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1 Introduction

During the last years much research was spent on making mid-course correc-
tions to the sample size of a clinical trial while the overall type I error rate
of the test was preserved. Adaptive or flexible designs for clinical trials are
attractive to clinical scientists and researchers since they provide a method
to add flexibility to the frequentist paradigm. An important feature of adap-
tive designs is that the precise adaptation rule needs not to be pre-planed.
[Müller and Schäfer, 2001] and [Müller and Schäfer, 2004] presented a general
way to make adaptive changes to an on-going group sequential clinical trial
while preserving the overall type I error rate. Their method allows to make
data dependent changes to the sample size, the spending function and the num-
ber and spacing of interim looks at one or more time points. Adaptations can
depend on the observed data up to the interim analysis and if no adaptation
is performed the originally planned group sequential analysis can be applied.
Only in the case of adaptations a modifed test statistic based on the condi-
tional error rate has to be performed. In recent years there have been several
approaches to calculate point estimates and confidence intervals following an
adaptive change. [Mehta et al., 2006] proposed an approach for the calcula-
tion of repeated confidence intervals for adaptive group sequential trials. The
[Müller and Schäfer, 2001] method is applied to the dual tests derived from the
repeated confidence intervals (RCI) of [Jennison and Turnbull, 1989]. However,
this method can only provide conservative coverage of the efficacy parameter δ.
[Brannath et al., 2009] extended the stage-wise adjusted confidence intervals of
[Tsiatis et al., 1984] to adaptive designs. Stage-wise adjusted confidence inter-
vals provide exact coverage for classical group sequential designs. In the case of
design adaptations it cannot be guaranteed that the stage-wise adjusted confi-
dence interval provides exact coverage in general. The package AGSDest allows
to compute repeated confidence intervals and p-values as well as confidence
intervals and p-values based on the stage-wise ordering in groug sequential de-
signs (GSD) and adaptive groug sequential designs (AGSD). The implemented
principles allow us to perform data dependent changes to the sample size, the
spending function, and the number and spacing of interim looks while preserv-
ing the overall type I error rate. Currently the procedures do not support the
use of futility boundaries as well as more than one adaptive interim analysis.
Furthermore, the package is currently restricted to the computation of one-sided
confidence intervals.

2 Group Sequential Designs (GSD)

We consider a group sequential test (see for example, [Jennison and Turnbull, 2000])
for a comparative study of an experimental treatment E to a control treat-
ment C, with a total of N normally distributed observations Xil , i = E or
C, l = 1, 2, . . . , N/2, with known variance σ2 . Let µE and µC denote the means
based on a treatment E and a control C group and δ = µE − µC the difference
of the population means. We focus on group sequential tests of the hypothesis

H0 : δ ≤ 0

against the one-sided alternative δ > 0. The trial is performed in K sequential
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stages after observing the cumulative responses for n1, . . . , nK = N subjects.
At stage j the data are summarized by the Wald statistics

Zj = δ̂j
√
Ij , j = 1, . . . ,K

where δ̂j is the maximum likelihood estimate of δ and Ij ≈ [se(δ̂j)]
−2 = nj/(4σ

2)
is the estimate of the Fisher information. We calculate sequentially for every
interim analysis the Wald statistic Z1, . . . , ZK . The trial stops at look j when
the observed Wald statistic zj is larger than the rejection boundary bj . An
α-spending function can be used to establish the boundaries b1, b2, . . . , bK for
each interim monitoring point, given the overall α. We denote by T the random
variable which gives the stage where the trial stops.

2.1 GST object

Most of the functions for group sequential designs in this package need a GST

object as input. A GST object is a collection of lists containing the design
parameters of a group sequential design (GSD), namely:

GSD object:
K: Number of stages
al: Alpha (type I error rate)
a: Lower critical bounds of group sequential design (are currently always set to -8)
b: Upper critical bounds of group sequential design
t: Vector with cumulative information fraction
SF: Spending function (for details see help from R-function bounds (package: ldbounds))
phi: Parameter of spending function when SF=3 or 4
alab: Alpha-absorbing parameter values of group sequential design
als: Alpha-values ”spent” at each stage of group sequential design
Imax: Maximum information number
delta: Effect size used for planning the group sequential trial

Optionally, the object can also contain the group sequential design outcome
(GSDo), which is necessary to calculate confidence bounds, p-values and point
estimates (see next sections).

