
Empirical Bayes Genome-Wide Association Method 

 

1. Polygenic model 

 

We use a W-parent nested association mapping (NAM) population containing a standard 

parent and eight founders (𝑊 = 7) as an example to demonstrate the theory and methods. 

The method holds for any p-parents populations. Let y  be an 1n  vector of phenotypic 

values for n individuals. Define kZ  as an 𝑛 × (𝑊 + 1) matrix of founder allele inheritance 

for locus k. The jth row of matrix kZ  is defined as a 𝑛 × (𝑊 + 1) vector. If this individual 

is a heterozygote carrying the first and second founder alleles, then 

 

𝑍𝑗𝑘 = [ 1 1 0 0 0 0 0 0 ] 

 

If the individual is a homozygote inheriting both alleles from the fifth founder, then jkZ  

is defined as 

𝑍𝑗𝑘 = [ 0 0 0 0 2 0 0 0 ] 

 

The general rule for defining jkZ  is that there are at most two non-zero elements and the 

sum of all the eight elements equals two. Let  

 

𝛾𝑘 = [𝛾1𝑘   𝛾2𝑘   𝛾3𝑘   𝛾4𝑘   𝛾5𝑘 … 𝛾(𝑊+1)𝑘 ]
𝑇
 

 

be an (𝑊 + 1) × 1 vector of allelic effects for the eight founders. The phenotypic vector 

y  is described by the following linear mixed model, 
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where X  is a design matrix for fixed effects  , m is the number of (marker) loci available 

in the data and   is an 1n  vector of residual errors. Assume that 2~ (0, )nN I   and 

2

8~ (0, )k kN I  , where 2  is the residual error variance and 2

k  is a common variance 

shared by all the eight founder alleles at locus k. Because k  are assumed to be a vector of 

random variables, the model is called the linear mixed model. The expectation of y is 

E( )y X   and the variance-covariance matrix is  
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When m  is large, it is hard to estimate all m variance components in a simultaneous manner. 

Therefore, we make an assumption that all loci share the same variance component. This 

treatment implies that there are m polygenes in the model. This is a polygenic model and 



is treated as the null model for QTL detection. Under the polygenic model, we assume 
2

8~ (0, / )k N I m   for all 1,...,k m , where 
2  is the polygenic variance (the sum of 

variances for all individual loci). Under the polygenic model, the variance-covariance 

matrix is 
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where 2 2/    is the variance ratio, H K I   is the covariance structure and  
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is a marker-generated kinship matrix.  

 

2. Restricted maximum likelihood estimation 

 

To estimate the variance components, we use the restricted maximum likelihood (REML) 

method to maximize the following likelihood function, 
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where  2, ,     is the parameter vector and r  is the rank of matrix X. Given  , the 

restricted maximum likelihood estimates of   and 2  are   
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The above estimated parameters are expressed as functions of  . Substituting   and 2  

in Equation (6) by ̂  and 2̂  in Equation (5) yields a profiled likelihood function that is 

only a function of  , as shown below, 
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where 
1 1 1 1 1( )T TP H H X X H X X H          (8) 

A numeric solution of   can be found iteratively using the Newton iteration algorithm,  
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Once the iteration process has converged, the solution is the REML estimate of  , denoted 

by ̂ . The log likelihood value of equation (7) evaluated at ˆ   is called 0
ˆ( )L L   and 

it will be used in the likelihood ratio test (LRT) for individual QTL. 

 



3. Eigenvalue decomposition 

 

The likelihood function requires inverse and determinant of matrix H, an n n  matrix, and 

the computation can be demanding for large sample size. We used the eigenvalue 

decomposition to deal with the K matrix. Further investigation of Equation (7) shows that 

the profiled restricted log likelihood function only requires the log determinant of matrix 

H and various quadratic forms involving 1H  . Let us perform eigenvalue decomposition 

for K so that TK UDU , where  1diag ,..., nD    is a diagonal matrix for the 

eigenvalues and U  is the eigenvectors, an n n  matrix. The eigenvectors have the 

property of 1TU U   so that TUU I . Now, let us rewrite matrix H by 

( )T TH K I UDU I U D I U           (10) 

The determinant of H is  
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where D I   is a diagonal matrix. Therefore, the log determinant of matrix H is 
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The restricted log likelihood function also involves various quadratic terms in the form of 
1Ta H b , for example, 1TX H X , 

1TX H y
 and 

1Ty H y
. Using eigenvalue decomposition, 

we can rewrite the quadratic form by 
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where * Ta U a  and * Tb U b . Note that *

ja  is the jth element (row) of vector (matrix) *a  

and *

jb  is the jth element (row) of vector (matrix) *b . Using eigenvalue decomposition, 

matrix inversion and determinant calculation have been simplified into simple summations, 

and thus, the computational speed can be substantially improved.  

