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1 Introduction

One of the strengths of the Cox model is its ability to encompass covariates that change over
time, due to the theoretical foundation in martigales. A martingale (original definition) is a
betting strategy in games of chance. One of the simplest and best known is doubling the bet
each time you lose. For instance consider the following game of roulette:

Bet Outcome Win Running total
R $1 Red 2 1

R $1 Black 0 0
R $2 Black 0 -2
B $4 Red 0 -6
R $8 Black 0 -14

B $16 Black 32 2

B $1 Red 0 1
B $2 Black 4 3

...
...

...
...

At the end of each cycle of bets the player is another $1 ahead. The problem is that a modest
sequence of losses will exhaust their stake.

The rule for time dependent covariates in a Cox model is simple and essentially the same
as that for gambling: you cannot look into the future. A covariate may change in any way
based on past data or outcomes, but it may not reach “forward” in time. One of the more well
known examples of this error is analysis by response: at the end of a trial a survival curve is
made comparing those who had an early response to treatment (shrinkage of tumor, lowering of
cholesterol, or whatever), and it discovered that response predicts survival. The problem arises
because subjects are classified as responders or non-responders from the beginning of the study,
i.e., they are placed into group A or B before the response has occurred. As a consequence, any
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early deaths that occur before response can be assessed will be assigned to the non-responder
group, even deaths that have nothing to do with the condition under study.

There are many variations on the error: interpolation of the values of a laboratory test linearly
between observation times, removing subjects who do not finish the treatment plan, imputing
the date of an adverse event midway between observation times, etc. All of these are similar to
running a red light in your car: disaster is not guarranteed — but it is likely.

The most common way to encode time-dependent covariates is to use the (start, stop] form
of the model.

> fit <- coxph(Surv(time1, time2, status) ~ age + creatinine,

data=mydata)

In this data set a patient might have the following observations

subject time1 time2 status age creatinine . . .
1 0 15 0 25 1.3
1 15 46 0 25 1.5
1 46 73 0 25 1.4
1 73 100 1 25 1.6

In this case the variable age = age at entry to the study stays the same from line to line, while
the value of creatinine varies and is treated as 1.3 over the interval (0, 15], 1.5 over (15, 46], etc.
The intervals are open on the left and closed on the right, which means that the creatinine is
taken to be 1.3 on day 15. The status variable describes whether or not each interval ended in
an event.

One commmon question with this data setup is whether we need to worry about correlated
data, since a given subject has multiple observations. The answer is no, we do not. The reason
is that this representation is simply a bookkeeping trick; the likelihood equations at any time
point use only one copy of any subject, the program picks out the correct row of data at any
given time. There are two exceptions to this rule, in which case the cluster variance is necessary:

� When subjects have multiple events.

� When a subject appears in overlapping intervals. This however is almost always a data
error, since it corresponds to two copies of the subject being present at the same time, e.g.,
they could meet themselves on the sidewalk.

2 Examples

2.1 Multiple events

Chronic granulomatous disease (CGD) is a heterogenous group of uncommon inherited disorders
characterized by recurrent pyogenic infections that usually begin early in life and may lead
to death in childhood. Interferon gamma is a principal macrophage-activating factor shown
to partially correct the metabolic defect in phagocytes. It was hypothesized that treatment
with interferon might reduce the frequency of serious infections in patients with CGD. In 1986,
Genentech, Inc. conducted a randomized, double-blind, placebo-controlled trial in 128 CGD
patients who received Genentech’s humanized interferon gamma (rIFN-g) or placebo three times
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daily for a year. The primary endpoint of the study was the time to the first serious infection.
However, data were collected on all serious infections until the end of followup, which occurred
before day 400 for most patients. Thirty of the 65 patients in the placebo group and 14 of the 63
patients in the rIFN-g group had at least one serious infection. The total number of infections
was 56 and 20 in the placebo and treatment groups, respectively. One patient was taken off on
the day of his last infection; all others have some followup after their last episode. Below are
the first 10 observations, but with the listing truncatated beyond the fourth infection. Subject
2 has 7 infections, no one in the study has more.

