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1 Introduction

The generation of random variates from multivariate binary distributions has not gained as
much interest in the literature as, e.g., multivariate normal or Poisson distributions (Bratley
et al., 1987; Dagpunar, 1988; Devroye, 1986). Binary distributions are a special case of discrete
distributions, where variables can take only two values such as “yes” and “no” or 1 and 0.

Binary variables are important in many types of applications. Our main interest is in the
segmentation of marketing data, where data come from customer questionnaires with “yes/no”
questions. Artificial data provide a valuable tool for the analysis of segmentation tools, because
data with known structure can be constructed to mimic situations from the real world (Dolnicar
et al., 1998). Questionnaire data can be highly correlated, when several questions covering the
same field are likely to be answered similarly by a subject.

In this paper we present a computationally fast method to simulate multivariate binary
distributions with a given correlation structure. After some remarks on multivariate binary
distributions in Section 2, we present the algorithm in Section 3 and give some examples in
Section 4. The implementation of the algorithm in R, an implementation of the S statistical
language, is described in the appendix.

2 Multivariate Binary Distributions

In this paper we deal with variables which take only binary values, typically encoded by {0, 1}.
In the simplest case the variables are scalar, then the corresponding distribution is also called the
alternative distribution. In the following, binary random variables will be denoted by A, B, ...
or Ay, A,, ..., respectively. Realizations of these random variables will be denoted by corre-
sponding lower case letters. The alternative distribution is fully determined by the single value
pa = IP(A = 1), which is also the expectation of A, i.e., IEA = p,. The variance is given by
var(A) = p,(1 — py); for convenience we will write ¢4, = (1 —p,) = IP(A = 0).

Consider two binary random variables A and B which are not necessarily independent. Then
the joint distribution of A and B is fully determined by p,, pg and either p, 5, Pa|B O Pp|a



where

pap = IP(A=1B=1)
Pla = IP(B=1]4A=1)

The remaining probabilities can easily be derived from Bayes Theorem
Pap = PaBPB = PB|APA

or relationships like
IP(A=1,B=0)=py —pap

This bivariate binary distribution can easily be generalized to the multivariate case, where
A= (A, ..., A;) €1{0,1}%is a vector with (possibly dependent) binary components. For a full
description of an unrestricted distribution of A we need 2¢ — 1 parameters, e.g., the probabilities
of all 2¢ possible values of A (the last probability is determined by the condition that the sum
equals 1).

3 Generation of Binary Random Variates

3.1 The Inversion Method

The task of generating a sample of size n of a binary random variable A with given p, can
be accomplished if a random number generator is available which produces random numbers U

which are uniformly distributed in [0, 1]. To get a sample a,,...,a, of A we generate a sample
Uy, ..., u, of U and set
a = { 0, u;<qy
e 1a U > Gy

The algorithm above is a special case of the inversion algorithm for discrete random variables
(e.g., Devroye, 1986, p. 83ff). Let M denote an arbitrary discrete random variable taking values
in Z with probabilities p, = IP(M = 7). Then if we use again a uniform random variable U we
can use the transformation

ZPi<U§ZPi

i<M i<M

This relationship cannot explicitly be solved for U or M, such that for each transformation we
have to perform a lookup search in the table of p,’s. To generate a random number m for M

we generate a random number u for U and then set m = j if

ZPi<U§ZPi (1)

i<j i<

With this method d-dimensional binary data can be generated by specifying the probabilities
of all d-tuples of {0,1}. If, for example, d = 2, one has to specify IP(A = 0, B = 0),IP(A =
0,B =1),IP(A =1,B =0), and IP(A = 1,B = 1). All d-tuples can be enumerated by
interpreting the binary vector as a binary number, resulting in index numbers {0, ...,29—1} and
corresponding probabilities pg, ..., pya_;. Another way of enumerating the d-tuples is by size of
the p;, resulting in computational advantages (faster computation of the lookup Equation (1)
when using a sequential search algorithm).



Direct specification of all p, is only feasible for small d, because of the exponential growth
of the number of p,;’s. In practice a lower-dimensional parameterization of the p, is used such
that for some function f

pi:f(i,g_), 9:(91,...,9n)l

with the dimension n << 2¢ of the new parameter vector § much smaller then 2¢. If pairwise
combinations of components are given by their correlation, then only n = O(d?) parameters
have to specified. E.g., autologistic models fall into this category.