GSDo object:
T: Stage where trial stops
z: z-statistic at stage where trial stops

Furthermore, the package also provides the generic function summary (see next
sections), which can be used to extend the GST object by the following quan-
tities, e.g.:

cb.s Confidence bound based on the stage-wise ordering
cb.r Repeated confidence bound
pvalue.so Stage-wise adjusted p-value
pvalue.r Repeated p-value
est.ml Maximum likelihood estimate
est.mu Median unbiased point estimate
est.cons Conservative point estimate
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One of the basic R-functions of this package is the plan.GST function, which
plans a GSD and creates a GST object.

2.1.1 Alpha spending function (SF)

Before we continue with the plan.GST function, we first describe the α-spending
function, which is currently available in the package. Alpha spending functions
establish α-values spent at each interim analysis given the overall α. The pack-
age supports the following spending functions, α(t):

O’Brien and Fleming type (1979) 2(1− Φ
(

Φ−1(1−α2 )√
t

)
)

Pocock type (1977) α · log(1 + (e− 1)t)

Kim and DeMats (1987) α · tγ

Hwang, Shih an DeCani (1990) α 1−e−γt
1−e−γ

2.2 plan.GST example

We consider a comparative study of an experimental treatment E to a control
treatment C. Assume that the trial is planed as a three-look, one-sided group
sequential design at level α = 0.025. We initially want to test H0 : δ ≤ 0
with 80% power to detect δ = 5 with known standard deviation σ = 15. The
stopping boundaries are derived from the γ -family proposed by Hwang, Shih
and DeCani (1990) with γ = −4.

> library(AGSDest)

> GSD<-plan.GST(K=3,SF=4,phi=-4,alpha=0.025,delta=5,pow=0.8,compute.alab=TRUE,compute.als=TRUE)

> GSD

3 stage group sequential design

alpha : 0.025 SF: 4 phi: -4 Imax: 0.32 delta: 5 cp: 0.8

Upper bounds 3.011 2.547 1.999

Lower bounds -8.000 -8.000 -8.000

Information fraction 0.333 0.667 1.000

als 0.001 0.006 0.025

alab 3.222 1.194 0.000

The created GST object can now be plotted using the function plot.

> plot(GSD)

4



GSD

Cumulative Information Fraction

W
al

d 
Te

st
st

at
is

tic

0
1

2
3

4

0.333 0.667 1

●

●

●

Figure 1: Group sequential design plot (Hwang, Shih and DeCani boundaries
with γ = −4 at level 0.025) from example 2.2
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2.3 Overall p-values for GSDs

An overall p-value can be defined via a family of nested hypotheses tests. A
family of hypotheses tests is nested, if the rejection of the level-u test in the
family implies the rejection of all level-u′ tests where u′ > u. An overall p-value
q can be defined as the minimum of the levels of the tests which reject H0 . In
other words, we continue rejecting H0 : δ ≤ 0 in a sequence of nested tests, with
decreasing significant levels 0 < u < 1, until we reach the level q, such that we
cannot reject H0. We are now introducing the repeated p-value and the p-value
based on the stage-wise ordering.

2.3.1 Repeated p-values in a classical GSD

Repeated p-values have the advantage that they can be computed at any stage,
whether the trial stops or not, but they are in general only conservative. For
the repeated p-value the rejection boundaries of the trial can be specified via a
spending function gu(t) that generates boundaries bk,u for all levels 0 < u < 1
which are non-decreasing in u. We consider the GSD from section 2.1 in which
the boundaries were determined from the γ-family spending function. The pack-
age determines from gu(tj) the critical boundaries bj,u of a GSD at level u. This
gives the family of nested hypotheses test. In order to obtain nested rejection
regions we must have bj,u < bj,u′ for all 0 ≤ u′ < u ≤ 1. This requires a specific
assumption on the spending function, which is satisfied for most spending func-
tions including those of [Lan and DeMats, 1983], [Kim and DeMats, 1987] and
[Hwang et al., 1990]. Now we can define the repeated p-value at stage k by

pk = inf{u : zk ≥ bk,u} = sup{u : zk < bk,u}

We consider the example from section 2.2 and calculate the repeated p-value at
stage T = 2 assuming that z = 1.088. With as.GST we create a new object of
class GST.

