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Introduction

This package implements the algorithm proposed by Perrot-Dockès and Lévy-Leduc in [1]. For further
details we refer the reader to this paper. We shall consider the following framework. Let E1, E2, · · · , En, n
zero-mean i.i.d. q-dimensional random vectors having a covariance matrix Σ such that the number q of its
rows and columns is much larger than n. The goal of the package is to propose a new estimator of Σ and of
the square root of its inverse, in the particular case where Σ is assumed to have a block structure without
limiting ourselves to diagonal blocks. More precisely, in this paper, we shall assume that

Σ = ZZ ′ + D, (1)

where Z is a q × k sparse matrix with k � q, Z ′ denotes the transpose of the matrix Z and D is a diagonal
matrix such that the diagonal terms of Σ are equal to one.

Our approach consists in providing a low rank matrix approximation of the ZZ ′ part of Σ and then in
using a `1 regularization in order to obtain a sparse estimator of Σ. More precisely, since Σ is a correlation
matrix, it is a symmetric matrix with ones on its diagonal, thus all the information is contained in its upper
triangular part without its diagonal. If we know P the (q − 1)× (q − 1) symmetric matrix, which has for
upper triangular part the upper triangular part of Σ without its diagonal, we know Σ. The matrix P has
the advantage to have a low rank. In the following, we propose to first estimate the block matrix P .

We shall moreover propose a methodology to estimate Σ in the case where the block structure is latent that
is when the columns and rows of Σ have to be permuted according to an unknown permutation in order to
make the block structure appear. In this case, a hierarchical clustering step has to be applied beforehand.

Simulation of Σ having a block structure

In order to generate a matrix Σ having a block structure with extra-diagonal blocks and q = 100, we can use
the function Simu_Sigma as follows:
q <- 100
Sigma <- Simu_Sigma(q = q, diag = FALSE, equal = TRUE)

The matrix Σ is displayed in Figure 1.

Using the matrix Σ generated by the function Simu_Sigma a n × q matrix E was generated such that its
rows are independent zero-mean Gaussian random vectors having a covariance matrix equal to Σ and n = 30.
n <- 30
E <- matrix(rnorm(n * q), ncol = q) %*% chol(as.matrix(Sigma))

Estimation of Σ and Σ−1/2

In order to get an estimation of Σ the function Sigma_estimation was applied. Since the data set was
simulated, the rank of P , the sub-matrix of Σ, and its number of non null values are known.
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Figure 1:

k <- 5
nb_nn0 <- sum(Sigma[upper.tri(Sigma, diag = FALSE)] != 0)
res_known <- Sigma_estimation(E, k = k, nb_nn0 = nb_nn0)

Our estimator Σ̂ of Σ is given by res_known$Sigma_est. It is displayed in Figure 2 and is obtained by using:
Matrix::image(res_known$Sigma_est)
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Figure 2:

The Frobenius norm ‖Σ− Σ̂‖ is equal to 5.5.

For comparison purpose, the sample correlation matrix is displayed in Figure 3.
Matrix::image(Matrix::Matrix(cor(E)))

The Frobenius norm ‖Σ− Σ̂emp‖ is equal to 14.5, where Σ̂emp denotes the sample correlation matrix.

In practice, the number of non null values and the rank of of P are unknown. These parameters can be both
estimated using the Sigma_estimation function as follows:
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Figure 3:

res <- Sigma_estimation(E, kmax = 90, prop.max = 0.6, step = 100)

The rank is by default chosen between 1 and min(q − 1, 100), this value can be changed using the argument
kmax, which is here equal to 90. The number of non null values is chosen between q and 70% of the number
of entries in the upper triangular part of Σ, namely q(q − 1)/2. The step between two consecutive values
of this sequence can be changed using the argument step and the proportion 70% can be changed using
the prop.max argument. This sequence can also be given using the seq.nb argument. Here, this sequence
is between q and 60% of the number of entries in the upper triangular part of Σ with a step of 100. The
corresponding estimator of Σ is displayed in Figure 4.
Matrix::image(res$Sigma_est)
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Figure 4:

We can see from this figure that the estimation of Σ does not seem to be altered by having to estimate the
number of non null values and the rank of the matrix. The Frobenius norm ‖Σ− Σ̂‖ is equal to 5.5.

The estimated rank and the estimated number of non null values can be obtained by res$k and res$nb_nn0,
respectively. They are here equal to 5 and 1300, respectively. Note that the true values of these parameters
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are 5 and 1270.

An estimator of Σ−1/2 is obtained thanks to res$S_inv_12. It can be used to remove the dependence that
may exist between the columns of E. To achieve this goal Σ̂

−1/2
ΣΣ̂

−1/2
, which is displayed in Figure 5,

should be close to the identity matrix:
Matrix::image(res$S_inv_12 %*% Sigma %*% res$S_inv_12)
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Figure 5:

The associated Frobenius norm ||Σ̂
−1/2

ΣΣ̂
−1/2

− Idq|| = 6.5.

Estimation of Σ and Σ−1/2 when the block structure is latent

In practice, it is possible that the block structure of Σ only appears after having permuted its rows and
columns according to a well chosen permutation. We explain hereafter how to estimate Σ and Σ−1/2 in this
case. We first generate such a matrix by applying a random permutation to the rows and columns of the
matrix Σ previously generated.
samp <- sample(1:q, q, replace = FALSE)
Sigma_samp <- Sigma[samp, samp]

The corresponding matrix is displayed in Figure 6.
Matrix::image(Sigma_samp)

In such a situation where the columns and rows have to be permuted according to an unknown permutation,
we propose to use a hierarchical clustering as the first step of our methodology and then use the same strategy.
This is performed by putting reorder=TRUE in the arguments of the function Sigma_estimation.
E <- matrix(rnorm(n * q), ncol = q) %*% chol(as.matrix(Sigma_samp))
res_samp <- Sigma_estimation(E, prop.max = 0.6, step = 100, reorder = TRUE)

The estimated matrix is displayed in Figure 7.
Matrix::image(res_samp$Sigma_est)

The permutation to make the block structure appear is available from res_samp$order. The corresponding
estimated correlation matrix in which the columns have been permuted in order to make the block structure
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Figure 7:
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appear is obtained using the following lines and is displayed in Figure 8:
ord <- res_samp$order
Matrix::image(res_samp$Sigma_est[ord, ord])
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Figure 8:

This matrix has to be compared with the following one displayed in Figure 9:
Matrix::image(Sigma_samp[ord, ord])
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Figure 9:

Once again, our strategy does not seem to be altered by the permutation of the columns of the original
matrix Σ. The Frobenius norm of the error is equal to 6.9.

In this situation Σ̂
−1/2

is still available. The matrix Σ̂
−1/2

ΣΣ̂
−1/2

, which is displayed in Figure 10, should
be close to the identity matrix:
Matrix::image(res_samp$S_inv_12 %*% Sigma_samp %*%res_samp$S_inv_12)

The associated Frobenius norm ||Σ̂
−1/2

ΣΣ̂
−1/2

− Idq|| = 6.
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Figure 10:

All the values of the Frobenius norms are quite close meaning that our methodology is efficient even when
the parameters are unknown and when the columns and rows have to be permuted in order to make the
block structure appear.
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