The inversion method is very powerful, because it can generate random values from arbitrary
distributions. On the other hand, it requires a search in 2% values for each random number
generated, which makes it rather slow.

3.2 Direct Conversion of Real-Valued Random Variates

A (computationally faster) method for generating samples from a binary vector A =
(Aq,..., Ay) is the following: Let X = (X,,..., X;) be a d-dimensional normally distributed
vector with mean g and covariance matrix . Normally distributed random variates can easily
be transformed to binary values by componentwise thresholding: a, = 1 <= z, > 0. Due to
the construction

Pa, :IP(AZ = 1) :IP(XZ > 0)
and
pAiAj :]P(Az = I,AJ = 1) :]P(Xz >0,XJ > 0)’

where IP(X; > 0) depends, for fixed variances, only on p; whereas IP(X; > 0, X; > 0) depends
on y;, p; and on the correlation between X; and X;.

Efficient random number generators for normal distributions can be found in all advanced
mathematic environments, hence data generation is very fast (involving only one additional
comparison and assignment per value). If only random numbers from the standard normal
distribution (zero mean, unit covariance matrix) can be generated, then these have to be trans-
formed to general multivariate normals. Let Q be the (matrix) square root of X such that
QY =%. Then Y = QX 4+ pu~ N(p,X)if X ~ N(0,1).

3.2.1 Determination of g and X

Let Y; be a 1-dimensional normally distributed random variable with mean g, and unit variance.
Hence,

P(Y; > 0) = P((Y; — p;) > —p;) = P((Y; — ;) < 1)

where the second equality holds, because (Y; — ;) is normally distributed with zero mean. If we
choose p; to be the p,.-quantile of the standard normal distribution and restrict all variances to
1, then IP(Y; > 0) = p,,. The mean vector y is determined by the desired marginal probabilities
py, for the components of A. Allowing for different variances of the Y; introduces additional
degrees of freedom (and therefore modeling capabilities). For simplicity, we do not analyze this
case in the following.

What is still missing is a relation between the covariance matrix X, of the binary variables
and the covariance matrix X of the normal distribution. By specifying a covariance matrix only
pairwise relations between the components of the d-dimensional sample can be specified. In the

following we will restrict ourself to the bivariate case for ease of notation.



Figure 1: Conversion of bivariate normal distribution to binary.

The correlation coefficient r 45 of two binary random variables A and B can be written as
Pap —PaPp
TaB = (2)
VPal4PBRIB
such that

PaB = Ta\Pal4PB4B + PaPB: (3)

If A and B are converted from two normal random variables X and Y as described above,
then p,p can be related to the normal distribution by

Pap =P(X >0,Y >0) =IP(X > —ux,Y > —py) = L(—px, —piy, p),

where X 1= X — puy and Y := Y — py have a standard bivariate normal distribution with
correlation coefficient p = pyy; and

L(h,k,p) :=TP(X >h,Y > k) = / / é(z,y; p)dydz
o Jk
with

4 ) 1 < z2—2pzy+y2)
T, Y p) = —F——=exp| ————
S o 2(1 - p?)

being the density function of (X,Y).



The values of L(h,k, p) are tabulated (see the references in Patel & Read, 1982, p. 293f)
or can be obtained by numerical integration or Monte Carlo simulation (see Figure 2). For
tx = py = 0 there is the simple relation

1 arcsin(p
PaB = L(anap) = 4 + T()

or

©
S A
<
s
2
a
N
S
Q |
o I I I
-0.5 0.0 0.5
Pxy

Figure 2: p,p versus pyy for three different combinations of marginal probabilities p,/pp:
0.2/0.5(0), 0.2/0.8(A), 0.5/0.8(¢). All values were derived by Monte Carlo simulation on 10°

values and interpolated using cubic splines.

3.2.2 Pseudocode for Direct Conversion

This leads to the following algorithm for generating a d-dimensional binary vector A with given
first and second moments (p4,, P4, 4;):

1. Choose the marginal probabilities p,. and the covariance matrix X;.
2. Set p; = @~ '(p,,) where ® is the standard normal distribution function.
3. Find an appropriate covariance matrix X for the normal distribution.