> GST<-as.GST(GSD=GSD,GSDo=list(T=2, z=1.088))

> GST

3 stage group sequential design

alpha : 0.025 SF: 4 phi: -4 Imax: 0.32 delta: 5 cp: 0.8

Upper bounds 3.011 2.547 1.999

Lower bounds -8.000 -8.000 -8.000

Information fraction 0.333 0.667 1.000

als 0.001 0.006 0.025

alab 3.222 1.194 0.000

group sequential design outcome:

T: 2 z: 1.088

Now we call the pvalue function with the new created GST-object and set type
equal to ’r’ to calculate the repeated p-value.
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> pvalue(GST,type="r")

$pvalue.r

[1] 0.5834961

2.3.2 P -value based on the stage-wise ordering in a classical GSD

Stage-wise p-values have exact coverage probability, but they can only be cal-
culated at the stage where the trial stops according to the prespecified stopping
rule. Assume that the primary trial stops at look T . The stage wise ordering
considers a sample point (j, zj) as more extreme than the sample point (k, zk),
if either j < k or j = k and zj ≥ zk . This ordering can be used to define an
overall p-value p for H0 as

p = P0

T−1⋃
j=1

{Zj ≥ bj} ∪ {ZT ≥ zT }


which is the probability under H0 to get a more extreme sample point (in the
sense of the stage wise ordering) than the one we have observed. We consider
the same design as in section 2.2, but assume now that the trial stops at the
stage T = 2 with the z-statistic z = 2.63 and hence can stop the trial and
calculate the stage-wise adjusted p-value by setting the type to ’so’.

> pvalue(as.GST(GSD,list(T=2,z=2.63)),type='so')

$pvalue.so

[1] 0.005131236

2.4 Construction of one sided confidence intervals for GSDs

2.4.1 Classical repeated confidence bounds

The classical repeated confidence interval for a given group sequential design,
was proposed by [Jennison and Turnbull, 1989]. It has the advantage that it
can be computed at any stage, whether the trial stops or not, but it has only
conservative coverage probability. This repeated confidence interval is defined
by a family of dual significance tests for the hypothesis Hh : δ ≤ h versus
δ > h for all h ∈ (−∞,∞). The confidence interval includes all values of h
where the shifted null hypothesis Hh is not rejected. First, we sequentially
compute the shifted Wald statistics Zj(h) = Zj −h

√
Ij , j = 1, . . . ,K , where Ij

is the cumulated information until stage j . It is known that Zj(h) is N(0, 1)-
distributed under Hh. Now we apply the same group sequential design to all
h. At stage j we reject Hh if Zj − h

√
Ij ≥ bj , i.e., we reject all h ≤ Zj−bj√

Ij
.

Hence, the lower confidence bound at each step j = 1, . . . ,K of the one-sided
confidence interval is

(δj , inf), j = 1, . . . ,K with δj =
Zj − bj√

Ij

We assume the example from section 2.3.1 and calculate the repeated confidence
bound by setting the type to ’r’.
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> seqconfint(GST,type='r')

$cb.r

[1] -3.162014

2.4.2 Classical stage-wise confidence bounds

Stage-wise confidence intervals have exact coverage probability, however they
can only be calculated at the stage where the trial stops according to the pre-
specified stopping rule. The stage-wise adjusted confidence interval also provides
at level 0.5 a median unbiased point estimate for δ. The stage-wise ordering can
be used to define an overall p-value for Hh as

p(h) = Ph

T−1⋃
j=1

{Zj ≥ bj} ∪ {ZT ≥ zT }


By definition p(h) has an uniform distribution under Hh. Since p(h) is strictly
increasing in h, the equation p(h) = α has a unique solution. We perform a
level-α test for Hh, if we reject Hh in the case that p(h) ≤ α, and otherwise
accept Hh. We consider the example from section 2.2 and calculate the stage-
wise confidence bound at stage T = 2 with the observed z-statistic z = 2.63 by
setting the type to ’so’.

> seqconfint(as.GST(GSD,list(T=2,z=2.63)),type='so')

$cb.so

[1] 1.356988

2.5 Point estimates for GSDs

2.5.1 Median unbiased point estimate

Median unbiased point estimates are exact, but they can only be calculated at
the stage where the trial stops according to the prespecified stopping rule. To
calculate the point estimate δ0.5 based on the stage-wise ordering we compute
the lower stage-wise confidence bound at level 0.5. If the GSD stops at stage T ,
then δ0.5 is the value of h that satisfies p(h) = 0.5. We assume the example from
section 2.2 and calculate the median unbiased point estimate at stage T = 2
with the observed z-statistic z = 2.63 by setting the type to ’so’ and the level

to 0.5.

