this:

Attractors in original network:

Attractor 1 is a simple attractor consisting of 1 state(s)

and has a basin of 512 state(s):

[...]

Attractor 2 is a simple attractor consisting of 7 state(s)

and has a basin of 512 state(s):

[...]

Number of occurrences of the original attractors in 1000

perturbed copies of the network:

Attractor 1: 622

Attractor 2: 589

We see that the steady-state attractor is slightly more robust to perturbations
than the simple attractor with 7 states, as it can be identified in a higher number
of perturbed copies.
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> # Perform a robustness test on a network

> # by counting the numbers of perturbed networks

> # containing the attractors of the original net

>

> library(BoolNet)

> # load mammalian cell cycle network

> data(cellcycle)

> # get attractors in original network

> attrs <- getAttractors(cellcycle, canonical=TRUE)

> # create 1000 perturbed copies of the network and search for attractors

> perturbationResults <- sapply(1:1000,function(i)

+ {

+ # perturb network and identify attractors

+ perturbedNet <- perturbNetwork(cellcycle, perturb="functions", method="bitflip")

+ perturbedAttrs <- getAttractors(perturbedNet, canonical=TRUE)

+

+ # check whether the attractors in the original network exist in the perturbed network

+ attractorIndices <- sapply(attrs$attractors,function(attractor1)

+ {

+ index <- which(sapply(perturbedAttrs$attractors,function(attractor2)

+ {

+ identical(attractor1,attractor2)

+ }))

+ if (length(index) == 0)

+ NA

+ else

+ index

+ })

+ return(attractorIndices)

+ })

> # perturbationResults now contains a matrix

> # with the first 2 columns specifying the indices or the

> # original attractors in the perturbed network

> # (or NA if the attractor was not found) and the next 2

> # columns counting the numbers of states

> # in the basin of attraction (or NA if the attractor was not found)

>

> # measure the total numbers of occurrences of the original attractors in the perturbed copies

> numOccurrences <- apply(perturbationResults[1:length(attrs$attractors),,drop=FALSE], 1,

+ function(row)sum(!is.na(row)))

> # print original attractors

> cat("Attractors in original network:\n")

> print(attrs)

> # print information

> cat("Number of occurrences of the original attractors",

+ "in 1000 perturbed copies of the network:\n")

> for (i in 1:length(attrs$attractors))

+ {

+ cat("Attractor ",i,": ",numOccurrences[i],"\n",sep="")

+ }
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3.5 Identifying specific properties of biological networks

The described perturbations could also be used to identify specific properties
of real-world networks in comparison to arbitrary (random) networks. For ex-
ample, one could assume that attractors in biological networks are more robust
to perturbations than attractors in random networks with a similar structure,
as they should be capable of compensating for small dysfunctions of their com-
ponents. Similarly to the above code, one could execute a number of random
perturbations on the biological network and measure the percentage of original
attractors found in the perturbed copies. Afterwards, one could repeat this
process on a number of randomly generated networks – i.e., generate perturbed
copies from each of the random networks, and measure the percentage of at-
tractors in the copies. If the percentage of the biological network is higher than
most of the percentages of the random network, this suggests that the biological
network exhibits a higher robustness. This is a kind of computer-intensive test.

BoolNet comprises a generic facility for such computer-intensive tests. This
facility already includes two tests for synchronous Boolean networks and can be
extended by custom test functions. The outlined example of attractor robustness
is one of the integrated functions:

> data(cellcycle)

> testNetworkProperties(cellcycle, numRandomNets=100,

+ testFunction="testAttractorRobustness",

+ testFunctionParams = list(copies=100))

creates a set of 100 random networks (each with the same number of input genes
for the functions as the cell cycle network) and creates 100 perturbed copies for
each of these networks and for the cell cycle network. It then measures the
percentages of found attractors and plots an histogram of the percentages of
the random networks (see Figure 6). The percentage of the cell cycle network
is plotted as a red line, and the 95% quantile is plotted as a blue line.

We can see that the average percentage of found attractors is significantly higher
in the biological network with a p-value of 0.03.

A second network property can be tested using a built-in function: When look-
ing at the state graph of a biological network (which can be generated using
plotStateGraph()), it can often be observed that many state transitions lead
to the same successor states, which means that the dynamics of the network
quickly concentrate on a few states after a number of state transitions. We call
the number of states whose synchronous state transitions lead to a state s the
in-degree of state s. We expect the biological network to have a few states with
a high in-degree and many states with a low in-degree. A characteristic to sum-
marize the in-degrees is the Gini index, which is a measure of inhomogeneity. If
all states have an in-degree of 1, the Gini index is 0; if all state transitions lead
to only one state, the Gini index is 1.