4. Generate a sample of a d-dimensional normal variables X with mean p and covariance
matrix X.

5. Set a; =1 <= =z, > 0.

Note that any desired marginal probabilities for the components of A can easily be obtained by
using the corresponding quantiles of the normal distribution as mean vector. The covariance
matrix 2 still needs some handcrafting, as not every square matrix is positive definite and hence
an admissible covariance matrix.



3.3 Specifying the Pairwise Relations

The pairwise relations between the variables A;,2 =1, ..., d can be either given by a covariance
matrix X, or by specifying the pairwise probabilities pAlAJ_,Vz' # j. In both cases one has to
ensure that the values specified are valid.

A covariance matrix Y, is valid, if it is symmetric and positive definite, that is all eigenvalues
of ¥, have to be non-negative. This property can be easily checked, but if it turns out that the
matrix is not positive definite, it is not clear which elements of the matrix have to be changed
in order to make the matrix positive definite.

If pairwise probabilities are specified, we are not aware of any sufficient conditions that can
guarantee us the validity of the specification. We can, however, give some necessary conditions
for the pairwise probabilities which will be derived in the following.

From

Pap =PaPpla < P4

we get

Pap < min(py, pp)- (4)

Let p,4yp be the probability that at least one of A and B equals 1. Then, we get
1> pavp =Pa+Pp—Pas
which gives
pap > max(p, +pp —1,0). ()

Fulfilling Conditions 4 & 5 is not sufficient as is shown by the following simple example.
Let p, = pg = pe = 1/2 and pyp = Pac = Ppe = 0. Then, (4) & (5) are fulfilled and one
can easily construct a 2-dimensional binary distribution which is valid for p4, pp, and p, 5 by
specifying that the pairs (0,1) and (1,0) have a probability of 1/2 each. However, there is no
way to add the third variable C'.

The reason is that

1 > PavBve =Pa+Pp+Pc—Pap—Pac —Ppc tPaBc
> PatpPp+Pc—Pap—Pac — Prc

which is not fulfilled in the above example.

This above example can be generalized to d dimensions by setting p . = 1/(d—1),i=1,...,d
and Paa; =0, Vi # j. Then, for any (d—1) of the d variables, a distribution can be found which
fulfills all pairwise conditions by giving every (d — 1)-tuple with exactly one 1 the probability
1/(d — 1), but there is no valid distribution for all d variables.

That means, if we want to define a d-dimensional binary distribution by specifying p,.,i =
1,...,d and pAiAj,Vi #+ j, we have to ensure that for all 2 < k < d and all possible choices

Jiy-- -, Jg of k elements out of d the condition
k k
1> ZPAJ', N Z Paj A
i=1 il=1,i#l

1s fulfilled.



4 Examples

4.1 Example 1: 3 x 3

We first give a short example for the generation of 3-dimensional binary data, when marginal

probabilities and pairwise joint probabilities are given. In this example we will also demonstrate

the usage of the R functions of the bindata package which is described in the appendix.
Suppose the desired marginal probabilities are

pp=PA, =1)=02, p,=05, p;=038
and the pairwise joint probabilities are
P =P(A; =1,4,=1)=0.05, p;3=0.15, py3 =045

The joint probabilities depend on the marginal probabilities, e.g., the valid range for p,, is [0,
0.2]. Of course one could also specify correlations instead of joint probabilities and compute
the joint probabilities using Equation 3. With Equation 2 we get the correlation matrix

1.0000 —0.2500 —0.0625
R =] -0.2500 1.0000  0.2500
—0.0625  0.2500 1.0000

The mean vector of the normal distribution is given by the 0.2, 0.5 and 0.8 standard normal
quantiles

p = (—0.842,0,0.842)

For p € {-0.9,-0.8,...,0.0} we compute L(—p;, —p;,p) by Monte Carlo simulation and inter-
polate these values with cubic splines, see Figure 2. Inversion of the interpolations results in
the covariance matrix

1.0000 —0.4464 —-0.1196
¥ =| —0.4464 1.0000 0.4442
—0.1196 0.4442 1.0000

which can be derived in R by
sigma <- commonprob2sigma(commonprob, SimulVals)

where commonprob is the matrix with main diagonal elements p,, p,, p; and non-diagonal el-
ements py,,Py3, Pa3, and SimulVals contains the results of the Monte Carlo simulation (R
function simul.commonprob).

