
Runuran

An R Interface to the UNU.RAN Library for
Universal Random Variate Generators

Josef Leydold Wolfgang Hörmann Halis Sak

Department of Statistics and Mathematics, WU Wien, Austria
Department for Industrial Engineering, Boğaziçi University, Istanbul, Turkey

Version 0.35 – Oct 22, 2021

Abstract

Runuran is a wrapper to UNU.RAN (Universal Non-Uniform RANdom variate generators),
a library for generating random variates for large classes of distributions. It also allows
to compute quantiles (inverse cumulative distribution functions) of these distributions effi-
ciently. In addition it can be used to compute (approximate) values of the density function
or the distribution function.

In order to use UNU.RAN one must supply some data like the density about the target
distribution which are then used to draw random samples. Runuran functions provide both
a simplified interface to this library for common distributions as well access to the full
power of this library.

Table of Contents

0. Introduction 2

1. Runuran – Special Generator 4

2. Runuran – Universal 7

3. Runuran – Distributions 13

4. Runuran – Advanced 15

A. A Short Introduction to Random Variate Generation 22

B. Pitfalls 30

C. Glossary 32

References 34

1

0. Introduction

The R package Runuran is a wrapper to UNU.RAN (Universal Non-Uniform RANdom variate
generators), a library for generating random variates for large classes of distributions. It also
allows to compute quantiles (inverse cumulative distribution functions) of these distributions
efficiently. This is in particular a prerequisite for quasi-Monte Carlo integration and copula
methods. UNU.RAN implements so called universal (automatic or black-box) generators. In
order to use UNU.RAN one must supply some data about the target distribution, usually the
density, probability vector or cumulative distribution function and (optionally) some other
information (such as the mode of the distribution). These are then used to draw random
samples. Runuran functions provide both a simplified interface to this library for common
distributions as well access to the full power of this library.

Runuran functions are alternatives to standard built-in functions in R which are faster or are
suitable for particular applications. Runuran is the package you are looking for if you need

• robust and easy-to-use sampling and quantile functions for continuous and discrete dis-
tributions (such as Normal, Beta, Gamma, Generalized Hyperbolic, Binomial, . . . distri-
butions);

• to draw samples from truncated distributions;

• random samples for special applications like variate reduction techniques, QMC or copula
methods;

• simulate random variates from some unusual distribution that you just found in a paper
or derived from your statistical model;

• to find out properties of various generation methods (such as speed, quality of generated
point set, conservation of structures, . . .).

If your aim is just (1) and you are not keen on learning more about universal generators
please proceed to Section 3.
Universal algorithms for non-uniform random variate generation work for quite large classes

of distributions but require the following three steps:

(U1) Information gathering: The user has to provide some information about the distri-
bution. The kind of information depends on the chosen method.

(U2) Creation of tables: In the setup tables are created. These adjust the algorithm for
sampling from the target distribution. The table size depends on the chosen method but
can be controlled to some extend.

(U3) Generation of a random sample: These tables are then used to generate a random
sample.

It is obvious that table size, setup time, and marginal generation time strongly depend on
the chosen method. By a rule-of-thumb methods with large tables have very fast marginal
generation times that hardly depend on (or are even independent from) the given target
distribution. But then they have an expensive setup. Vice versa, when the table is small we
have fast setup and slow marginal generation times or the generated points are less accurate in
case of approximate methods. Many of the algorithms allow to control the table size to some
extend.

The choice of the generation method itself depends on the application for which the random
sample is requested. Of course, the target distribution has to satisfy certain conditions for each

2

of these algorithms. We refer the user to our extensive monograph [2] for detailed information
about these generation methods. For convenience we have added a (very) short survey on the
basic principles of random variate generation in Appendix A (A Short Introduction to Random
Variate Generation). Terms and concepts that are used in the description of the methods in
this manual are listed in Appendix C (Glossary).

We have compiled a collection of such universal algorithms in UNU.RAN. The source code
and a detailed manual can be found in [4]. The library is written in ANSI C and provides
an interface to Steps (U1)–(U3) for such universal algorithms. The setup is sometimes quite
expensive even if the required table is small, since there are checks whether the conditions for
the chosen method (e.g., log-concavity) are satisfied as well as checks for the consistency of the
given data for the target distribution. Thus the setup and the generation are split, such that
the former part creates an object that can be used many times for creating random samples.
R package Runuran provides a wrapper to the UNU.RAN library1. The package implements

four sets of functions of increasing power (and thus complexity):

• Runuran – Special Generator (Section 1):

These functions provide easy-to-use sampling algorithms for particular distributions.
Their syntax is similar to the built-in sampling algorithms (but usually have an additional
domain argument). They can be used as replacements for the respective R functions (if
the latter exists), e.g., urnorm can be used instead of rnorm for generating normal random
variates. These functions also show the interested user how we used the more powerful
functions below.

• Runuran – Universal (Section 2):

These functions provide more flexibility. They offer an interface to use a carefully selected
collection of UNU.RAN methods with their most important variants. Their arguments
allow setting all required data and parameters. Thus they combine Steps (U1) and (U2)
in a single function. On the contrary to functions like urnorm, they do not return a
random sample but a UNU.RAN generator object that can be used for sampling using
ur or uq (Step U3). For example, the function tdr.new creates a generator object that
applies the transformed density rejection (TDR) method.

• Runuran – Distribution (Section 3):

Coding the required functions for particular distributions can be tedious. Thus we have
compiled a set of functions that create UNU.RAN distribution objects that can directly
be used with the functions from section Universal (Section 2).

• Runuran – Advanced (Section 4):

These functions implement a wrapper to the UNU.RAN string API and is thus the
most powerful interface. Thus more generation methods and more parameters for all
UNU.RAN methods are available. Now Steps (U1) and (U2) are split in two different
tasks.

Uniform random numbers. All UNU.RAN methods use the R built-in uniform random num-
ber generator as the source of (pseudo-) random numbers. Thus the generated samples depend
on the state .Random.seed and can be controlled by the R functions RNGkind and set.seed.

1We first described such a package in [6]. However, the interface has been changed and extended since then.

3

1. Runuran – Special Generator

There are generation functions for approximately 30 standard distributions to facilitate the
use of the package. All these functions share a similar syntax and naming scheme (only u is
prefixed) with their analogous Rbuilt-in generating functions (if these exist) but have optional
domain arguments lb and ub, i.e., these calls also allow to draw samples from truncated
distributions:

ur...(n, distribution parameters, lb , ub)

Compared to the corresponding R functions these ur... functions have a slightly different
behavior.

• For large sample sizes these functions are often much faster (e.g., a factor of about 5 for
the t-distribution.

• For small samples they are comparatively slow.

• All ur... functions allow to sample from truncated versions of the original distributions.
Therefore the arguments lb (lower border) and ub (upper border) are available for all
ur... functions.

• Almost all ur... functions are based on fast numerical inversion algorithms. This is
important for example for generating order statistics or random vectors from copulas.