> testNetworkProperties(cellcycle, numRandomNets=100,

+ testFunction="testIndegree")

plots an histogram of Gini indices in 100 random networks and draws the Gini
index of the cell cycle network as a red line, as depicted in Figure 7.
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Figure 6: Attractor robustness of randomly generated networks (histogram) in
comparison to the mammalian cell cycle network (red line).

The histogram shows that the Gini index of the in-degrees is always higher in
the biological network. This is probably due to the special structure of functions
in biological networks.

Instead of accumulating the in-degrees using the Gini index, it is also possible
to compare the distributions of the in-degrees across the networks. For this
purpose, the Kullback-Leibler distances of the in-degrees of the supplied network
and each of the random networks are calculated and plotted in a histogram. The
Kullback-Leibler distance (also called relative entropy) is an asymetric measure
of similarity of two distributions [4]. If the distributions are equal, the Kullback-
Leibler distance is 0, otherwise it is greater than 0.

> testNetworkProperties(cellcycle, numRandomNets=100,

+ testFunction="testIndegree", accumulation="kullback_leibler")

results in the plot displayed in Figure 8.

It is possible to switch between the histogram of an accumulated characteristic
(e.g. the Gini index) and the histogram of the Kullback-Leibler distances for all
tests.

You can also easily implement your own tests. To do this, the only thing you
have to do is implement a custom testing function that replaces testIndegree()
or testAttractorRobustness. Testing functions have the following signature:

function(network, accumulate=TRUE, params)
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Figure 7: Gini indices of state in-degrees of randomly generated networks (his-
togram) in comparison to the mammalian cell cycle network (red line)

The first parameter is the network that should be tested. The parameter
accumulate specifies whether a single characteristic value (e.g., the Gini in-
dex of the in-degrees) should be calculated, or whether a distribution of values
(e.g., a vector of all in-degrees) should be returned. The third parameter is a
list of further arguments needed by your function.
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Kullback−Leibler distance
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Figure 8: Kullback-Leibler distances of in-degrees of the mammalian cell cycle
network and 100 random networks.

If, for example, we would like to compare the sizes of the basins of attractions
of synchronous attractors in biological and random networks, we would write a
function like this:

> testBasinSizes <- function(network, accumulate=TRUE, params)

+ {

+ attr <- getAttractors(network)

+ basinSizes <- sapply(attr$attractors, function(a)

+ {

+ a$basinSize

+ })

+ if (accumulate)

+ return(mean(basinSizes))

+ else

+ return(basinSizes)

+ }

This function calculates the mean basin size as a characteristic value if accu-
mulation is required, or returns the sizes of all basins of attraction in a vector
otherwise. It does not need any further parameters in params.

Now, we can start a test using

> testNetworkProperties(cellcycle, numRandomNets=1000,

+ testFunction="testBasinSizes",

+ xlab="Average size of basins of attraction")
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to produce the plot shown in Figure 9. Apparently, the average basin sizes
do not differ as much as the built-in test characteristics between the random
networks and the cell cycle network.
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Figure 9: A custom test statistic measuring the basin sizes on randomly gener-
ated networks (histogram) and the mammalian cell cycle network (red line).

By writing custom test functions, you can extend the test facility to per-
form a wide variety computer-intensive test. Of course, it is also possi-
ble to plot the Kullback-Leibler distances with such new methods by using
accumulation="kullback_leibler".

testNetworkProperties() accepts most of the parameters of
generateRandomNKNetwork(). If necessary, you can generate more spe-
cialized kinds of random networks which resemble the original network in
certain aspects, for example by setting a proportion of 0 and 1 in the function
outputs similar to the original network using functionGeneration="biased".
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4 Import and export

4.1 Importing networks from BioTapestry

BioTapestry is a widely-used application for visual modeling of gene-regulatory
networks [12]. It can be freely accessed at http://www.biotapestry.org. Al-
though its primary purpose is visualization, the software supports specifying
logical functions for the genes. BoolNet can read in the top-level (“Full genome”)
plot of a BioTapestry file (*.btp) and convert it into a Boolean network.