> seqconfint(as.GST(GSD,list(T=2,z=2.63)),type="so",level=0.5)

$est.mu

[1] 5.659091

2.5.2 Conservative point estimate

To calculate the conservative point estimate, we compute the lower repeated
confidence bound at level 0.5. This point estimate is flexible, in the sense that
it can be calculated at every stage of the trial and not only at the stage T
where the trial stops. However, in general it’s conservative in the sense that
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its median can be below the true parameter value (but is assumed to be never
above the true value). Hence we may overestimate the true value but only
with a probability lower than 50%. We assume the example from section 2.2
and calculate the conservative unbiased point estimate at stage T = 2 with the
observed z-statistic z = 1.088 by setting the type to ’r’ and the level to 0.5.

> seqconfint(as.GST(GSD,list(T=2,z=1.088)),type='r',level=0.5)

$est.cons

[1] -0.2121496

2.6 Summary function for a GST object

As aforementioned the package also provides a generic summary function which
takes as input a GST object and additional parameters. This summary func-
tion produces the results from the different functions for GSDs, e.g.: confidence
bounds, p-values and point estimates. By specifying the type (ctype, ptype
and etype), the user can define which values are calculated:

Confidence bounds and p-values:
ctype: Confidence type
ptype: P -value type

Possible value for these two parameters are:
r: Repeated
so: Stage-wise adjusted
b: Both, repeated and stage-wise adjusted
n: No values are calculated

Point estimates (etype):
ml: Maximum likelihood estimate (ignoring the sequential nature of the design)
mu: Median unbiased estimate (stage-wise lower confidence bound at level 0.5) for a classical GSD
cons: Conservative estimate (repeated lower confidence bound at level 0.5) for a classical GSD
a: All, maximum likelihood, median unbiased and conservative point estimate for a classical GSD
n: No point estimate is calculated

If no type is specified the summary function calculates by default all values.

We assume the example from section 2.2 where we stop at stage T = 2 with the
observed z-statistic z = 2.63. With as.GST we create a new GST object and
pass this object to the summary function. Now we want to calculate stage-wise
adjusted confidence bound, the stage-wise adjusted p-values, but no point esti-
mates. If we assign the output from the summary function to the new created
GST object, the object gets extended by the calculated values.

> GSD1<-as.GST(GSD,list(T=2,z=2.63))

> GSD1<-summary(GSD1,ctype='so',ptype='so',etype='n')

> GSD1

stage-wise adjusted lower confidence bound: 1.357

stage-wise adjusted p-value: 0.005
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3 stage group sequential design

alpha : 0.025 SF: 4 phi: -4 Imax: 0.32 delta: 5 cp: 0.8

Upper bounds 3.011 2.547 1.999

Lower bounds -8.000 -8.000 -8.000

Information fraction 0.333 0.667 1.000

als 0.001 0.006 0.025

alab 3.222 1.194 0.000

group sequential design outcome:

T: 2 z: 2.63
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3 Adaptive group sequential Design (AGSD)

3.1 Müller and Schäfer method

[Müller and Schäfer, 2001] presented a general method for the full integration of
the concept of adaptive interim analyses [Bauer and Kuehne, 1994] into group
sequential testing. This method allows to change statistical design elements
of a given group sequential design such as the α-spending function and the
number of interim analyses, without effecting the type I error rate. The method
is described by statistical decision functions and is based on the conditional
rejection probability of a decision variable.

The conditional rejection probability gives the conditional probability to
finally reject the null hypothesis given the interim data, assuming that the null
hypothesis is true. To explain the method, consider as in the previous section
the case of a comparative study of an experimental treatment E to a control
treatment C with means µE and µC and common known variance σ2 . As
before assume a group sequential trial with H0 : δ ≤ 0 against the one-sided
alternative HA : δ > 0 and a maximum of K stages. Let us assume that the
trial continues until stage L < K without rejection, i.e., zj < bj for all j ≤ L,
where zj is the observed value of the Wald test statistic Zj from stage j. Let us
further assume that one decides to make data dependent changes to the study
design at look L. Let R denote the event that H0 will be rejected at any future
analyses j = L+ 1, . . . ,K. R can be written as the union of disjoint events

R =

K⋃
i=L+1

Ri

where
Ri = {Zi ≥ bi and Zj < bj for all j < i}

The conditional probability for H0 of the event R given Zj for j ≤ L, is called
conditional rejection probability. It can formally be written as

ε(0) = P0(R|Z1 = z1, . . . , ZL = zL).