• All ur... functions do not allow vectors as arguments (to be more precise: they only
use the first element of the vector).

Example

> ## Draw sample of size 10 from standard Gaussian distribution
> urnorm(10)

[1] -1.02171424 0.74146177 -1.52639066 -0.03761762 0.03616848 0.94062065
[7] -0.56162603 -0.01977048 2.24567219 0.44227354

> ## Draw sample from truncated non-standard Gaussian distribution
> urnorm(10, mean = 1, sd = 0.5, lb = 2, ub = Inf)

[1] 2.003013 2.322809 2.510783 2.089867 2.172998 2.011908 2.067638 2.131564
[9] 2.080630 2.079021

The ur... functions can be used as-is. But they also are examples how the more advanced
functions in Section 2–4 can be used. Just type the name of such a function to display its
source.

Example

> urnorm

4

function (n, mean = 0, sd = 1, lb = -Inf, ub = Inf)
{

unr <- new("unuran", paste("normal(", mean, ",", sd, "); domain=(",
lb, ",", ub, ")"), "HINV")

unuran.sample(unr, n)
}
<bytecode: 0x56384dc5e760>
<environment: namespace:Runuran>

Currently the following distributions are available (see the corresponding help page for details):

Continuous Univariate Distributions (24)

Function Distribution

urbeta . . . Beta
urburr . . . Burr
urcauchy . . . Cauchy
urchi . . . Chi
urchisq . . . Chi-squared
urexp . . . Exponential
urextremeI . . . Gumbel (extreme value type I)
urextremeII . . . Frechet (extreme value type II)
urf . . . F
urgamma . . . Gamma
urgig . . . GIG (generalized inverse Gaussian)
urhyperbolic . . . Hyperbolic
urlaplace . . . Laplace
urlnorm . . . Log-Normal
urlogis . . . Logistic
urlomax . . . Lomax
urnorm . . . Normal (Gaussian)
urpareto . . . Pareto (of first kind)
urplanck . . . Planck
urpowerexp . . . Powerexponential (Subbotin)
urrayleigh . . . Rayleigh
urt . . . t (Student)
urtriang . . . Triangular
urweibull . . . Weibull

Discrete Univariate Distributions (6)

Function Distribution

urbinom . . . Binomial
urgeom . . . Geometric
urhyper . . . Hypergeometric
urlogarithmic . . . Logarithmic
urnbinom . . . Negative Binomial
urpois . . . Poisson

5

Uniform random numbers. All UNU.RAN methods use the R built-in random number gen-
erator as the source of (pseudo-) random numbers. Thus the generated samples depend on the
state .Random.seed and can be controlled by the R functions RNGkind and set.seed.

6

2. Runuran – Universal

The power of UNU.RAN does not lie in a collection of generators for some standard distribu-
tions but in a collection of universal generation methods that allow drawing samples of pseudo-
random variates for particular purposes. For example, it is possible to generate samples that
follow some non-standard distributions for which no special generation methods exist. These
black-box methods are also well suited for standard distributions (e.g., some of our methods
are much faster when applied to some distributions compared to the corresponding R built-in
functions).

Thus we have compiled a set of functions that offer an interface to carefully selected
UNU.RAN methods with their most important parameters. Their arguments allow setting
all required data about the distribution as well as the parameters of the chosen method. Thus
they combine Steps (U1) and (U2) in a single function. These functions return UNU.RAN
generator objects that can be used for sampling using ur (Step U3).

Example

> ## Use method TDR (Transformed Density Rejection) to
> ## draw a sample of size 10 from a hyperbolic distribution with PDF
> ## f(x) = const * exp(-sqrt(1+x^2)) on domain (-Inf,Inf).
>
> ## We first have to define a function that returns the density.
> pdf <- function (x) { exp(-sqrt(1+x^2)) }
> ## Next create the UNU.RAN object.
> gen <- tdr.new(pdf=pdf, lb=-Inf, ub=Inf)
> ## Now we can use this object to draw the sample.
> ## (Of course we can repeat this step as often as required.)
> x <- ur(gen,10)
> x

[1] -0.7494958 -0.6824723 1.0430396 -1.7465189 -1.0540817 -2.5319834
[7] 0.8958364 -1.0376893 1.1136232 -1.5889964

UNU.RAN objects provide information about themselves. (Note that the displayed data
also give information for advanced uses of Runuran, see Section 4.)

Example

> gen

Object is UNU.RAN object:
method: tdr
distr: [S4 class]
inversion: FALSE

generator ID: TDR.003

distribution:
name = unknown
type = continuous univariate distribution
functions = PDF dPDF
domain = (-inf, inf)
center = 0 [default]

7

method: TDR (Transformed Density Rejection)
variant = PS (proportional squeeze)
T_c(x) = -1/sqrt(x) ... c = -1/2

performance characteristics:
area(hat) = 1.2056
rejection constant <= 1.00532
area ratio squeeze/hat = 0.994707
intervals = 48

As pointed out, it is possible to sample from quite arbitrary distributions (e.g., truncated
distributions). Here is an example using method ARS (Adaptive Rejection Sampling), which
is slightly slower but numerically more robust than TDR.

Example

> ## Use method ARS (Adaptive Rejection Sampling) to
> ## draw a sample of size 10 from a truncated Gaussian on [100,Inf).
>
> ## Define a function that returns the log-density.
> lpdf <- function (x) { -0.5*x^2 }
> ## Create UNU.RAN object.
> gen <- ars.new(logpdf=lpdf, lb=100, ub=Inf)
> ## Draw sample.
> ur(gen,10)

[1] 100.0003 100.0017 100.0027 100.0040 100.0003 100.0257 100.0003 100.0080
[9] 100.0011 100.0022

One also can directly use density functions provided by R.

Example

> ## Draw a sample from Gaussian distribution with
> ## mean 2 and standard deviation 5.
>
> ## Create UNU.RAN object.
> ## Use R function ’dnorm(x, mean=2, sd=5, log=TRUE)’ as density.
> gen <- ars.new(logpdf=dnorm, lb=-Inf, ub=Inf, mean=2, sd=5, log=TRUE)
> ## Draw sample.
> ur(gen,10)

[1] 0.6780501 5.1318747 2.9002225 -7.5516855 0.3772246 -0.8068545
[7] 7.0098682 2.7498369 -1.1394846 5.9068470

Furthermore, an object that implements an inversion method can be used as an argument
for the quantile function uq. This is convenient for copula methods or quasi-Monte Carlo
methods.

8

Example

> ## Compute quantiles for hyperbolic distribution with PDF
> ## f(x) = const * exp(-sqrt(1+x^2)) on domain (-Inf,Inf).
> ## Thus we need an inversion method. We choose PINV.
>
> ## Create UNU.RAN object.
> pdf <- function (x) { exp(-sqrt(1+x^2)) }
> gen <- pinv.new(pdf=pdf, lb=0, ub=Inf, uresolution=1e-14)
> ## Get some quantiles
> uq(gen, c(0.005, 0.01, 0.025, 0.05, 0.5, 0.95, 0.975, 0.99, 0.995))

[1] 0.008180859 0.016362265 0.040915247 0.081899046 0.924464417 3.386748732
[7] 4.096624431 5.028728582 5.730822726

Functions ud and up allow to evaluate density and (approximate) cumulative distribution
function of the requested distribution. However, this feature may not be available for all
distribution objects or generator objects.