As an example, we assume the following BioTapestry model with 5 genes (2 in-
puts and 3 dependent genes):

The corresponding BioTapestry file is included in BoolNet. You can determine
its path using

> system.file("doc/example.btp", package="BoolNet")

to access it in BioTapestry or BoolNet.

For the import, BoolNet needs to know the type of influence a gene has on
another gene. Therefore, imported networks should only use links that are
either enhancers or repressors. Neutral links are ignored in the import.

We now set further simulation parameters for the model. These parameters are
imported by BoolNet to construct the functions of the Boolean network. First,
we want to change the function of Gene 2 to OR. Right-click on Gene 2 and
choose Simulation Properties....
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In the properties dialog, choose the Logic tab, and select OR for the logical
function.

Now set the function of Gene 1 to XOR (exclusive or) in the same way.
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You can also specify initial values for constant genes, i.e., genes with no in-
put links. Choose the simulation properties of Input 1, and change to the
Parameters tab. Choose initVal and set it to 1.

Press Return to store the result, and exit the dialog with OK. This will create
a fixed gene with value 1 (i.e., an over-expressed gene) in the BoolNet import.
Note that values other than 0 and 1 are ignored by the import, as well as
initialization values for non-constant genes.

We assume that you save the network to a file “example.btp” in your working
directory. In R, type

> net <- loadBioTapestry("example.btp")

to import the network. Alternatively, replace the file name by the command
on page 28 to use the file in the package if you do not want to create the file
yourself.

The imported network looks like this:

> net

Boolean network with 5 genes

Involved genes:

Input 1 Input 2 Gene 1 Gene 2 Gene 3

Transition functions:

Input 1 = 1

Input 2 = Input 2

Gene 1 = (!Gene 1 & !Input 1 & Input 2) | (!Gene 1 & Input 1 & !Input 2)

| (Gene 1 & !Input 1 & !Input 2) | (Gene 1 & Input 1 & Input 2)
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Gene 2 = Gene 1 & Gene 3 & !Input 2

Gene 3 = Gene 1 | Gene 2

Knocked-out and over-expressed genes:

Input 1 = 1

We can see that Input 1 is specified as an over-expressed constant gene. Input 2
is modeled as depending only on itself, i.e. it keeps its initial value. Gene 1 is a
representation of the XOR function in Disjunctive Normal Form (DNF), using
only logical ANDs, logical ORs, and negations. Gene 2 and Gene 3 consist of
conjunctions and disjunctions of their inputs respectively. In addition to this
textual description, we can visually verify the network by plotting its wiring:

> plotNetworkWiring(net)

The resulting plot is shown in Figure 10.

Input 1

Input 2

Gene 1

Gene 2

Gene 3

Figure 10: The wiring graph of the imported network specified in BioTapestry.

You can now use the imported network just like any other network in BoolNet.
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4.2 Exporting networks to Pajek

For further analysis, networks can be exported to Pajek, a Windows application
that provides visualization and analysis methods for graph structures [3]. For
more information on Pajek, please refer to http://pajek.imfm.si/doku.php.

The export function writes the state transition graph to a Pajek file (*.net).
This requires a synchronous exhaustive attractor search in BoolNet to build the
full transition table.

To export the mammalian cell cycle network to Pajek, call

> data(cellcycle)

> attr <- getAttractors(cellcycle)

> toPajek(attr, file="cellcycle.net")

This will export the graph of the state transitions, which is usually sufficient for
plotting. If you want to include the state information (i.e., the gene assignment
vectors), call

> toPajek(attr, file="cellcycle.net", includeLabels=TRUE)

Now, start Pajek, load the network with File | Network | Read, and check
out the tools provided by this application. For example, visualizations can be
accessed using the menu item Draw | Draw.

Figure 11 shows a plot of the cell cycle network with the Kamada-Kawai layout
(Menu entry Layout | Energy | Kamada-Kawai | Separate Components).

Figure 11: A visualization of the mammalian cell cycle network in Pajek.
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5 Appendix

5.1 Network file format

This section provides a full language description for the network file format of
BoolNet. The language is described in Extended Backus-Naur Form (EBNF).

Rule = GeneName Separator BooleanExpression [Separator Probability];

BooleanExpression = GeneName

| "!" BooleanExpression

| "(" BooleanExpression ")"

| BooleanExpression " & " BooleanExpression

| BooleanExpression " | " BooleanExpression;

GeneName = ? A gene name from the list of involved genes ?;

Separator = ",";

Probability = ? A floating-point number ?;
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