 

4. Genome scanning for quantitative trait loci 

 

Once   is estimated, we are able to scan the entire genome by controlling the polygenic 

covariance structure using the   estimated from the null model. The genomic scanning 

model for the kth locus is 

k ky X Z            (14) 

where   is the polygene. The general error term    has E( ) 0    and 

2ˆvar( ) ( )K I      , where the   value is fixed at its estimated values under the 

polygenic model. This time, we assume 
2

8~ (0, )k kN I   and perform a significance test for 

2

0 : 0kH   . Under the null hypothesis, the kth locus is not linked to QTL. Because k  is 



assumed to be a random effect, the expectation of y in the above model remains E( )y X  , 

but the variance-covariance matrix is  
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where 
2 2/k k    is the variance ratio. Let 

* Ty U y , * TX U X  and 
* T

k kZ U Z  be 

transformed variables so that  
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where ˆR D I   is a known diagonal matrix for the general covariance structure. Let 
* *T

k k k kH Z Z R   and define the restricted log likelihood function for parameter vector 

 2, ,k
     by 
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Given k , the maximum likelihood estimates of   and 2  are  
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The above estimated parameters are expressed as functions of k . Substituting   and 2  

in Equation (18) by ̂  and 2̂  in Equation (19) yields a profiled likelihood function that 

is only a function of k , as shown below, 
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where 
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The Newton algorithm for the numeric solution of k  is  

 
1

2 ( ) ( )
( 1) ( )

2

( ) ( )t t
t t k k

k k

k k

L L 
 

 



     
     

    
   (22) 

 

Once the iteration process converges, the solution is the REML estimate of k , denoted by 

ˆ
k . The log likelihood value of Equation (20) evaluated at ˆ

k k   is called 1
ˆ( )kL L  . The 

null hypothesis is 0 : 0kH   . The likelihood ratio test (LRT) for the kth locus is defined 

by 

0 12( )k L L         (23) 

 

The entire genome is scanned one locus at a time. Locus k is declared as significant if 

1 0.05k     where 1 0.05  is the 95% percentile of the distribution of k  under the null model. 

The 95% percentile threshold value is drawn from a permutation analysis.   

 

5. Woodbury matrix identities 

 

Efficient matrix inversion and determinant calculation is required to evaluate the log 

likelihood function shown in Equation (20). We use the Woodbury matrix identities to 

improve the computational speed. The Woodbury matrix identities are  
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and 
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Because ˆR D I   is a diagonal matrix, the Woodbury identities convert the above 

calculations into inversion and determinant of matrices with dimension 8 8 . The restricted 

likelihood function also involves various quadratic terms in the form of 
1T

ka H b
, which can 

be expressed as 
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Note that the above quadratic has been expressed as a function of various 1Ta R b  terms. 

The simplified quadratic term is calculated using 
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where ja  and jb  are the jth rows of matrices a  and b , respectively, for 1,...,j n .  

 

6. Best linear unbiased prediction of QTL effects 

 

To derive the best linear unbiased prediction (BLUP) of k , we need the following 

information, 
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and 
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The BLUP of k  can be derived as the conditional expectation of k  given 
*y , assuming 

that   is known, which has the following expression,  

 
* * 1 * *

* 1 * * 1 * * 1 * 1 * 1 *

E( | ) ( )

( )

T

k k k k

T T T T

k k k k k k k k

y Z H y X

Z H y Z H X X H X X H y

  

 



    

 

 
 (30) 

 

The conditional variance is 
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Let *
Eˆ ( | )k k y   and 

*

ˆ var( | )
k kV y  , which provide an alternative test for the null 

hypothesis, 0 : 0kH   . The test statistics is called the Wald test expressed by 
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7. Moving window scanning of the genome 

 

The polygenic background control is similar to the composite interval mapping using co-

factors to control the background effects. However, it does not eliminate the interference 



of the current locus from neighboring markers in the presence of linkage disequilibrium. 

Therefore, we extend the random model approach to addressing the problem of interference. 

We adopted the random model approach of Xu and Atchley (1995) by defining a window 

of fixed width that covers the locus of interest. Let 
kZ  be the allelic inheritance variables 

and 
k  be the QTL effects for locus k. Our target locus is k but we use 

1kZ 
 and 

1kZ 
 as the 

flanking markers to eliminate interference from effects of the left and right sides of the 

genome. The window size is fixed in d cM long with locus k right in the middle of the 

window. Note that 
1kZ 
 and 

1kZ 
 are not the genotype indicators for markers 1k   and 

1k  ; rather, they are the genotype indicators for the left and right markers 0.5d cM 

deviating from marker k, respectively. These two markers define the moving window of d 

cM in width. The random model of this moving window scanning procedure is 
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where only 
k  is the QTL effect under investigation but 