Example

> ## Compute density for a given distribution or generator object.
> ## However, this only works when the density is already stored in
> ## the object.
>
> ## Use distribution object
> distr <- unuran.cont.new(pdf=function(x){exp(-x)}, lb=0,ub=Inf)
> x <- ud(distr, 0:5)
> x

[1] 1.000000000 0.367879441 0.135335283 0.049787068 0.018315639 0.006737947

> ## Use generator object
> gen <- pinvd.new(distr)
> x <- ud(gen, 0:5)
> x

[1] 1.000000000 0.367879441 0.135335283 0.049787068 0.018315639 0.006737947

> ## Method PINV can also be used to estimate the CDF of the distribution
> x <- up(gen, 0:5)
> x

[1] 0.0000000 0.6321206 0.8646647 0.9502129 0.9816844 0.9932621

>

Uniform random numbers. All UNU.RAN methods use the R built-in random number gen-
erator as the source of (pseudo-) random numbers. Thus the generated samples depend on the
state .Random.seed and can be controlled by the R functions RNGkind and set.seed.

9

2.1. List of Universal Methods

In the following we give an overview of the available methods. Each of these functions creates a
UNU.RAN object that can be used for sampling from the corresponding distribution by means
of function ur. Note that methods that implement an inversion method can be used for the
quantile function uq. For the syntax of these functions see the corresponding help page. For
details about the method we refer to our extensive monograph [2].

Most of these sampling methods can be controlled by some additional parameters which
are available through the advanced interface unuran.new as described in Section 4. However,
these may only be useful in special cases (e.g., distributions with extremal properties).

Warning. It is not possible to save and restore a UNU.RAN object between R sessions, nor
to copy such objects to different nodes in a computer cluster. UNU.RAN objects must be
created in each session (and in each node) from scratch.

However, generator objects for some generation methods can be “packed” using the com-
mand ‘unuran.packed(unr)<-TRUE’. Then these objects can be handled like any other R
object (and thus saved and restored).

Timing. The setup time and marginal sampling time given below only give a rough estimate
and vary for particular distributions. As a rule-of-thumb the setup time heavily depends on
the target distribution. For methods with fast sampling methods the marginal generation
times hardly (or even do not) depend on the target distribution. Whereas for slow methods
the marginal sampling times depend on the target distribution.

2.1.1. Continuous Univariate Distributions

• ars.new – Adaptive Rejection Sampling (ARS)

type: rejection method
accuracy exact
required: log-concave PDF
optional: derivative of log-PDF
setup: slow fast
sampling: slow fast

• itdr.new – Inverse Transformed Density Rejection (ITDR)

type: rejection method
accuracy exact
required: monotone PDF, derivative of PDF, pole
setup: slow fast
sampling: slow fast

• pinv.new – Polynomial interpolation of INVerse CDF (PINV)

type: inversion method
accuracy numerical approximation
required: bounded PDF
optional: center, u-resolution
setup: slow fast
sampling: slow fast

10

• srou.new – Simple Ratio-Of-Uniforms method (SROU)

type: rejection method
accuracy exact
required: T−r/(r+1)-concave PDF, mode, area

optional: parameter r
setup: slow fast
sampling: slow fast
remark: robust, works for heavy tailed distributions

• tdr.new – Transformed Density Rejection (TDR)

type: rejection method
accuracy exact
required: T−1/2-concave PDF

optional: derivative of PDF
setup: slow fast
sampling: slow fast

2.1.2. Discrete Distributions

• dari.new – Discrete Automatic Rejection Inversion (DARI)

type: rejection method
accuracy exact
required: PMF
optional: center, approximate sum over probabilities
setup: slow fast
sampling: slow fast

• dau.new – Alias-Urn Method (DAU)

type: patchwork method
accuracy exact
required: (finite) probability vector
setup: slow fast
sampling: slow fast

• dgt.new – Guide-Table Method for discrete inversion (DGT)

type: inversion method
accuracy exact
required: (finite) probability vector
setup: slow fast
sampling: slow fast

2.1.3. Multivariate Distributions

• hitro.new – Hit-and-Run algorithm with Ratio-of-Uniforms Method (HITRO)

type: Markov chain sampler (MCMC)
accuracy converging Markov chain
required: PDF
optional: center, mode, thinning factor, burnin
setup: slow fast
sampling: slow fast
remark: approximate

11

• vnrou.new – Multivariate Naive Ratio-Of-Uniforms method (VNROU)

type: Rejection
accuracy exact
required: unimodal PDF
optional: center, mode
setup: slow fast
sampling: slow fast

12

3. Runuran – Distributions

Coding the required functions for the routines in Section 2 can sometimes a bit tedious espe-
cially if the target distribution has a more complex density function. Thus we have compiled
a set of functions that provides ready-to-use distribution objects. These objects can either be
used as argument for unuran.new (see Section 4) or an alternative form of the functions from
Section 2.

These functions share a similar syntax and naming scheme (only ud is prefixed) with anal-
ogous Rbuilt-in functions that provide density, distribution function and quantile:

ud...(distribution parameters, lb , ub)

Example

> ## Create an object for a gamma distribution with shape parameter 5.
> distr <- udgamma(shape=5)
> ## Create the UNU.RAN generator object. use method PINV (inversion).
> gen <- pinvd.new(distr)
> ## Draw a sample of size 100
> x <- ur(gen,100)
> ## Compute some quantiles for Monte Carlo methods
> x <- uq(gen, (1:9)/10)

Currently the following distributions are available (see the corresponding help page for details):

Continuous Univariate Distributions (26)

Function Distribution

udbeta . . . Beta
udcauchy . . . Cauchy
udchi . . . Chi
udchisq . . . Chi-squared
udexp . . . Exponential
udf . . . F
udfrechet . . . Frechet (Extreme value type II)
udgamma . . . Gamma
udghyp . . . Generalized Hyperbolic
udgig . . . Generalized Inverse Gaussian
udgumbel . . . Gumbel (Extreme value type I)
udhyperbolic . . . Hyperbolic
udig . . . Inverse Gaussian (Wald)
udlaplace . . . Laplace (double exponential)
udlnorm . . . Log Normal
udlogis . . . Logistic
udlomax . . . Lomax (Pareto of second kind)
udmeixner . . . Meixner
udnorm . . . Normal (Gaussian)
udpareto . . . Pareto (of first kind)
udpowerexp . . . Powerexponential (Subbotin)
udrayleigh . . . Rayleigh

13

udslash . . . Slash
udt . . . t (Student)
udvg . . . Variance Gamma
udweibull . . . Weibull (Extreme value type III)

Discrete Univariate Distributions (6)

Function Distribution

udbinom . . . Binomial
udgeom . . . Geometric
udhyper . . . Hypergeometric
udlogarithmic . . . Logarithmic
udnbinom . . . Negative Binomial
udpois . . . Poisson

14

4. Runuran – Advanced

Using the advanced interface of package Runuran requires three steps:

(U1) Create a distribution object that contains all required information about the target dis-
tribution.