We now plan a new group sequential design at level ε(0). This trial starts
at stage L and is based on a patient cohort which is independent from the
cohort of patients recruited up to look L. This trial can be seen as a new,
independent ’secondary’ trial in which the sample size is initialized to zero and
the type I error is equal to ε(0). The Wald z-statistics for the secondary trial
are only based on the data observed after the stage of the adaptation L. We will
distinguish the secondary trial from the original ’primary’ trial by labeling the
stages, sample sizes, stopping boundaries and test statistics by the superscript
’(2)’. Assume that the secondary trial has a maximum number of K(2) stages,

cumulated information numbers I
(2)
j , j = 1, . . . ,K(2) and rejection boundaries

b
(2)
j , j = 1, . . . ,K(2) . The boundaries for the secondary group sequential trial

have to be chosen in such a way, that the resulting test procedure has type I
error ε(0), i.e.,

ε(0) = P0

 K(2)⋃
j=L+1

{Z(2)
j ≥ b(2)

j }|Z1 = z1, . . . , ZL = zL
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Assume that the secondary trial terminates at look T (2) ≤ K(2) with the ob-

served test-statistic Z
(2)

T (2) = z
(2)

T (2) . Now, the null hypothesis is rejected if and

only if z
(2)

T (2) ≥ b
(2)

T (2) . Note that the conditional rejection probability is the only
information which is carried over to the secondary trial.

3.2 AGST object

Most of the functions for adaptive group sequential designs (AGSD) in this
package need an AGST object as input. An AGST object is a collection of lists
containing the design parameters of the primary trial (pT), the interim data
(iD) and the design parameters of the secondary trial (sT), namely:

pT object:
K: Number of stages
al: Alpha (type I error rate)
a: Lower critical bounds of group sequential design (are currently always set to -8)
b: Upper critical bounds of group sequential design
t: Vector with cumulative information fraction
SF: Spending function (for details see help from R-function bounds (package: ldbounds))
phi: Parameter of spending function when SF=3 or 4
alab: Alpha-absorbing parameter values of group sequential design
als: Alpha-values ”spent” at each stage of group sequential design
Imax: Maximum information number
delta: Effect size used for planning the primary trial

iD object:
L: Stage of the adaptation
z: z-statistic at adaptive interim analysis

sT object:
K: Number of stages
al: Conditional rejection probability
a: Lower critical bounds of secondary group sequential design (are currently always set to -8)
b: Upper critical bounds of secondary group sequential design
t: Vector with cumulative information fraction
SF: Spending function (for details see help from R-function bounds (package: ldbounds))
phi: Parameter of spending function when SF=3 or 4
Imax: Maximum information number
delta: Effect size used for planning the secondary trial

Optionally, the object can also contain the secondary trial outcome (sTo), which
is necessary to calculate confidence bounds, p-values and point estimates.

sTo object:
T: Stage where secondary trial stops
z: z-statistic at stage where secondary trial stops

Furthermore, the package also provides the generic function summary (see next
sections), which can be used to extend the AGST object by the following quan-
tities, e.g.:
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cb.s Confidence bound based on the stage-wise ordering
cb.r Repeated confidence bound
pvalue.so Stage-wise adjusted p-value
pvalue.r Repeated p-value
est.ml Maximum likelihood estimate
est.mu Median unbiased point estimate
est.cons Conservative point estimate

The function as.AGST can be used to create an object of class AGST.

