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It is possible to specify an angle of rotation for a Grid viewport. For example, the following
code draws the example multipanel plot at an angle of 15°.

> pushViewport (viewport(h = .8, w = .8, angle = 15))
> grid.multipanel (newpage = FALSE)
> popViewport ()




A more complicated example is now developed. First of all we generate some data to plot;
an z and a y with an obvious correlation.

> x <- rnorm(50)
>y <- x + rnorm(50, 1, 2)

Next we generate some statistics from the data.

# We will extend the axes over the entire region so
# extrapolate scale from main data region

scale <- extendrange(r = range(x,y))

extscale <- c(min(scale), max(scale)+diff (scale)*1/3)
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Now generate a layout of regions: a 3" by 3" region for a scatterplot, inside a 4" by 4"
region.

> lay <- grid.layout(2, 2,

+ widths = unit(c(3, 1), "inches"),

+ heights = unit(c(1, 3), "inches"))

> vpl <- viewport(width = unit(4, "inches"), height = unit(4, "inches"),
+ layout = lay, xscale = extscale, yscale = extscale)

We draw a box around the outside and axes on the entire region.

grid.newpage ()

pushViewport (vpl)

grid.rect ()

grid.xaxis ()

grid.text("Test", y = unit(-3, "lines"))
grid.yaxis ()

grid.text ("Retest", x = unit(-3, "lines"), rot = 90)
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We draw points within the interior region.

> vp2 <- viewport (layout.pos.row = 2, layout.pos.col = 1,
+ xscale = scale, yscale = scale)

> pushViewport (vp2)

> grid.lines()

> grid.points(x, y, gp = gpar(col = "blue"))

> popViewport ()

Now we use a rotated viewport to draw a boxplot which indicates the distribution of the

distances between the points in the scatterplot and the line y = 2.

The final output is shown on the last page.

I This may look like a large amount of code, but that’s mostly because its doing a boxplot by hand rather
than using a predefined high-level function.
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diffs <- (y - x)
rdiffs <- range(diffs)
ddiffs <- diff(rdiffs)
bxp <- boxplot(diffs, plot = FALSE)
vp3 <- viewport(x = unit(3, "inches"),
y = unit (3, "inches"),
width = unit(.5, "inches"),
NOTE that the axis on the boxplot represents
actual (y - x) values BUT to make
the bits of the boxplot line
up with the data points we have to plot
(y - x)/sqrt(2)
Hence the sin(pi/4) below
height = unit(ddiffs*sin(pi/4)/diff (scale)*3, "inches"),
just = c("centre", "center"),
angle = 45,
gp = gpar(col = "red"),
yscale = c(-ddiffs/2, ddiffs/2))
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pushViewport (vp3)
left <- -.3
width <- .8

middle <- left + width/2
grid.rect(x = left, y = unit(bxp$conf[1,1], "native"),
width = width, height = unit (diff (bxp$conf[,1]), "native"),
just = c("left", "bottom"),
gp = gpar(col = NULL, fill = "orange"))
grid.rect(x = left, y = unit(bxp$stats[4,1], "native"),
width = width, height = unit(diff (bxp$stats[4:3,1]), "native"),
just = c("left", "bottom"))
grid.rect(x = left, y = unit(bxp$stats[3,1], "native"),
width = width, height = unit (diff (bxp$stats[3:2,1]), "native"),
just = c("left", "bottom"))
grid.lines(x = c(middle, middle), y = unit(bxp$stats[1:2,1], "native"))
grid.lines(x = c(middle, middle), y = unit(bxp$stats[4:5,1], "native"))
grid.lines(x = c(middle-.1, middle+.1), y = unit(bxp$stats[1,1], "native"))
grid.lines(x = c(middle-.1, middle+.1), y = unit(bxp$stats[5,1], "native"))
np <- length(bxp$out)
if (np > 0)
grid.points(x = rep(middle, np), y = unit(bxp$out, "native"))
grid.yaxis(main = FALSE)
popViewport (2)
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1. Data symbols will not be affected by the angle of rotation. For round data symbols
this does not matter, but it will make just about everything else look pretty odd.