(U2) Choose a generation method and create a UNU.RAN object.

(U3) Use this object to draw samples from the target distribution.

In the following we shortly describe the main idea behind. For the syntax and the details of
the R function we refer to the corresponding help page. For the UNU.RAN method we refer
to its manual [4].

Warning. Both the distribution object and the UNU.RAN generator object contain pointers
to external memory. Thus it is not possible to save and restore a UNU.RAN object between
R sessions, nor to copy such objects to different nodes in a computer cluster. Distribution and
UNU.RAN objects must be created in each session (and each node) from scratch.

However, generator objects for some generation methods can be “packed” using the com-
mand ‘unuran.packed(unr)<-TRUE’. Then these objects can be handled like any other R
object (and thus saved and restored).

4.1. U1 – Create a distribution object

Runuran uses S4 classes to store information about distributions. Thus the following three
functions create instances of the corresponding classes (for the syntax and details of these
functions we refer to the corresponding help page):

• unuran.cont.new: univariate continuous distributions

• unuran.discr.new: discrete distributions

• unuran.cmv.new: multivariate continuous distributions

Each of these functions allow to set various data about the target distribution. The kind of
data depends of course on the type of distribution object. It is the responsibility of the user
to supply consistent data. It is not necessary to fill all the “slots” of the objects. It depends
on the chosen method which data are essential or used if provided (all other data are simply
ignored).

The functions of Section 3 immediately create such S4 objects for some particular distribu-
tions.

4.2. U2 – Create a UNU.RAN generator object

Runuran uses an S4 class to store information about distributions. It can be created by the
following function (for further details we refer to the corresponding help page):

• gen <- unuran.new(distr,method)

where

• distr is an instance of a distribution object created in Step (U1), and

• method is a string for the UNU.RAN string API, see Section 3.4 (Method String) in the
UNU.RAN manual [4].

The given distribution must contain all data about the target information that are required
for the chosen method.

15

Remark. UNU.RAN also has a string API for distributions, see Section 3.2 (Distribution
String) in the UNU.RAN manual [4]. Thus distr can also be such a string. However, besides
some special cases the approach described in Section 4.1 above is more flexible inside R.

4.3. U3 – Draw samples

The UNU.RAN object created in Step (U2) can then be used to draw samples from the target
distribution. Let gen such a generator object.

• ur(gen,n) draws a pseudo-random sample of size n.

• uq(gen,u) computes quantiles (inverse CDFs) for the u values given in vector u. How-
ever, this requires that the method (gen) we are using implements an inversion method
like PINV or DGT.

In addition it is possible to get some information about the generator object.

• show(gen) (or simply gen) prints some information about the used data of the distribu-
tion as well as sampling method and performance characteristics of the generator object
on the screen.

• unuran.details(gen) is more verbose and additionally prints parameter settings for
the chosen method (including default values) and some hints for changing (improving)
its performance.

Uniform random numbers. All UNU.RAN methods use the R built-in random number gen-
erator as the source of (pseudo-) random numbers. Thus the generated samples depend on the
state .Random.seed and can be controlled by the R functions RNGkind and set.seed.

Example 1: Continuous distribution

Example

> ## Use method TDR (Transformed Density Rejection) to
> ## draw a sample of size 10 from a hyperbolic distribution with PDF
> ## f(x) = const * exp(-sqrt(1+x^2))
> ## restricted to domain [-1,2].
>
> ## We first have to define functions that return the log-density and
> ## its derivative, respectively. (We also could use the density itself.)
> lf <- function (x) { -sqrt(1+x^2) }
> dlf <- function (x) { -x/sqrt(1+x^2) }
> ## Next create the continuous distribution object.
> d <- unuran.cont.new(pdf=lf, dpdf=dlf, islog=TRUE, lb=-1, ub=2,
+ name="hyperbolic")
> ## Create UNU.RAN object. We choose method TDR with
> ## immediate acceptance (IA) and parameter c=0.
> gen <- unuran.new(distr=d, method="tdr; variant_ia; c=0")
> ## Now we can use this object to draw the sample.
> ## (Of course we can repeat this step as often as required.)
> ur(gen,10)

[1] 0.01306243 -0.77548799 0.60840637 1.60594284 0.55647858 -0.66613396
[7] 1.10109811 0.32769231 0.87955432 1.61067055

16

> ## Here is some information about our generator object.
> unuran.details(gen)

Object is UNU.RAN object:
method: tdr; variant_ia; c=0
distr: [S4 class]
inversion: FALSE

generator ID: TDR.009

distribution:
name = hyperbolic
type = continuous univariate distribution
functions = PDF dPDF
domain = (-1, 2)
center = 0 [default]

[Hint: You may provide a point near the mode as "center".]

method: TDR (Transformed Density Rejection)
variant = IA (immediate acceptance)
T_c(x) = log(x) ... c = 0

performance characteristics:
area(hat) = 0.808085
rejection constant <= 1.0006
area ratio squeeze/hat = 0.9994
intervals = 32

parameters:
variant_ia = on
c = 0
max_sqhratio = 0.99 [default]
max_intervals = 100 [default]

[Hint: You can set "max_sqhratio" closer to 1 to decrease rejection constant.]

Example 2: Discrete distribution with given probability vector (PV)

Example

> ## Use method DGT (Discrete Guide Table method) to
> ## draw a sample of size 10 from a Binomial distribution given
> ## its probability vector.
>
> ## Create instances of a discrete distribution object
> d <- unuran.discr.new(pv=dbinom(0:100,100,0.4), lb=0, name="binomial(100,0.4)")
> ## Create UNU.RAN object. We choose method DGT.
> gen <- unuran.new(distr=d, method="dgt")
> ## Now we can use this object to draw the sample.
> ur(gen,10)

[1] 32 38 50 49 33 40 37 33 42 44

17

> ## Here is some information about our generator object.
> unuran.details(gen)

Object is UNU.RAN object:
method: dgt
distr: [S4 class]
inversion: TRUE

generator ID: DGT.010

distribution:
name = binomial(100,0.4)
type = discrete univariate distribution
functions = PV [length=101]
domain = (0, 100)

method: DGT (Guide Table)

performance characteristics:
E [#look-ups] = 2

parameters:
guidefactor = 1 [default]

Example 3: Discrete distribution with given probability mass function (PMF)

Example

> ## Use method DSROU (Discrete Simple Ratio-Of-Uniforms method) to
> ## draw a sample of size 10 from a discrete distribution with
> ## given PMF, mode, and sum.
>
> ## Define functions that return the PMF.
> f <- function (x) { 0.4 * (1-0.4)^x }
> ## Create the continuous distribution object.
> d <- unuran.discr.new(pmf=f, lb=0, ub=Inf, mode=0, sum=1)
> ## Create UNU.RAN object. We choose method DARI with squeezes.
> gen <- unuran.new(distr=d, method="dari; squeeze=on")
> ## Now we can use this object to draw the sample.
> ur(gen,10)