1k 
 and 

1k 
 appear also in the 

model to control potential interference. The QTL effects of the flanking markers of the 

window are also assumed to be random so that 
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variance-covariance matrix of the model is 
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where 2 2

1 1 /k k     is the variance ratio. Let us define 1 1|| ||k k k kW Z Z Z   as an 24n  

matrix (column concatenation of the three Z matrices) and define  
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as a 24 24  diagonal matrix. The variance-covariance matrix of y is rewritten as 
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Define 
* Ty U y  and * T

k kW U W , the variance-covariance matrix of the transformed y 
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The profiled restricted log likelihood function for 1 1( , , )k k k kf      is 
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Evaluation of this likelihood function can be time consuming. However, we can use the 

Woodbury matrix identities to find the inverse and determinant of matrix kH , 
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Dimension of the matrices required in the inversion and determinant calculation has 

increased from 8 8  (single marker analysis) to 24 24  in the moving window scanning 

method. Matrix R is diagonal and matrix 
* 1 *

24

T

k k kW R W I   has low dimension. Therefore, 

the determinants of these two matrices are calculated with low cost. The quadratic term 

involved in the likelihood function is 
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The Newton algorithm used before is now replaced by the Newton-Raphson algorithm 

because three parameters are estimated simultaneously. The likelihood value evaluated at 

ˆ
k k   is denoted by 1

ˆ( )kL L  . 

 

Hypothesis test for 2

0 : 0kH    under the moving window scanning procedure is different 

from that introduced before because the null model is not the polygenic model but a model 

excluding 2

k  but keeping 2

1k 
, 2

1k 
 and the polygenic variance. This means that for every 

locus scanned, one must also calculate a locus specific 0L  in order to find the likelihood 

ratio test statistics. The likelihood ratio test statistic is again denoted by 0 12( )k L L    .  



 

8. Moving window scanning with adjusted polygenic effect 

 

The moving window scanning procedure will increase the resolution of QTL mapping, but 

may also reduce statistical power if the window is too narrow. In addition, the polygenic 

effect also contains QTL effects in the moving window. Essentially, QTL effects in a 

window are estimated twice, one by the polygenic effect and one by the moving window. 

The two estimates are competing with each other, leading to a lower power for QTL 

detection. We proposed the following remediation by releasing the effects in the moving 

window absorbed by the polygenic effect. The revised model is 

 

1 1 1 1k k k k k k ky X Z Z Z                   (42) 

 

where   is still the polygenic effect and k  is the polygenic effect linked to all markers 

covered by the current moving window, i.e., window k. This effect is estimated under the 

polygenic model (the null model). To minimize the revision of the model and maximize 

the computational speed, we rearranged the above model into 

 

1 1 1 1k k k k k k ky X Z Z Z                 (43) 

 

where k ky y    is a newly adjusted vector of phenotypic values. For each window, we 

used a window specific vector of phenotypic values and left all existing algorithm in the 

regular moving window scanning procedure intact. This is obvious because the right hand 

side of equation (43) is the same as that of equation (42). As a result, E( )ky X   and  

 

2

1 1 1 1 1 1
ˆvar( ) ( )T T T

k k k k k k k k k ky Z Z Z Z Z Z K I                (44) 

 

The only additional work is to find k  for each window.  

 

We now go back to the original polygenic model in equation (1). Under the polygenic 

model, all marker effects share the same variance, i.e., 2

8~ (0, /k N I m  ), where 

2 2   is estimated from the data under the polygenic model. The BLUP estimate of k  

is derived from the multivariate theorem. The joint distribution of y  and k  are 

multivariate normal with expectation and variance given by 

 

E
0k

y X



   
   
  

     (45) 



and 
2 2 2

2 2
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   

    

    
     

     
 (46) 

 

respectively. From the expectation and variance, we can find the conditional expectation 

of k  given y ,  

2 2 2 1E( | ) ( ) ( )k ky Z mK Im y X          (47) 

 

which is the BLUP of k  if the parameters are known. The parameters are substituted by 

the estimated values under the polygenic model and thus the BLUP is in fact empirical 

Bayes estimates,  

 
2 2 2 1ˆ ˆ ˆˆ ˆE( | ) ( ) ( )k k ky Z mK Im y X           (48) 

 

We have a total of m markers and thus we will have m k  to estimate under the polygenic 

model (prior to the moving window scanning). When we scan the kth moving window, the 

polygenic effect covered by this window (d cM in width) is k , which is 

 

' '

' 1

ˆ
km

k k k

k

Z 


      (49) 

 

where km  is the number of markers covered by window k and 'kZ  is the 'k  marker 

genotype indicator variable. This polygenic adjusted moving window will avoid competing 

between the polygenic effect and the effect in the window. The method is computationally 

efficient because the polygenic effects are only estimated under the null model prior to the 

moving window scanning.  
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