Note that the Monte Carlo simulations have to be performed only once for each combination
of marginal probabilities and can then be stored for further usage. The bindata package already
contains the results of such simulations in the data set SimulVals.

If we now generate 100.000 random binary vectors with

x <- rmvbin(100000, margprob = diag(commonprob), sigma=sigma)
or

x <= rmvbin(100000, commonprob = commonprob)



we get empirical correlations of

A 1.0000 —0.2526 —0.0602
R=|-0.2526 1.0000  0.2530
—0.0602  0.2530 1.0000

and empirical probabilities

Py =0.1994  p, = 0.4998 ps = 0.8010
Pro = 0.0495 pi5 = 0.1504 p,q = 0.4506

4.2 Example 2: 5 x5

To compare our method with autologistic models we used the parameters for an autologistic
model from Table 9 of Dolnicar et al. (1998). The autologistic model is given by

p, =P(z = z") = cexp(z™'Oz"), Vz" € {0,1}°

where ¢ = ¢(0) is a normalization constant such that the p, sum to 1, © is a 5 x 5 parameter
matrix and the 2" = (z7,...,22)",n = 1,...,2" are all binary vectors of length 5. In this
example we use the parameters

—2.865  0.973  0.966  0.958  0.951

0973 —-3.058 0944 0936  0.928

0= 0.966  0.944 -3.297 0920 0.912
0.958 0.936  0.920 -3.612  0.904

0951  0.928 0.912  0.904 —4.075

We first compute the pattern probabilities p,,, then the marginal probabilities that the i-th
component z; is 1, and finally the pairwise probabilities of components z; and z; being 1:

0.854 0.831 0.827 0.820 0.806
0.831 0.849 0.823 0.816 0.803
P = |0.827 0.823 0.842 0.812 0.799
0.820 0.816 0.812 0.834 0.794
0.806 0.803 0.799 0.794 0.818

This matrix is now converted to a covariance matrix of the 5-dimensional normal distribution
as described above. Sampling 100.000 variates yields an empirical probability matrix of

0.854 0.828 0.824 0.818 0.807
0.828 0.850 0.821 0.816 0.804
P = |0.824 0.821 0.842 0.812 0.800
0.818 0.816 0.812 0.834 0.796
0.807 0.804 0.800 0.796 0.818

The maximum absolute deviation is 0.00310 for IP(z, = 1,2z, = 1).

In Table 1 we give the pattern frequencies of 10.000 simulated data and compare them to
the theoretical values of the autologistic model. We see that the autologistic model “prefers”
pattern where 4 out of 5 digits are 1, their frequency is 152% to 226% as compared to the
normal model. For the patterns with 2 or 3 times 1 the normal model produces them about
twice as often as the autologistic model.



00000 00001 00010 00011 00100 00101 00110 00111
Autolog 1168 20 32 3 43 5 7 5
Normal 1083 24 31 6 57 11 16 9
01000 01001 01010 01011 01100 01101 01110 01111
Autolog 55 6 10 6 13 9 15 61
Normal 69 9 26 10 33 18 28 27
10000 10001 10010 10011 10100 10101 10110 10111
Autolog 67 8 12 8 17 12 20 85
Normal 81 14 27 13 28 23 36 41
11000 11001 11010 11011 11100 11101 11110 11111
Autolog 22 16 26 116 37 167 278 7652
Normal 34 32 47 61 48 110 164 7784

Table 1: Pattern Frequencies

4.3 Example 3: 10 x 10

As a last example we create random pattern probabilities p, for all 10-dimensional binary
vectors, giving the joint probability matrix