[1] 2 1 1 2 3 0 1 5 3 5

> ## Here is some information about our generator object.
> unuran.details(gen)

Object is UNU.RAN object:
method: dari; squeeze=on
distr: [S4 class]
inversion: FALSE

18

generator ID: DARI.011

distribution:
name = unknown
type = discrete univariate distribution
functions = PMF
domain = (0, 2147483647)
mode = 0
sum(PMF) = 1

method: DARI (Discrete Automatic Rejection Inversion)
use table of size 100
use squeeze

performance characteristics:
sum(hat) = 1.216
rejection constant = 1.216

parameters:
tablesize = 100 [default]
squeeze = on

Example 4: Multivariate distribution

Example

> ## Use method VNROU (Multivariate Naive Ratio-Of-Uniforms) to
> ## draw a sample of size 5 from a bivariate distribution
> ## with given PDF, mode and domain.
>
> ## Define functions that return the PDF.
> f <- function (x) { exp(-sum(x^4)) }
> ## Create the continuous distribution object.
> d <- unuran.cmv.new(dim=2, pdf=f, mode=c(0,0), ll=c(-1,-1), ur=c(1,1),
+ name="bivariate power-exponential")
> ## Create UNU.RAN object. We choose method VNROU with parameter r=0.5.
> gen <- unuran.new(distr=d, method="vnrou; r=0.5")
> ## Now we can use this object to draw the sample.
> ur(gen,5)

[,1] [,2]
[1,] 0.4100718 0.63089258
[2,] -0.2425289 -0.15055911
[3,] -0.2169975 -0.14106233
[4,] -0.1181302 -0.29848778
[5,] -0.2761312 0.05696753

> ## Here is some information about our generator object.
> unuran.details(gen)

19

Object is UNU.RAN object:
method: vnrou; r=0.5
distr: [S4 class]
inversion: FALSE

generator ID: VNROU.012

distribution:
name = bivariate power-exponential
type = continuous multivariate distribution
dimension = 2
functions = PDF
domain = (-1,1) x (-1,1) [rectangular]
mode = (0, 0)
center = (0, 0) [= mode]

method: VNROU (Naive Ratio-Of-Uniforms)
r = 0.5

performance characteristics:
bounding rectangle = (-0.778879,0.778879)x(-0.778879,0.778879) x (0,1)
volume(hat) = 2.42661
rejection constant = 1.69 [approx.]

parameters:
r = 0.5
v = 1 [numeric.]
u = (-0.778879, -0.778879) -- (0.778879, 0.778879) [numeric.]

[Hint: You can set "v" to avoid numerical estimate.]
[Hint: You can set "u" to avoid slow (and inexact) numerical estimates.]

Missing data. If some data are missing then UNU.RAN cannot create a generator object
and aborts with an error message.

Example

> ## Try to use method TDR with missing data.
> lf <- function (x) { -sqrt(1+x^2) }
> d <- unuran.cont.new(pdf=lf, lb=-Inf, ub=Inf, islog=TRUE)
> gen <- unuran.new(distr=d, method="tdr")

[UNU.RAN - error] (distribution) incomplete distribution object, entry missing: derivative of PDF
[UNU.RAN - error] (parser) invalid parameter: invalid data for method ’tdr’
[UNU.RAN - error] (parser) invalid string: setting method failed
Error: [UNU.RAN - error] cannot create UNU.RAN object

Invalid data. UNU.RAN makes some validity checks. If such a check fails the setup aborts
with an error message. Such failures can be caused by erroneous data. It also can happen due
to serious round-off errors.

20

Example

> d <- unuran.discr.new(pv=c(1,-1,0), lb=1)
> gen <- unuran.new(distr=d, method="dgt")

[UNU.RAN - error] (generator) (possible) invalid data: probability < 0
Error: [UNU.RAN - error] cannot create UNU.RAN object

21

A. A Short Introduction to Random Variate Generation

Random variate generation is the small field of research that deals with algorithms to generate
random variates from various distributions. It is common to assume that a uniform random
number generator is available, that is, a program that produces a sequence of independent and
identically distributed continuous U(0, 1) random variates (i.e., uniform random variates on
the interval (0, 1)). Of course real world computers can never generate ideal random numbers
and they cannot produce numbers of arbitrary precision but state-of-the-art uniform random
number generators come close to this aim. Thus random variate generation deals with the
problem of transforming such a sequence of uniform random numbers into non-uniform random
variates.

In this section we shortly explain the basic ideas of the inversion, rejection, and the ratio
of uniforms method. How these ideas can be used to design a particular automatic random
variate generation algorithms that can be applied to large classes of distributions is shortly
explained in the description of the different methods included in this manual.

For a deeper treatment of the ideas presented here, for other basic methods and for automatic
generators we refer the interested reader to our book [2].

A.1. The Inversion Method

.
When the inverse F−1 of the cumulative distribution function is known, then random variate

generation is easy. We just generate a uniformly U(0, 1) distributed random number U and
return

X = F−1(U) .

Figure 1 shows how the inversion method works for the exponential distribution.

1

U

X = F−1(U)

Figure 1: Inversion method for exponential distribution, X = log(1− U).

This algorithm is simple so that inversion is certainly the method of choice if the inverse
CDF is available in closed form. This is the case, e.g., for the exponential and the Cauchy
distribution.

The inversion method also has other special advantages that make it even more attractive
for simulation purposes:

• It preserves the structural properties of the underlying uniform pseudo-random number
generator.

Consequently,

22

• it can be used for variance reduction techniques;

• it is easy to sample from truncated distributions;

• it is easy to sample from marginal distributions and thus is suitable for using with copulæ;

• the quality of the generated random variables depends only on the underlying uniform
(pseudo-) random number generator.

Another important advantage of the inversion method is that we can easily characterize its
performance. To generate one random variate we always need exactly one uniform variate and
one evaluation of the inverse CDF. So its speed mainly depends on the costs for evaluating
the inverse CDF. Hence inversion is often considered as the method of choice in the simulation
literature.

Unfortunately computing the inverse CDF is often comparatively difficult and slow, e.g., for
standard distributions like normal, student, gamma, and beta distributions. Often no such
routines are available in standard programming libraries. Then numerical methods for invert-
ing the CDF are necessary, e.g., Newton’s method or interpolation. Such procedures, however,
have the disadvantage that they may be slow or not exact, i.e. they compute approximate
values. The methods HINV, HINV and PINV of UNU.RAN are such numerical inversion methods.