1 204 082888 1 2 12 147.0 62.0 2 2 2 2 414 219 373

2 204 082888 0 1 15 159.0 47.5 2 2 1 2 439 8 26 152 241 249 322 350

3 204 082988 1 1 19 171.0 72.7 1 2 1 2 382

4 204 091388 1 1 12 142.0 34.0 1 2 1 2 388

5 238 092888 0 1 17 162.5 52.7 1 2 1 1 383 246 253

6 245 093088 1 2 44 153.3 45.0 2 2 2 2 364

7 245 093088 0 1 22 175.0 59.7 1 2 1 2 364 292

8 245 093088 1 1 7 111.0 17.4 1 2 1 2 363

9 238 100488 0 1 27 176.0 82.8 2 2 1 1 349 294

10 238 100488 1 1 5 113.0 19.5 1 2 1 1 371

> cgdname <- c("id", "center", "random.dt", "trt", "sex", "age",

"height", "weight", "inheritance", "steroids",

"antibiotic", "inst", "futime", paste("e", 1:7, sep=''))

> cgd1 <- read.table('cgd.dat', header=F, fill=T, col.names=cgdname,

colClasses=c("integer", "integer", "character",

rep("integer", 3), rep("numeric",2),

rep("integer", 12)))

> cgd1$ninfect <- rowSums(!is.na(as.matrix(cgd1[,14:20])))

> cgd1$random.dt <- as.Date(cgd1$random.dt, format="%m%d%y")

> cgd1$sex <- factor(cgd1$sex, labels=c("M", "F"))

> cgd1$inst <- factor(cgd1$inst, labels=c("NIH", "US-Other",

"Amsterdam", "Europe-Other"))

> temp <- apply(as.matrix(cgd1[,13:20]), 1, function(x) {

z <- as.vector(x[!is.na(x)])

if (length(z)==1) cbind(0, z, 0)

else {

temp <- cbind(c(0, z[-1]),

c(z[-1], z[1]),

c(rep(1, length(z)-1), 0))

if (z[1]== z[length(z)]) temp[-nrow(temp),]

else temp

}})

> index <- rep(1:nrow(cgd1), unlist(lapply(temp, nrow)))

> cgd2 <- data.frame( cgd1[index, 1:12],

time1= unlist(lapply(temp, function(x) x[,1])),

time2= unlist(lapply(temp, function(x) x[,2])),

event= unlist(lapply(temp, function(x) x[,3])),

enum = unlist(lapply(temp, function(x) 1:nrow(x))))
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> cfit <- coxph(Surv(time1, time2, event) ~ trt + sex + age +

inheritance + cluster(id), data=cgd2)

The logic for creating the time variables is

� If a subject has no events there is a single interval from 0 to last follow-up, with a status
of 0.

� If there are events

– There is an interval for each event (0, event1], (event1, event2], etc. each with status
=1.

– If the follow-up time exceeds the last event there will be a final interval with status
=0.

The result of the apply function above will be a list with one item per patient, each item
being a 3 column matrix with time1, time2, and status. The as.vector command removes names,
which can speed the operation. The resulting data frame cgd2 is in the proper format for the
analysis.

2.2 Changing lab tests

To be filled in.

2.3 Predictable time-dependent covariates

Occasionaly one has a time-dependent covariate whose values in the future are predictable. The
most obvious of these is patient age, occasionally this may also be true for the cumulative dose
of a drug. If age is entered as a linear term in the model, then the effect of changing age can
be ignored in a Cox model, due to the structure of the partial likelihood. Assume that subject
i has an event at time ti, with other subject j ∈ Ri at risk at that time, with a denoting age.
The partial likelihood term is

eβ∗ai∑
j∈Ri

eβ∗aj
=

eβ∗(ai+ti)∑
j∈Ri

eβ∗(aj+ti)

We see that using time-dependent age (the right hand version) or age at baseline (left hand),
the partial likelihood term is identical since exp(βti) cancels out of the fraction. Howevever, if
the effect of age on risk is non-linear, this cancellation does not occur.