258 102 .036 .069 .096 .020 .116 .021 .044 .069
102 406 .074 .099 .142 .054 .183 .055 .072 .107
036 .074 .179 .036 .059 .011 .082 .014 .021 .050
069 .099 .036 .255 .090 .023 .113 .022 .036 .072
096 142 .059 .090 .375 .047 .167 .044 .076 .105
.020 .054 .011 .023 .047 .131 .060 .008 .015 .026
160 183 .082 (113 167 .060 .458 .060 .088 .132
.021 .055 .014 .022 .044 .008 .060 .133 .014 .029
.044 072 .021 .036 .076 .015 .088 .014 .195 .046
069 107 .050 .072 .105 .026 .132 .029 .046 .288

We simulated 500.000 data points with our method resulting in the empirical probability matrix

258 102 .036 .069 .095 .020 .116 .020 .044 .069
102 406 .074 .099 .141 .054 .183 .055 .072 .106
.036 .074 .180 .036 .058 .011 .083 .014 .020 .049
069 .099 .036 .255 .089 .023 .113 .022 .036 .072
- 095 141 .058 .089 .375 .047 .166 .044 .076 .105
.020 .054 .011 .023 .047 .131 .060 .008 .015 .025
116 183 083 113 .166 .060 .457 .060 .088 .132
.020 .055 .014 .022 .044 .008 .060 .132 .014 .029
.044 072 .020 .036 .076 .015 .088 .014 .195 .046
069 .106 .049 .072 .105 .025 .132 .029 .046 .289

The maximum absolute deviation is 0.00149 for IP(z, = 1).



5 Summary

In this paper we presented an algorithm to generate multivariate binary distributions with a
given correlation structure or with given pairwise joint probabilities. This algorithm is compu-
tationally faster than algorithms based on the inversion method. We have shown empirically
that this algorithm is capable of generating data whose correlation structure is a very close
approximation to the specified structure.

An open theoretical question is which combinations of pairwise joint probabilities or corre-
lations lead to a valid multivariate binary distribution. This is an interesting problem for any
algorithm which generates d-dimensional binary data out of such lower-dimensional represen-
tations of all 2¢ probabilities.
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check. commonprob Check Joint Binary Probabilities

check. commonprob(commonprob)

Arguments
commonprob
Matrix of pairwise probabilities.

Description

The main diagonal elements commonprob[i, i] are interpreted as probabilities p,, that a bi-
nary variable A; equals 1. The off-diagonal elements commonprob[i, j] are the probabilites
Pa,a, that both 4; and A; are 1.

This programs checks some necessary conditions on these probabilities which must be ful-
filled in order that a joint distribution of the A; with the given probabilities can exist.

The conditions checked are
0<py, <1
max(0,pa, +pa; = 1) <paja; <min(pa,,pa) i #J
Pa, tPa, tPa, —Paa, —Paa, —Paja, S LiFJiFEkj#k
Value

check.commonprob returns TRUE, if all conditions are fulfilled. The attribute "message" of
the return value contains some information on the errors that were found.

Author(s)

Andreas Weingessel

References

Friedrich Leisch, Andreas Weingessel and Kurt Hornik (1998). On the generation of cor-
related artificial binary data. Working Paper Series, SFB “Adaptive Information Systems
and Modelling in Economics and Management Science”, Vienna University of Economics,
http://www.wu-wien.ac.at/am

See Also

simul.commonprob commonprob2sigma

Examples

check. commonprob (cbind(c (0.5, 0.4), c(0.4, 0.8)))
check. commonprob (cbind(c (0.5, 0.25), c(0.25, 0.8)))

check. commonprob (cbind(c (0.5, 0, 0), <(0, 0.5, 0), (0, 0, 0.5)))

11



Calculate a Covariance Matriz for the Normal Distribution out of

b2si . . .
commonprobesigmna a Matriz of Joint Probabilites.

commonprob2sigma(commonprob, simulvals)

Arguments

commonprob

Matrix of Pairwise Probabilities.
simulvals

Array received by simul.commonprob.

Description

Computes a covariance matrix for a normal distribution which corresponds to a binary dis-
tribution with marginal probabilites given by diag(commonprob) and pairwise probabilities
given by commonprob.

For the simulations the values of simulvals are used.

If a non-valid covariance matrix 1s the result, the program stops with an error in the case
of NA arguments and yields are warning message if the matrix is not positive definite.
Value

A covariance matrix is returned with the same dimensions as commonprob.