A.1.1. Approximation Errors

For numerical inversion methods the approximation error is important for the quality of the
generated point set. Let X = G−1(U) denote the approximate inverse CDF, and let F and
F−1 be the exact CDF and inverse CDF of the distribution, resp. There are three measures
for the approximation error:

u-error – is given by
u-error = |U − F (G−1(U))|

Goodness-of-fit tests like the Kolmogorov-Smirnov test or the chi-squared test look at
this type of error. We are also convinced that it is the most suitable error measure for
Monte Carlo simulations as pseudo-random numbers and points of low discrepancy sets
are located on a grid of restricted resolution.

x-error – is given by

absolute x-error = |F−1(U)−G−1(U)|
relative x-error = |F−1(U)−G−1(U)| · |F−1(U)|

The x-error measure the deviation of G−1(U) from the exact result. This measure is
suitable when the inverse CDF is used as a quantile function in some computations.
The main problem with the x-error is that we have to use the absolute x-error for
X = F−1(U) close to zero and the relative x-error in the tails.

We use the terms u-resolution and x-resolution as the maximal tolerated u-error and x-error,
resp.

UNU.RAN allows to set u-resolution and x-resolution independently. Both requirements
must be fulfilled. We use the following strategy for checking whether the precision goal is
reached:

23

checking u-error: The u-error must be slightly smaller than the given u-resolution:

|U − F (G−1(U))| < 0.9 · u-resolution .

There is no necessity to consider the relative u-error as we have 0 < U < 1.

checking x-error: We combine absolute and relative x-error and use the criterion

|F−1(U)−G−1(U)| < x-resolution · (|G−1(U)|+ x-resolution)

Remark. It should be noted here that the criterion based on the u-error is too stringent where
the CDF is extremely steep (and thus the PDF has a pole or a high and narrow peak). This is
in particular a problem for distributions with a pole (e.g., the gamma distribution with shape
parameter less than 0.5). On the other hand using a criterion based on the x-error causes
problems where the CDF is extremely flat. This is in particular the case in the (far) tails of
heavy-tailed distributions (e.g., for the Cauchy distribution).

A.2. The Acceptance-Rejection Method

The acceptance-rejection method has been suggested by John von Neumann in 1951 [7]. Since
then it has been proven to be the most flexible and most efficient method to generate variates
from continuous distributions.

We explain the rejection principle first for the density f(x) = sin(x)/2 on the interval (0, π).
To generate random variates from this distribution we also can sample random points that are
uniformly distributed in the region between the graph of f(x) and the x-axis, i.e., the shaded
region in Figure 2.

1
2

π

Figure 2: Acceptance-rejection method. Points are drawn randomly in [0, π] × [0, 1]. Points
above the density (◦) are rejected; points below the density (•) are accepted and
their x-coordinates are returned. Notice that there is no need to evaluate the density
whenever a points falls into the region below the dashed triangle (squeeze).

In general this is not a trivial task but in this example we can easily use the rejection
trick: Sample a random point (X,Y) uniformly in the bounding rectangle (0, π) × (0, 1/2).
This is easy since each coordinate can be sampled independently from the respective uniform

24

distributions U(0, π) and U(0, 1/2). Whenever the point falls into the shaded region below the
graph (indicated by dots in the figure), i.e., when Y < sin(X)/2, we accept it and return X
as a random variate from the distribution with density f(x). Otherwise we have to reject the
point (indicated by small circles in the figure), and try again.

It is quite clear that this idea works for every distribution with a bounded density on a
bounded domain. Moreover, we can use this procedure with any multiple of the density, i.e.,
with any positive bounded function with bounded integral and it is not necessary to know the
integral of this function. So we use the term density in the sequel for any positive function
with bounded integral.

From the figure we can conclude that the performance of a rejection algorithm depends
heavily on the area of the enveloping rectangle. Moreover, the method does not work if the
target distribution has infinite tails (or is unbounded). Hence non-rectangular shaped regions
for the envelopes are important and we have to solve the problem of sampling points uniformly
from such domains. Looking again at the example above we notice that the x-coordinate of the
random point (X,Y) was sampled by inversion from the uniform distribution on the domain
of the given density. This motivates us to replace the density of the uniform distribution
by the (multiple of a) density h(x) of some other appropriate distribution. We only have to
take care that it is chosen such that it is always an upper bound, i.e., h(x) >= f(x) for all
x in the domain of the distribution. To generate the pair (X,Y) we generate X from the
distribution with density proportional to h(x) and Y uniformly between 0 and h(X). The first
step (generate X) is usually done by inversion, see Section A.1.

Thus the general rejection algorithm for a hat h(x) with inverse CDF H−1 consists of the
following steps:

1. Generate a U(0, 1) random number U .

2. Set X ← H−1(U).

3. Generate a U(0, 1) random number V .

4. Set Y ← V h(X).

5. If Y ≤ f(X) accept and return X.

6. Else try again.

If the evaluation of the density f(x) is expensive (i.e., time consuming) it is possible to use
a simple lower bound of the density as so called squeeze function s(x) (the triangular shaped
function in Figure 2 is an example for such a squeeze). We can then accept X when Y ≤ s(X)
and can thus often save the evaluation of the density.

We have seen so far that the rejection principle leads to short and simple generation al-
gorithms. The main practical problem to apply the rejection algorithm is the search for a
good fitting hat function and squeezes. We do not discuss these topics here as they are the
heart of the different automatic algorithms implemented in UNU.RAN. Information about the
construction of hat and squeeze can therefore be found in the descriptions of the methods.

The performance characteristics of rejection algorithms mainly depend on the fit of the hat
and the squeeze. It is not difficult to prove that:

• The expected number of trials to generate one variate is the ratio between the area below
the hat and the area below the density.

• The expected number of evaluations of the density necessary to generate one variate is
equal to the ratio between the area below the hat and the area below the density, when

25

no squeeze is used. Otherwise, when a squeeze is given it is equal to the ratio between
the area between hat and squeeze and the area below the hat.

• The sqhratio (i.e., the ratio between the area below the squeeze and the area below
the hat) used in some of the UNU.RAN methods is easy to compute. It is useful as its
reciprocal is an upper bound for the expected number of trials of the rejection algorithm.
The expected number of evaluations of the density is bounded by (1/sqhratio)− 1.

A.3. The Composition Method

The composition method is an important principle to facilitate and speed up random variate
generation. The basic idea is simple. To generate random variates with a given density we
first split the domain of the density into subintervals. Then we select one of these randomly
with probabilities given by the area below the density in the respective subintervals. Finally
we generate a random variate from the density of the selected part by inversion and return it
as random variate of the full distribution.

Composition can be combined with rejection. Thus it is possible to decompose the domain
of the distribution into subintervals and to construct hat and squeeze functions separately in
every subinterval. The area below the hat must be determined in every subinterval. Then the
Composition rejection algorithm contains the following steps:

1. Generate the index J of the subinterval as the realization of a discrete random variate with
probabilities proportional to the area below the hat.

2. Generate a random variate X proportional to the hat in interval J .

3. Generate the U(0, f(X)) random number Y .

4. If Y ≤ f(X) accept and return X.

5. Else start again with generating the index J (Step 1).

The first step can be done in constant time (i.e., independent of the number of chosen
subintervals) by means of the indexed search method (Section A.7).