Since age changes continuously, we would in theory need a very large (start, stop] data set
to completely capture the effect — an interval per day to match the usual resolution for death
times. In practice this level of resolution is not necessary; though we all grow older, risk does
not increase so rapidly that we need to know out age to the day! For most medical applications
year is sufficient, but this still leads to a large data set. One useful way to generate this data
set is through use of the pyears function. The following example uses data on rehospitalization
for cohort of rheumatoid arthritis patients who also have conjestive heart failure (CHF)[1]. The
variables are
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� patid: patient identifier

� agechf: age at onset of CHF

� yearchf calendar year of CHF, relative to the start of the study

� startday, stopday: an interval of risk

� hospevt: =1 if the interval ends with a hospitalization

� prevhosp: number of prior hosptializations

� duration: duration of RA prior to CHF

� male sex: 1 for male, 0 for female

The age and duration variables have been rounded to .1 year to maintain patient privacy.

> load('raheart.rda')

> age2 <- tcut(raheart$agechf*365.25, 0:110* 365.25, labels=0:109)

> rowid <- 1:nrow(raheart)

> pfit <- pyears(Surv(startday, stopday, hospevt) ~ age2 + rowid,

data=raheart, data.frame=TRUE, scale=1)

> print(pfit$offtable)

[1] 0

> pdata <- pfit$data

> print(pdata[1:6,])

age2 rowid pyears n event
1 88 1 7.00 1 0
2 92 2 108.25 1 0
3 93 2 365.25 1 0
4 94 2 365.25 1 0
5 95 2 236.25 1 1
6 95 3 104.00 1 1

The tcut function attaches a set of cutpoints to the starting age for each subject, it’s primary
job is to mark the variable as time-increasingfor the pyears function. In the pyears call we set
scale=1 to prevent the age intervals from being rescaled to years, this is not critical. Printing
out the value of offtable is important, however. One of them most common mistakes in using
pyears is mismatched scales, for instance if the age were in years and the follow-up time in days,
and a common result of that error is to have follow-up time that fits into none of the categories.
This will give a large amount of time that is outside the boundaries of the table. In the resulting
data frame the first observation has 7 days of follow-up, exactly as in the starting data. The
second observation has been broken into 4 rows, 109.6 days at age 92, then a year each at age
93 and 94, and a final 234.9 days at age 95 ending with a hospitalization. (The odd fractions of
a day like .575 are a consequence of rounding the age values to 1 digit.)
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Now we combine this with the original data set using the same indexing trick found in the
first example. We also need a variable containing the end time for the prior row of each subject
and zero for the first row of each subject, which is lagtime below. We then fit two models. The
first looks at the effect of age at diagnosis of CHF, the second at the effect of current age.

> index <- as.integer(pdata$rowid)

> lagtime <- c(0, pdata$pyears[-nrow(pdata)])

> lagtime[1+ which(diff(index)==0)] <- 0 #starts at 0 for each subject

> temp <- raheart$startday[index] + lagtime #start of each new interval

> data2 <- data.frame(raheart[index,],

time1= temp,

time2= temp + pdata$pyears,

event= pdata$event,

age2= 1+ as.numeric(pdata$age2) )

> afit1 <- coxph(Surv(startday, stopday, hospevt) ~ male + pspline(agechf),

data=raheart)

> afit2 <- coxph(Surv(time1, time2, event) ~ male + pspline(age2), data2)

> #termplot(afit1, terms=2, se=TRUE, xlab="Age at Diagnosis of CHF")

> #termplot(afit2, terms=2, se=TRUE, xlab="Current Age")

>

> table(with(raheart, tapply(hospevt, patid, sum)))

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 18 19 20 22
28 22 18 14 9 7 7 10 3 4 1 2 3 1 1 2 2 1 1

In this particular case the two fits are quite similar. In retrospect this perhaps should have been
expected: the mean age for onset of CHF in this group is 75 years, which does leave a lot of time
for aging. (This analysis is very preliminary, however. As shown by the last line above there
are a few patients with a very large number of admissions, sometimes referred to as “entering a
revolving door” near the end of their disease. These have an untoward influence on the fit.)