Author(s)
Friedrich Leisch

References

Friedrich Leisch, Andreas Weingessel and Kurt Hornik (1998). On the generation of cor-
related artificial binary data. Working Paper Series, SFB “Adaptive Information Systems
and Modelling in Economics and Management Science”, Vienna University of Economics,
http://www.wu-wien.ac.at/am

See Also

simul.commonprob

Examples

n <- cbind(c(1/2,1/5,1/6),c(1/5,1/2,1/6) ,c(1/6,1/6,1/2))
sigma <- commonprob2sigma(m)

12



condprob Conditional Probabilities of Binary Data

condprob(x)

Arguments
X Matrix of binary data with rows corresponding to cases and columns corresponding
to variables.
Description

Returns a matrix containing the conditional probabilities P(z; = 1{z; = 1) where z; corre-

sponds to the i-th column of x.

Author(s)
Friedrich Leisch

ra2ba

ra2ba(x)

Arguments

b'e Array of arbitrary dimension

Description

Converts all values of the real valued array x to binary values by thresholding at 0.

Author(s)

Friedrich Leisch

Examples

x <- array(rnorm(10), dim=c(2,5))
ra2ba(x)

13



rmvbin Multivariate Binary Random Variates

rmvbin(n, margprob, commonprob=diag(margprob),
bincorr=diag(length(margprob)),
sigma=diag(length(margprob)),
colnames=NULL, simulvals=NULL)

Description

Creates correlated multivariate binary random variables by thresholding a normal distribu-
tion. The correlations of the components can be specified either as common probabilities,
correlation matrix of the binary distribution, or covariance matrix of the normal distribu-
tion. Hence, only one of the arguments commonprob, bincorr and sigma may be specified.
Default are uncorrelated components.

n samples from a multivariate normal distribution with mean and variance chosen in order
to get the desired margin and common probabilities are sampled. Negative values are
converted to 0, positive values to 1.

Author(s)
Friedrich Leisch

References

Friedrich Leisch, Andreas Weingessel and Kurt Hornik (1998). On the generation of cor-
related artificial binary data. Working Paper Series, SFB “Adaptive Information Systems
and Modelling in Economics and Management Science”, Vienna University of Economics,
http://www.wu-wien.ac.at/am

See Also

commonprob2sigma,check.commonprob, simul.commonprob

Examples

# uncorrelated columns:
rmvbin (10, margprob=c(0.3,0.9))

# correlated columns
m <- cbind(c(1/2,1/5,1/6),c(1/5,1/2,1/6) ,c(1/6,1/6,1/2))
rmvbin (10, commonprob=m)

# same as the second example, but faster if the same probabilities are
# used repeatedly (coomonprob2sigma rather slow)

sigma <- commonprob2sigma(m)

rmvbin (10 ,marginprob=diag(m) ,sigma=sigma)

14



simul.commonprob Simulate Joint Binary Probabilities

simul.commonprob(margprob, corr=0, method="integrate'", n1=10"5, n2=10)
data(CommonProb)

Arguments
margprob

Vector of marginal probabilities.

corr Vector of correlation values for normal distribution.
method

Either "integrate' or "monte carlo".

ni Number of normal variates if method is "monte carlo".
n2 Number of repetitions if method is "monte carlo".
Description

Compute common probabilities of binary random variates generated by thresholding normal
variates at 0. The output of this function is used by rmvbin. For all combinations of
marginprob[il, marginprob[j] and corr[k], the probability that both components of a
normal random variable with mean gnorm(marginprob[c(i,j)]) and correlation corr[k]
are larger than zero is computed.

The probabilities are either computed by numerical integration of the multivariate normal
density, or by Monte Carlo simulation.

For normal usage of rmvbin it is not necessary to use this function, one simulation result
is provided as variable CommonProb in this package and loaded by default.

Author(s)
Friedrich Leisch

References

Friedrich Leisch, Andreas Weingessel and Kurt Hornik (1998). On the generation of cor-
related artificial binary data. Working Paper Series, SFB “Adaptive Information Systems
and Modelling in Economics and Management Science”, Vienna University of Economics,
http://www.wu-wien.ac.at/am

See Also

rmvbin

Examples

simul . commonprob (seq(0,1,0.5), seq(-1,1,0.5), meth="mo", n1=10"4)
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