3.2.1 adapt example

We continue with the example from the section 2.2 and suppose that at the
first interim analysis, after n1 = 95 subjects in total (both groups together)

have been evaluated, the estimate of δ is δ̂1 = 3 with the estimated standard
deviation σ̂1 = 20 which gives z1 = 0.731. Since the observed δ̂1 is below
the anticipated δ and σ̂1 is higher, we decide to increase the sample size. As
described above we set the significance level of the secondary trial equal ε(0) to
control the type I error rate. The sample size is calculated on the bases of δ = 4,
which is the mean of the original δ0 and the interim estimate δ1 = 3, with σ = 20
and a power of 90%. In order to calculate the conditional rejection probability
ε(0) we first have to define the primary trial (pT), which is the originally planed
GSD and the interim data(iD), which is the data we observed at the interim
analyses. For the new secondary trial we changed the spending function from the
Hwang-Shih-DeCani family (SF=4) to the O’Brien and Fleming type spending
function (SF=1) to have a higher change for early rejection. Furthermore, we
increased the power from 80% to 90%, based on the new effect size of δ = 4.

> pT=GSD

> iD=list(T=1, z=0.731)

The function cer calculates the conditional rejection probability of pT given iD.

> cer(pT,iD)

[1] 0.02739815

The secondary trial can be planned with the function adapt. For safety reasons,
we aim on a stage wise sample size of at most 200 patients in the secondary trial.
This implies a maximum for the incremental information of the sequential steps,
which can be calculated as:

> swImax=200/(4*20^2)

With I2min and I2max, we define the minimal and maximal total information
for the secondary trial. These numbers can be determined by a minimum and
maximum of steps and swImax. We aim on a minimum of 2 and a maximum
of 5 stages for the secondary trial. If I2max is to small to reach the specified
conditional power cp the functions returns a warning.

> I2min=2*swImax

> I2max=5*swImax

> sT=adapt(pT=pT,iD=iD,SF=1,phi=0,cp=0.9,theta=4,I2min=I2min,I2max=I2max,swImax=swImax)
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[1] "Power may be lower than planned."

> sT

5 stage group sequential design

alpha : 0.027 SF: 1 phi: 0 Imax: 0.62 delta: 4 cp: 0.89

Upper bounds 4.795 3.298 2.632 2.248 1.994

Lower bounds -8.000 -8.000 -8.000 -8.000 -8.000

Information fraction 0.200 0.400 0.600 0.800 1.000

> AGSD<-as.AGST(pT,iD,sT)

The created AGST object can now be plotted using the function plot.

> plot(AGSD)
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(a) Primary trial plot (Hwang, Shih and DeCani bound-
aries with γ = −4 at level 0.025 and the observed z-
statistic z = 0.731 at stage T = 1) from example 3.2.1
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(b) Secondary trial plot (O’Brien-Fleming boundaries at
level 0.027) from example 3.2.1

Figure 2: Plots from example 3.2.1
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3.3 Overall p-values with adaptations

3.3.1 Repeated p-values

Repeated p-values can be defined at every interim look j of an adaptive sec-
ondary trial and not just at the look T (2) where the trial terminates. However,
they produce conservative tests. Let us assume that we perform some design
adaptations at stage L. The conditional type I error rate for the test at level u
is then given by

εu =

{
0 if u ≤ αL
P0(
⋃K
j=L+1 {Zj ≥ bj,u}|Z1 = z1, . . . , ZL = zL) if u > αL

Let p(2) denote the repeated p-value of the secondary trial of the stage T (2)

where the trial stops, i.e.,

p(2) = inf(u : z
(2)

T (2) ≥ b
(2)

T (2),u
)

where b
(2)
k,u is from the monotone family of boundaries from the spending function

for the secondary trial. Now the overall p-value, considering the data from the
primary and secondary trial, is defined by

q = inf{u : p(2) ≤ εu}
εu is increasing in u (if all bj,u’s are decreasing in u) and hence the corresponding
adaptive level-u tests are nested. Therefore the p-value can be computed as the
solution of the equation p(2) = εu.
We continue with the example from section 3.2.1 and compute the repeated p-
value for the adaptive design. We assume that we want to calculate the p-value
at stage T = 2 with an observered test-statistic of z = 1.532. Before we can
calculate the p-value we have to include in the AGST object a list containing
the outcome from the secondary trial (sTo). With the now created object from
class AGST we can calculte the repeated p-value after a design adaptation.