It is possible to reduce the number of uniform random numbers required in the above
algorithm by recycling the random numbers used in Step 1 and additionally by applying the
principle of immediate acceptance. For details see [2, Sect. 3.1].

A.4. The Ratio-of-Uniforms Method

The construction of an appropriate hat function for the given density is the crucial step for
constructing rejection algorithms. Equivalently we can try to find an appropriate envelope for
the region between the graph of the density and the x-axis, such that we can easily sample
uniformly distributed random points. This task could become easier if we can find transfor-
mations that map the region between the density and the axis into a region of more suitable
shape (for example into a bounded region).

As a first example we consider the following simple algorithm for the Cauchy distribution.

1. Generate a U(−1, 1) random number U and a U(0, 1) random number V .

2. If U2 + V 2 ≤ 1 accept and return X = U/V .

3. Else try again.

26

It is possible to prove that the above algorithm indeed generates Cauchy random variates.
The fundamental principle behind this algorithm is the fact that a half-disc in the UV -plane
is mapped into the region below the density by the transformation

(U, V) 7→ (X,Y) = (U/V, V 2)

in such a way that the ratio between the area of the image to the area of the preimage is
constant. This is due to the fact that that the Jacobian of this transformation is constant.

Figure 3: Ratio-of-Uniforms method. The region below the density of the Cauchy distribution
is transformed into a half-circle. Points are then sampled uniformly in the bounding
rectangle and accepted or rejected.

The above example is a special case of a more general principle, called the Ratio-of-Uniforms
(RoU) method [3]. It is based on the fact that for a random variable X with density f(x) and
some constant µ we can generate X from the desired density by calculating X = U/V + µ for
a pair (U, V) uniformly distributed in the set

Af = {(u, v): 0 < v ≤
√
f(u/v + µ)} .

For most distributions it is best to set the constant µ equal to the mode of the distribution.
For sampling random points uniformly distributed inAf rejection from a convenient enveloping
region is used, usually the minimal bounding rectangle, i.e., the smallest possible rectangle that
contains Af (see Figure 3). It is given by (u−, u+)× (0, v+) where

v+ = sup
bl<x<br

√
f(x) ,

u− = inf
bl<x<br

(x− µ)
√
f(x) ,

u+ = sup
bl<x<br

(x− µ)
√
f(x) .

Then the Ratio-of-Uniforms method consists of the following simple steps:

1. Generate a U(u−, u+) random number U and a U(0, v+) random number V .

2. Set X ← U/V + µ.

3. If V 2 ≤ f(X) accept and return X.

4. Else try again.

27

To apply the Ratio-of-Uniforms algorithm to a certain density we have to solve the simple
optimization problems in the definitions above to obtain the design constants u−, u+, and v+.
This simple algorithm works for all distributions with bounded densities that have subquadratic
tails (i.e., tails like 1/x2 or lower). For most standard distributions it has quite good rejection
constants (e.g., 1.3688 for the normal and 1.4715 for the exponential distribution).

Nevertheless, we use more sophisticated method that construct better fitting envelopes, like
method AROU, or even avoid the computation of these design constants and thus have almost
no setup, like method SROU.

A.5. The Generalized Ratio-of-Uniforms Method

The Ratio-of-Uniforms method can be generalized in the following way [5, 8]: If a point (U, V)
is uniformly distributed in the set

Af = {(u, v): 0 < v ≤ (f(u/vr + µ))1/(r+1)}

for some real number r > 0, then X = U/V r +µ has the density f(x). The minimal bounding
rectangle of this region is given by (u−, u+)× (0, v+) where

v+ = sup
bl<x<br

(f(x))1/(r+1) ,

u− = inf
bl<x<br

(x− µ)(f(x))r/(r+1) ,

u+ = sup
bl<x<br

(x− µ)(f(x))r/(r+1) .

The above algorithm has then to be adjusted accordingly. Notice that the original Ratio-of-
Uniforms method is the special case with r = 1.

A.6. Inversion for Discrete Distributions

We have already presented the idea of the inversion method to generate from continuous
random variables (Section A.1). For a discrete random variable X we can write it formally in
the same way:

X = F−1(U) ,

where F is the CDF of the desired distribution and U is a uniform U(0, 1) random number.
The difference compared to the continuous case is that F is now a step-function. The following
figure illustrates the idea of discrete inversion for a simple distribution.

To realize this idea on a computer we have to use a search algorithm. For the simplest version
called Sequential Search the CDF is computed on-the-fly as sum of the probabilities p(k), since
this is usually much cheaper than computing the CDF directly. It is obvious that the basic
form of the search algorithm only works for discrete random variables with probability mass
functions p(k) for nonnegative k. The sequential search algorithm consists of the following
basic steps:

1. Generate a U(0, 1) random number U .

2. Set X ← 0 and P ← p(0).

3. Do while U > P

4. Set X ← X + 1 and P ← P + p(X).

5. Return X.

28

1

0 1 2 3 4 5

U

X = F−1(U)

Figure 4: Discrete inversion

With the exception of some very simple discrete distributions, sequential search algorithms
become very slow as the while-loop has to be repeated very often. The expected number of
iterations, i.e., the number of comparisons in the while condition, is equal to the expectation
of the distribution plus 1. It can therefore become arbitrary large or even infinity if the tail
of the distribution is very heavy. Another serious problem can be critical round-off errors due
to summing up many probabilities p(k). To speed up the search procedure it is best to use
indexed search.

A.7. Indexed Search (Guide Table Method)

The idea to speed up the sequential search algorithm is easy to understand [1]. Instead of
starting always at 0 we store a table of size C with starting points for our search. For this
table we compute F−1(U) for C equidistributed values of U , i.e., for ui = i/C, i = 0, ..., C− 1.
Such a table is called guide table or hash table. Then it is easy to prove that for every U in
(0, 1) the guide table entry for k = bU Cc is bounded by F−1(U). This shows that we can
start our sequential search procedure from the table entry with index k which can be found
quickly by means of the truncation operation.

The two main differences between indexed search and sequential search are that we start
searching at the number determined by the guide table, and that we have to compute and
store the cumulative probabilities in the setup as we have to know the cumulative probability
for the starting point of the search algorithm. The rounding problems that can occur in the
sequential search algorithm can occur here as well. Compared to sequential search we have
now the obvious drawback of a slow setup. The computation of the cumulative probabilities
grows linear with the size of the domain of the distribution L. What we gain is really high
speed as the marginal execution time of the sampling algorithm becomes very small. The
expected number of comparisons is bounded by 1 + L/C. This shows that there is a trade-off
between speed and the size of the guide table. Cache-effects in modern computers will however
slow down the speed-up for really large table sizes. Thus we recommend to use a guide table
that is about two times larger than the probability vector to obtain optimal speed.

