Rotated Viewports

Paul Murrell

October 6, 2024

It is possible to specify an angle of rotation for a Grid viewport. For example, the following
code draws the example multipanel plot at an angle of 15°.

> pushViewport (viewport(h = .8, w = .8, angle = 15))
> grid.multipanel (newpage = FALSE)
> popViewport ()

A more complicated example is now developed. First of all we generate some data to plot;
an z and a y with an obvious correlation.

> x <- rnorm(50)
>y <- x + rnorm(50, 1, 2)

Next we generate some statistics from the data.

We will extend the axes over the entire region so
extrapolate scale from main data region

scale <- extendrange(r = range(x,y))

extscale <- c(min(scale), max(scale)+diff (scale)*1/3)

vV VvV Vv Vv

Now generate a layout of regions: a 3" by 3" region for a scatterplot, inside a 4" by 4"
region.

> lay <- grid.layout(2, 2,

+ widths = unit(c(3, 1), "inches"),

+ heights = unit(c(1, 3), "inches"))

> vpl <- viewport(width = unit(4, "inches"), height = unit(4, "inches"),
+ layout = lay, xscale = extscale, yscale = extscale)

We draw a box around the outside and axes on the entire region.

grid.newpage ()

pushViewport (vpl)

grid.rect ()

grid.xaxis ()

grid.text("Test", y = unit(-3, "lines"))
grid.yaxis ()

grid.text ("Retest", x = unit(-3, "lines"), rot = 90)

V VVVVVYyV

We draw points within the interior region.

> vp2 <- viewport (layout.pos.row = 2, layout.pos.col = 1,
+ xscale = scale, yscale = scale)

> pushViewport (vp2)

> grid.lines()

> grid.points(x, y, gp = gpar(col = "blue"))

> popViewport ()

Now we use a rotated viewport to draw a boxplot which indicates the distribution of the

distances between the points in the scatterplot and the line y = 2.

The final output is shown on the last page.

I This may look like a large amount of code, but that’s mostly because its doing a boxplot by hand rather
than using a predefined high-level function.

VVV+VVVVVYV++YV ++V +++VIVVVYV Y+ S+ S+ S+ S+ S+ S+ F++++ + YV VYV VYV

diffs <- (y - x)
rdiffs <- range(diffs)
ddiffs <- diff(rdiffs)
bxp <- boxplot(diffs, plot = FALSE)
vp3 <- viewport(x = unit(3, "inches"),
y = unit (3, "inches"),
width = unit(.5, "inches"),
NOTE that the axis on the boxplot represents
actual (y - x) values BUT to make
the bits of the boxplot line
up with the data points we have to plot
(y - x)/sqrt(2)
Hence the sin(pi/4) below
height = unit(ddiffs*sin(pi/4)/diff (scale)*3, "inches"),
just = c("centre", "center"),
angle = 45,
gp = gpar(col = "red"),
yscale = c(-ddiffs/2, ddiffs/2))

H O OB R R R

pushViewport (vp3)
left <- -.3
width <- .8

middle <- left + width/2
grid.rect(x = left, y = unit(bxp$conf[1,1], "native"),
width = width, height = unit (diff (bxp$conf[,1]), "native"),
just = c("left", "bottom"),
gp = gpar(col = NULL, fill = "orange"))
grid.rect(x = left, y = unit(bxp$stats[4,1], "native"),
width = width, height = unit(diff (bxp$stats[4:3,1]), "native"),
just = c("left", "bottom"))
grid.rect(x = left, y = unit(bxp$stats[3,1], "native"),
width = width, height = unit (diff (bxp$stats[3:2,1]), "native"),
just = c("left", "bottom"))
grid.lines(x = c(middle, middle), y = unit(bxp$stats[1:2,1], "native"))
grid.lines(x = c(middle, middle), y = unit(bxp$stats[4:5,1], "native"))
grid.lines(x = c(middle-.1, middle+.1), y = unit(bxp$stats[1,1], "native"))
grid.lines(x = c(middle-.1, middle+.1), y = unit(bxp$stats[5,1], "native"))
np <- length(bxp$out)
if (np > 0)
grid.points(x = rep(middle, np), y = unit(bxp$out, "native"))
grid.yaxis(main = FALSE)
popViewport (2)

&
8 - © Y
Q
Vv
6 ’
00° 3
4 S 5
17 @) @
9
2 2 Oo(%o
[SleSgdepge)
07 ©)
O
—2 - 8@ © o
GDO
-4 T T T T T T
-4 -2 0 2 4 6 8
Test
Problems

1. Data symbols will not be affected by the angle of rotation. For round data symbols
this does not matter, but it will make just about everything else look pretty odd.