> sTo=list(T=2,z=1.532)

> AGSD<-as.AGST(pT,iD,sT,sTo)

> pvalue(AGSD,type='r')

$pvalue.r

[1] 0.1645508

3.3.2 P -values based on the stage-wise ordering with adaptations

Stage-wise p-values are exact, but they can only be calculated at the stage where
the trial stops according to the prespecified stopping rule. In the case of a design
adaptation at look L we compute the corresponding conditional error functions

εu =

{
0 if u ≤ αL
P0(
⋃k−1
j=L+1 {Zj ≥ bj} ∪ {Zk ≥ bk,u}|Z1 = z1, . . . , ZL = zL) if αk−1 < u < αk, k = L+ 1, . . . ,K

where bk,u defines the ”threshold boundary” in such a way that it satisfies the
relationship
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P0

k−1⋃
j=1

{Zj ≥ bj} ∪ {Zk ≥ bk,u}

 = u

Let p(2) denote the stage-wise adjusted p-value of the secondary trial at the
stage T (2) where the trial stops, i.e.,

p(2) = P0

T (2)−1⋃
j=1

{Z(2)
j ≥ b(2)

j } ∪ {Z
(2)

T (2) ≥ z
(2)

T (2)}


Now we can calculate the overall p-value by

q = inf{u : p(2) ≤ εu} = sup{u : p(2) > εu}

We continue with the example from section 3.2.1 and calculate the stage wise
adjusted p-value for a group sequential trial with design adaptations. We assume
that the trial stops at stage T = 3 with the observered test-statistic z = 2.73.

> AGSD1<-as.AGST(pT,iD,sT,list(T=3,z=2.73))

> pvalue(AGSD1,type='so')

$pvalue.so

[1] 0.007435759

3.4 Construction of one-sided confidence intervals

3.4.1 Repeated confidence bounds with adaptations

Repeated confidence bounds have the advantage that they can be computed
at any stage, whether the trial stops or not, but they have only conservative
coverage probability. In the case of a design adaptation we apply the Müller
and Schäfer principle to all dual tests. Collecting all h’s where Hh : δ ≤ h is
accepted, gives the 1−α confidence interval. To obtain this confidence interval
we shift the observed test statistic of the primary trial to

zj(h) = zj − h
√
Ij , j = 1, . . . , L

and the test-statistic observed in the secondary trial is shifted to

z
(2)
j (h) = z

(2)
j − h

√
I

(2)
j , j = 1, . . . , T (2)

Now, the conditional rejection probability can be calculated by

ε(h) = P0

 K⋃
j=L+1

{Zj ≤ bj}|Z1 = z1 − h
√
I1, . . . , ZL = zL − h

√
IL


With the [Müller and Schäfer, 2001] principle we can define the family of dual
tests for Hh with the rejection rule

p(2)(h) ≤ ε(h),
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where p(2)(h) is a p-value of the secondary trial for the shifted test statistic

z(2)−h
√
I

(2)
j . To preserve the flexibility of the repeated confidence intervals we

use the repeated p-value for p(2)(h). Applying the upper equation to all values
of h gives the one-sided confidence interval (δ,∞) where δ is the unique solution
of p(2)(h) = ε(h) in h. We assume the example from section 3.3.1 and calculate
the repeated confidence bound.

> seqconfint(AGSD,type='r')

$cb.r

[1] -2.063108

3.4.2 Stage-wise confidence bounds with adaptations

Stage-wise confidence intervals have exact coverage probability, however they
can only be calculated at the stage where the trial stops according to the prespec-
ified stopping rule. Hence, with the stage-wise confidence intervals we cannot
deviate from the pre-specified stopping rule. The stage-wise adjusted confidence
intervals also provide a less conservative point estimate for δ. Let us now as-
sume that we want to perform some design adaptations at look L. Recall that
we have to compute the conditional type I error rate

ε(0) = P0

 K⋃
j=L+1

{Zj ≥ bj}|Z1 = z1, . . . , ZL = zL

 .