29

B. Pitfalls

Libraries like Runuran that provide a flexible interface also have the risk of possible traps and
pitfalls. Besides the obvious case where the chosen method cannot be used for sampling from
the target distribution we observed that users sometimes forget to change the default values of
the function arguments, e.g., they do not set the center (a “typical point” of the distribution)
when the domain does not contain 0. Then it may happen that the chosen generation method
does not work or (the worst case!) does not work as expected.

Check argument defaults whenever you use an Runuran function!

Here is an examples2 of possible problems and how to fix these.

Shifted center. Some methods require a “typical” point of the distribution, called center.
By default this is set to center=0. The PDF at the center must not be too small. Thus if
pdf(center) returns 0 the chosen method does not work.

Example

> pdf <- function (x) { x^2 / (1+x^2)^2 }
> gen <- pinv.new(pdf=pdf,lb=0,ub=Inf)

[UNU.RAN - error] (generator) condition for method violated: PDF(center) <= 0.
Error: [UNU.RAN - error] cannot create UNU.RAN object

Solution: Set center to (a point near) the mode of the distribution.

Example

> pdf <- function (x) { x^2 / (1+x^2)^2 }
> gen <- pinv.new(pdf=pdf,lb=0,ub=Inf, center=1) ## Add ’center’
> x <- ur(gen,10)
> x

[1] 10.0978165 2.8812529 5.3015098 1.0702028 1.3597639 1.0355145
[7] 0.9157334 8.0849367 27.0268994 3.0416457

Broken Runuran objects. Runuran objects contain pointers to external objects. Conse-
quently, it is not possible to save and restore an Runuran object between R sessions, nor to
copy such objects to different nodes in a computer cluster. Runuran objects must be newly
created in each session (and in each node) from scratch. Otherwise, the object is broken and
ur and uq refuse do not work.

However, generator objects for some generation methods can be packed. Then these objects
can be handled like any other R object (and thus saved and restored).

Here is an example how a generator object can be packed.

2Please sent us examples where you had problems with the concept of Runuran.

30

Example

> ## create a unuran object using method ’PINV’
> gen <- pinv.new(dnorm,lb=0,ub=Inf)
> ## such an object can be packed
> unuran.packed(gen) <- TRUE
> ## it can be still used to draw a random sample
> x <- ur(gen,10)
> x

[1] 0.5159734 0.9491116 0.1576663 0.7747687 0.2682051 0.8218318 0.9932139
[8] 0.7795400 0.6060157 1.3183938

> ## we also can check whether a unuran object is packed
> unuran.packed(gen)

[1] TRUE

Now we can save or R session and start a new one with the previously saved workspace
restored. Then we can reuse object gen (after loading library Runuran).

Without packing gen, it would be broken after restoring the saved workspace.

Example

[Previously saved workspace restored]

> library(Runuran)
> ur(gen,10)

Error in ur(gen, 10) : [UNU.RAN - error] broken UNU.RAN object

31

C. Glossary

CDF – cumulative distribution function.

center – “typical point” of distribution (“near the mode”).

HR – hazard rate (or failure rate).

inverse local concavity – local concavity of inverse PDF f−1(y) expressed in term of
x = f−1(y). Is is given by

ilcf (x) = 1 + x f ′′(x)/f ′(x) .

mode – maximum of PDF.

local concavity – maximum value of c such that PDF f(x) is Tc-concave. Is is given by

lcf (x) = 1− f ′′(x) f(x)/f ′(x)2 .

log-concave – a PDF f(x) (and hence the corresponding distribution) is called log-concave if
log(f(x)) is concave, i.e., if (log(f(x))′′ ≤ 0. See also T0-concave.

For discrete distributions, a PMF p is log-concave if and only if

pi ≥
√
pi−1 pi+1 for all i.

PDF – probability density function.

PMF – probability mass function.

PV – (finite) probability vector.

URNG – uniform random number generator.

U(a, b) – continuous uniform distribution on the interval (a, b).

Tc-concave – a PDF f(x) is called T -concave if the transformed function T (f(x)) is concave.
We only deal with transformations Tc, where

c transformation

c = 0 T0(x) = log(x)
c = −1/2 T−1/2(x) = −1/

√
x

c 6= 0 Tc(x) = sgn(c) · xc

In particular, a PDF f(x) is Tc-concave when its local concavity is less than c,
i.e., lcf (x) ≤ c.

u-error – for a given approximate inverse CDF X = G−1(U) the u-error is given as

u-error = |U − F (G−1(U))|

where F denotes the exact CDF. Goodness-of-fit tests like the Kolmogorov-
Smirnov test or the chi-squared test look at this type of error.

u-resolution – the maximal tolerated u-error for an approximate inverse CDF.

32

x-error – for a given approximate inverse CDF X = G−1(U) the x-error is given as

x-error = |F−1(U)−G−1(U)|

where F−1 denotes the exact inverse CDF. The x-error measure the deviation
of G−1(U) from the exact result. Notice that we have to distinguish between
absolute and relative x-error. In UNU.RAN we use the absolute x-error near 0
and the relative x-error otherwise, see Section A.1.1 for more details.

x-resolution – the maximal tolerated x-error for an approximate inverse CDF.

33

References

[1] H. C. Chen and Y. Asau. On generating random variates from an empirical distribution.
AIIE Trans., 6:163–166, 1974.

[2] W. Hörmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate
Generation. Springer-Verlag, Berlin Heidelberg, 2004.

[3] A. J. Kinderman and J. F. Monahan. Computer generation of random variables using the
ratio of uniform deviates. ACM Trans. Math. Softw., 3(3):257–260, 1977.

[4] J. Leydold and W. Hörmann. UNU.RAN User Manual. Department of Statistics and
Mathematics, WU Wien, Augasse 2–6, A-1090 Wien, Austria. https://statmath.wu.ac.
at/unuran/.

[5] S. Stefănescu and I. Văduva. On computer generation of random vectors by transformations
of uniformly distributed vectors. Computing, 39:141–153, 1987.

[6] G. Tirler and J. Leydold. Automatic nonuniform random variate generation in r. In
K. Hornik and F. Leisch, editors, Proceedings of the 3rd International Workshop on Dis-
tributed Statistical Computing (DSC 2003), 2003. URL https://www.ci.tuwien.ac.at/

Conferences/DSC-2003/Proceedings/. March 20–22, Vienna, Austria.

[7] J. von Neumann. Various techniques used in connection with random digits. In A. S.
Householder et al., editors, The Monte Carlo Method, number 12 in Nat. Bur. Standards
Appl. Math. Ser., pages 36–38. 1951.

[8] J. C. Wakefield, A. E. Gelfand, and A. F. M. Smith. Efficient generation of random variates
via the ratio-of-uniforms method. Statist. Comput., 1(2):129–133, 1991.

34

https://statmath.wu.ac.at/unuran/
https://statmath.wu.ac.at/unuran/
https://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
https://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/

	Introduction
	Runuran – Special Generator
	Runuran – Universal
	Runuran – Distributions
	Runuran – Advanced
	A Short Introduction to Random Variate Generation
	Pitfalls
	Glossary
	References