2.4 Predictable covariates, method 2

Another method to create a time-changing covariate is to use the time-transform feature of
coxph.

> afit2b <- coxph(Surv(startday, stopday, hospevt) ~ male + tt(agechf),

data=raheart,

tt=function(x, t, ...) pspline(x + t/365.25))

> afit2b

Call:
coxph(formula = Surv(startday, stopday, hospevt) ~ male + tt(agechf),

data = raheart, tt = function(x, t, ...) pspline(x + t/365.25))

coef se(coef) se2 Chisq DF
male 0.228763 0.08909 0.08899 6.59 1.00
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tt(agechf), linear -0.000666 0.00426 0.00426 0.02 1.00
tt(agechf), nonlin 6.02 3.06

p
male 0.01
tt(agechf), linear 0.88
tt(agechf), nonlin 0.12

Iterations: 6 outer, 16 Newton-Raphson
Theta= 0.932

Degrees of freedom for terms= 1.0 4.1
Likelihood ratio test=13.7 on 5.05 df, p=0.0181 n= 658

If there are one or more terms on the right hand side of the equation marked with the tt()
operator, the program will pre-compute the values of that variable for each unique event time
and strata combination. A user-defined function is called with arguments of

� the covariate: whatever is inside the tt() call

� the event time

� the event number: if there are multiple strata and the same event time occurs in two of
them, they are treated separately

� the weight for the observation, if the call used weights

There is a single call to the function with a very large x vector, it contains an element for each
subject at risk at each event time. If there are multiple tt() terms in the formula, then the tt
argument should be a list of functions with the requisite number of elements.

There are other interesting uses for the time-transform capability. One example is O’Brien’s
logit-rank test procedure [2]. He proposed replacing the covariate at each event time with a logit
transform of its ranks. This removes the influence of any outliers in the predictor x. For this
case we ingore the event time argument and concentrate on the groupings.

> function(x, t, riskset, weights){

obrien <- function(x) {

r <- rank(x)

(r-.5)/(.5+length(r)-r)

}

unlist(tapply(x, riskset, obrien))

}

function(x, t, riskset, weights){
obrien <- function(x) {

r <- rank(x)
(r-.5)/(.5+length(r)-r)

}
unlist(tapply(x, riskset, obrien))

}
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This relies on the fact that the input argments to tt() are ordered by the event number or riskset.
This function is used as a default if no tt argument is present in the coxph call, but there are tt
terms in the model formula. (Doing so allowed me to depreciate the survobrien function).

Another interesting useage is to replace the data by simple ranks, not rescaled to 0–1.

> function(x, t, riskset, weights)

unlist(tapply(x, riskset, rank))

function(x, t, riskset, weights)
unlist(tapply(x, riskset, rank))

The score statistic for this model is (C −D)/2, where C and D are the number of concordant
and discordant pairs, see the survConcordance function. The score statistic from this fit is then
a test for significance of the concordance statistics, and is in fact the basis for the standard error
reported by survConcordance. The O’Brien test can be viewed as concordance statistic that
gives equal weight to each event time, whereas the standard concordance weights each event
proportionally to the size of the risk set. (The Cox score statistic depends on the mean x at each
event time; since ranks go from 1 to number at risk the mean also scales.)

Although handy, the computational impact of the tt argument should be considered before
using it. The Cox model requires computation of a weighted mean and variance of the covariates
at each event time, a process that is inherently O(ndp2) where n = the sample size, d = the
number of events and p= the number of covariates. Much of the algorithmic effort in coxph()
is to use updating methods for the mean and variance matrices, reducing the compute time to
O((n+d)p2). When a tt term appears updating is not possible; for even moderate size data sets
the impact of nd versus n + d can be surprising.

The time-transform is a new addition and still has some rough edges. At this moment the
x = T argment is needed to get proper residuals and predicted values, and termplot is unable
to properly reconstruct the data to plot the spline fit. Please communicate any concerns or
interesting examples to the author.
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