In order to test Hh : δ ≤ h at level α we apply the [Müller and Schäfer, 2001]
principle for any given h by computing the conditional error function ε(h) of
the test for Hh : δ ≤ h. The determination of ε(h) is now more complex and we
refer to [Brannath et al., 2009] for details. We assume that the secondary trial
stops at look T (2). Then we compute the p-value according to the stage-wise
ordering of the secondary trial as

p(2)(h) = Ph

T (2)−1⋃
j=1

{Z(2)
j ≥ b(2)

j } ∪ {Z
(2)

T (2) ≥ z
(2)

T (2)}


With this new p-value we can define the dual test in such a way that
Hh : δ ≤ h is rejected if and only if p(2)(h) ≤ ε(h). With the above adaptive
tests for Hh it is now possible to compute the lower confidence bound δ in
the case of an adaptive change at look L. We build the confidence set of all
parameter values h that were accepted, i.e., p(2)(h) > ε(h). We have the problem
that p(2)(h) = ε(h) may have more than one solution. The reason is the non-
monotonicity of ε(h) (see [Brannath et al., 2009]). Thus we define δ as the
smallest solution of p(2)(h) = ε(h) which gives a conservative lower confidence
bound. The conservatism was found to be natural in simulation studies. We
consider the numerical example from section 3.3.2 and calculate the stage-wise
adjusted confidence interval.

> seqconfint(AGSD1,type='so')

$cb.so

[1] 0.8017689
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3.5 Point estimates with adaptations

3.5.1 Median unbiased point estimates with adaptations

Median unbiased point estimates with adaptations are almost exact, but they
can only be calculated at the stage where the trial stops according to the pre-
specified stopping rule. We consider the numerical example from section 3.3.2
and calculate the median unbiased point estimate.

> seqconfint(AGSD1,type="so",level=0.5)

$est.mu

[1] 3.799511

3.5.2 Conservative point estimates with adaptations

To calculate the conservative point estimate after an adaptation, we compute
the lower repeated confidence bound at level 0.5 after an adaptation. This point
estimate is flexible, in the sense that it can be calculated at every stage of the
trial and not only at the stage T where the trial stops. Its median is never
above the true parameter value, but can be below it. We consider the numerical
example from section 3.3.1 and calculate the conservative point estimate.

> seqconfint(AGSD,type="r",level=0.5)

$est.cons

[1] 1.88595

3.6 Summary function for an AGST object

As aforementioned the package also provides a generic summary function which
takes as input a AGST object and additional parameters. This summary func-
tion produces result summaries of the different functions for AGSDs, e.g.: con-
fidence bounds, p-values and point estimates. By specifying the type (ctype,
ptype and etype), the user can define which values are calculated:

Confidence bounds and p-values:
ctype: Confidence type
ptype: P -value type

Possible value for these two parameters are:
r: Repeated
so: Stage-wise adjusted
b: Both, repeated and stage-wise adjusted
n: No values are calculated

Point estimates (etype):
ml: Maximum likelihood estimate (ignoring the sequential nature of the design)
mu: Median unbiased estimate (stage-wise lower confidence bound at level 0.5) for an AGSD
cons: Conservative estimate (repeated lower confidence bound at level 0.5) for an AGSD
a: All, maximum likelihood, median unbiased and conservative point estimate for an AGSD
n: No point estimate is calculated

If no type is specified the summary function calculates by default all values.
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We assume the example from section 3.3.2. With as.AGST we create a new AGST

object and pass this object to the summary function. Now we want to calcu-
late the stage-wise adjusted confidence bound, the stage-wise adjusted p-value,
and all point etsimates (maximum likelihood, median unbiased and conservative
point estimate). If we assign the output from the summary function to the new
created AGST object, the object gets extended by the calculated values.

> AGSD1<-summary(AGSD1,ctype='so',ptype='so',etype='a')

> AGSD1

stage-wise adjusted lower confidence bound: 0.802

stage-wise adjusted p-value: 0.007

maximum likelihood estimate: 3.968

median unbiased estimate: 3.8

conservative estimate: 3.24

Primary trial:

3 stage group sequential design

alpha : 0.025 SF: 4 phi: -4 Imax: 0.32 delta: 5 cp: 0.8

Upper bounds 3.011 2.547 1.999

Lower bounds -8.000 -8.000 -8.000

Information fraction 0.333 0.667 1.000

als 0.001 0.006 0.025

alab 3.222 1.194 0.000

interim data:

T: 1 z: 0.731

Secondary trial:

5 stage group sequential design

cer: 0.027 SF: 1 phi: 0 Imax: 0.62 delta: 4 cp: 0.89

Upper bounds 4.795 3.298 2.632 2.248 1.994

Lower bounds -8.000 -8.000 -8.000 -8.000 -8.000

Information fraction 0.200 0.400 0.600 0.800 1.000
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Secondary trial outcome:

T: 3 z: 2.73
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